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Mathématiques, Univ. Bordeaux 1, FR

colin@math.u-bordeaux1.fr

MARIE-CHRISTINE COSTA

JACQUES DEMONGEOT
TIMC, IMAG, Univ. Grenoble I, FR

jacques.demongeot@imag.fr

NICOLE EL KAROUI
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Analyse Systèmes et Biométrie

Montpellier, FR
lobrinria@wanadoo.fr

LAURENT MICLO
Analyse, Topologie et Proba., Univ. Provence, FR

miclo@cmi.univ-mrs.fr
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1.5.2 Plans pour modèles non linéaires . . . . . . . . . . . . . . . . . . . . 21
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2 Outils mathématiques pour les plans d’expérience . . . . . . . . . 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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2.6.2 Cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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9.4 Plans en blocs incomplets équilibrés . . . . . . . . . . . . . . . . . . . . . . . 374
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9.6.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
9.6.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

9.7 Exemple d’application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
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Préface

Les plans d’expérience sont de plus en plus utilisés dans l’industrie et dans
les laboratoires de recherche. Ils permettent en effet de modéliser au mieux
un phénomène aléatoire, le plus souvent complexe, à l’aide d’un minimum
d’essais. Ils s’incrivent donc dans la démarche constante d’amélioration de la
qualité ou de la productivité.

Cet ouvrage a pour but de présenter les bases théoriques de la méthode
des plans d’expérience. Il se positionne entre les ouvrages pratiques pour
ingénieurs (très riches en exemples mais masquant le plus souvent la théorie)
et les ouvrages pour mathématiciens (de lecture parfois trop ardue pour les
non-spécialistes). Il est structuré autour d’une vision globale des techniques
de planification en abordant les grands thèmes suivants :

plans d’expérience pour facteurs quantitatifs,
plans d’expérience pour facteurs qualitatifs,
plans d’expérience en blocs,
plans d’expérience pour mélanges,
plans d’expérience optimaux.

Ces diverses techniques sont illustrées à l’aide d’une multitude d’exemples pra-
tiques. La plupart des résultats mathématiques sont aussi démontrés dans des
annexes, ceci permet au lecteur d’avoir divers niveaux de lecture de l’ouvrage.

Il s’adresse à un public varié : étudiants de second cycle universitaire
ou d’école d’ingénieurs, chercheurs souhaitant approfondir certaines con-
naissances théoriques sur les plans d’expérience, ingénieurs voulant mieux
mâıtriser et comprendre les fondements de la planification des expériences
ou encore étudiants de cycles techniques scientifiques de type BTS, IUT ou
licences professionelles (en omettant dans ce cas les annexes théoriques).

Ce livre a été initialement développé sur la base de notes de cours rédigées
pour un enseignement en Master 2ème année MSID (Méthodes Stochastiques
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et Informatiques pour la Décision) de l’Université de Pau et des Pays de
l’Adour ainsi que pour un enseignement à l’école ingénieurs ENSGTI basée
aussi à Pau.

Je tiens enfin à remercier tout particulièrement mes collègues Bénédicte
Puig, Astrid Jourdan et Christian Paroissin pour leur lecture minutieuse des
premières versions du manuscrit.

Que soit aussi remerciée mon épouse, Natacha, pour ses encouragements
et sa patience.

PAU, Octobre 2009 Walter TINSSON



Préface XV

Exemple de culture de diverses essences d’arbres en milieu montagnard
selon un carré latin 5× 5 (Beddgelert Forest en 1929).

Source :
J.F. Box, R.A. Fisher: The Life of a Scientist, NewYork: Wiley 1978.



Partie I

Généralités



1

La notion de plan d’expérience

1.1 Introduction

Ce premier chapitre aborde la notion générale de planification expérimentale
en utilisant peu de notions mathématiques. Il est principalement destiné
aux lecteurs novices ayant besoin, dans un premier temps, de bien cerner
la problématique et les objectifs de cette méthode.

Le chapitre débute par une présentation très générale de la démarche
de planification expérimentale ainsi que du vocabulaire de base (facteurs,
réponse, domaine expérimental, etc...). Les principaux écueils à éviter en pra-
tique (réaliser trop d’expériences, méthode ”un facteur à la fois”, réalisation
des expériences sans stratégie fiable, etc...) sont présentés. Cette première
partie est suivie par un bref historique des plans d’expérience. La structure
de l’ouvrage est ensuite présentée en précisant clairement quels sont les sujets
abordés et ceux qui ne le sont pas. Une présentation des logiciels scientifiques
pouvant être utilisés dans le cadre des plans d’expérience (SAS, Nemrod, R,
etc...) figure aussi afin de faciliter le choix du lecteur souhaitant réaliser de
tels traitements informatiques.

Un exemple d’étude classique menée à l’aide d’un plan d’expérience est
proposé pour terminer le chapitre. Cette étude, réalisée à l’aide du logiciel
Nemrod, permet au lecteur d’avoir une première idée des techniques utilisées
lors de la mise en oeuvre pratique d’un plan d’expérience. Des références sont
de plus données tout au long de cet exemple afin de pouvoir se reporter aux
divers chapitres correspondants.

Le lecteur souhaitant une introduction plus orientée vers les aspects indus-
triels de la méthode des plans d’expérience pourra consulter aussi les premiers
chapitres des ouvrages de Goupy [45] ou [46], de Pillet [72] ainsi que Sado et
Sado [82].

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 1,
c© Springer-Verlag Berlin Heidelberg 2010
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1.2 La démarche de planification expérimentale

1.2.1 Objectifs

A l’époque actuelle bon nombre de procédés de fabrication ou d’expériences
en laboratoire deviennent de plus en plus complexes car ils dépendent d’un
grand nombre de variables difficiles à régler intuitivement. Ceci concerne, par
exemple :

le problème de la mise au point de moteurs atmosphériques dépendant
d’un nombre croissant de réglages électroniques,

le pilotage optimal de machines-outil,

la détermination des proportions d’un mélange chimique,

la recherche des conditions environnementales optimales pour la pro-
duction agricole, etc...

Seule la réalisation d’expériences va permettre d’appréhender et de modé-
liser de tels phénomènes complexes. Si ces expériences sont effectuées sans
une méthodologie rigoureuse il est fort probable qu’elles vont soit conduire à
des impasses (modèle impossible à ajuster, résultats incohérents, etc...) soit
à des résultats de qualité décevante. C’est pourquoi la méthode des plans
d’expérience est préconisée afin d’optimiser ce type de démarche. L’objectif
principal de cette méthode peut être résumé par la devise :

”obtenir un maximum d’information
en un minimum d’expériences”

Une autre vision du problème est la recherche de variations simultanées pour
toutes les variables controlées afin, une nouvelle fois, d’extraire un maximum
d’information en un minimum d’essais. Une telle problématique est primor-
diale dans le milieu industriel où minimiser le nombre d’expériences à réaliser
est synonyme de gain de temps et de productivité. Réaliser des productions
de la meilleure qualité possible au coût le plus bas est de plus une quête
universelle pour tous les fabriquants.

1.2.2 Réponse

On qualifie de réponse la grandeur qui est observée pour chaque expérience
réalisée. On supposera toujours ici que cette grandeur est numérique et qu’une
seule réponse à la fois est observée (des techniques de planification mul-
tiréponses existent aussi voir, par exemple, le chapitre 7 de Khuri et Cor-
nell [56]). Il appartient aux spécialistes du phénomène étudié de cerner au
mieux ce qui les intéresse et de fournir le type de réponse étudié ainsi que
l’objectif souhaité vis-à-vis de celle-ci. Cet objectif est dans la plupart des cas
une recherche d’extremum.



1.2 La démarche de planification expérimentale 5

Citons quelques exemples. Pour l’étude de l’acidité d’un jus de fruit il est
possible de mesurer son pH afin de quantifier ce problème. L’objectif souhaité
est alors la minimisation de la réponse. Pour le cas d’une production agri-
cole la réponse est, par exemple, le rendement à l’hectare et l’objectif est de
maximiser cette réponse.

1.2.3 Facteurs

On qualifie de facteur toute variable, obligatoirement contrôlable, suscep-
tible d’influer sur la réponse observée. La différence fondamentale entre la
notion classique de variable et celle de facteur tient donc dans le fait que tout
facteur doit pouvoir être modifié sans difficulté. Cette hypothèse est obliga-
toire pour les plans d’expérience puisque nous allons par la suite proposer une
liste des expériences à réaliser. Il est donc impératif que l’expérimentateur
puisse s’y tenir en adaptant les facteurs aux diverses valeurs données. A titre
d’exemple lorsqu’une réaction chimique dépend de la pression ambiante, il
s’agit alors d’un facteur si l’expérience est menée dans un local où la pression
peut être modifiée ou bien d’une variable si le local n’est pas équipé d’un
tel dispositif (la pression est alors la pression atmosphérique que l’on peut
mesurer mais qu’il est impossible de faire varier).

Remarquons que les facteurs peuvent être quantitatifs lorsqu’ils sont na-
turellement exprimés à l’aide de valeurs numériques (pression, température,
durée, etc...) ou bien qualitatifs dans le cas contraire (couleur, type de
matériau, sexe, etc...). Il est classique de transformer des facteurs qualitatifs
en facteurs quantitatifs à l’aide d’un codage approprié (par exemple en affec-
tant la valeur 0 pour ”Homme” et la valeur 1 pour ”Femme” dans le cas du
sexe), tout ceci sera détaillé dans la suite.

Lorsqu’un facteur varie on dit qu’il change de niveau. La connaissance
de l’ensemble de tous les niveaux utilisés par chaque facteur est nécessaire
pour la réalisation des expériences. Supposons que le facteur quantitatif
”température” peut prendre les valeurs suivantes :

Température 20◦C 30◦C 40◦C 50◦C

Ce facteur est alors à 4 niveaux. On qualifie souvent de niveau bas la
température minimale de 20◦C et de niveau haut la température maxi-
male de 50◦C. Considérons cette fois le facteur qualitatif ”couleur” ayant les
modalités suivantes :

Couleur bleu vert rouge

Ce facteur est à 3 niveaux. Dans ce cas on ne parlera pas de niveau bas et
de niveau haut puisqu’il est impossible d’ordonner naturellement ces diverses
modalités.
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1.2.4 Domaine expérimental

Considérons un ensemble de m facteurs quantitatifs utilisés afin d’expliquer
au mieux un phénomène complexe. Le i-ème facteur (pour 1 ≤ i ≤ m) est
alors le plus souvent à valeurs dans un intervalle de la forme [ai, bi] où ai

et bi sont respectivement ses niveaux bas et haut. En pratique cet inter-
valle est simplement la plage de variations autorisée pour le facteur. Il ap-
partient aux spécialistes du phénomène étudié de fournir ces informations
préalables. Cela peut être, par exemple, une vitesse de rotation comprise
dans l’intervalle [500, 800] (en tours/minute) d’après les caractéristiques d’une
machine-outil ou bien une quantité de fertilisant comprise dans l’intervalle
[10, 90] (en mg/unité de surface) d’après l’expertise des ingénieurs agronomes.
Remarquons que, d’après ce qui vient d’être vu dans la section précédente, les
niveaux sélectionnés pour le facteur i doivent alors obligatoirement être des
éléments de l’intervalle [ai, bi] .

Puisque m facteurs sont considérés une expérience est donc entièrement
définie par la donnée d’un vecteur de R

m contenant tous les niveaux des
différents facteurs. On appelle domaine expérimental tout sous-ensemble
de R

m (noté E par la suite) dans lequel il est possible de réaliser les expériences.
Une méthode élémentaire afin d’obtenir un tel domaine consiste simplement
à croiser les diverses plages de variations. On obtient par produit cartésien :

E = [a1, b1]× [a2, b2]× ...× [am, bm] .

Température

Pression

80 °C60 °C

1 bar

2 bar

Expérience

Domaine
expérimental

Fig. 1.1. Plan d’expérience et domaine expérimental.
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La figure 1.1 est un exemple lorsque les m = 2 facteurs ”température” et ”pres-
sion” sont considérés. Le domaine expérimental obtenu par cette méthode est
alors le rectangle grisé. Toute expérience est donc naturellement associée à un
point de ce rectangle. Si seulement 4 expériences sont réalisées un choix opti-
mal consiste à placer ces expériences aux sommets de ce rectangle. L’ensemble
des expériences proposées constitue un plan d’expérience (appelé plan fac-
toriel complet ici).

On considèrera souvent par la suite des domaines expérimentaux sphériques
car ils permettent d’obtenir des propriétés mathématiques plus faciles à
manier. Dans le cadre de cet exemple le domaine considéré peut être, par
exemple, limité par le cercle représenté en pointillés (sous réserve, bien en-
tendu, qu’il soit réellement possible de mener des expériences dans tout ce
nouveau domaine).

Remarquons enfin que lorsque les différents facteurs sont qualitatifs la
notion de domaine expérimental est cette fois plus simple puisqu’on peut
alors l’obtenir en croisant les ensembles des diverses modalités possibles pour
chacun des facteurs (une représentation graphique a donc moins d’intérêt dans
ce cas).

1.2.5 Réalisation des expériences

Présentons ici sous forme d’un exemple la problématique de la réalisation
des expériences. Considérons une entreprise produisant une colle industrielle
qui a la fâcheuse tendance de se solidifier durant le processus de fabrication.
Afin de s’opposer à cette tendance trois additifs sont introduits durant le
procédé industriel et les débits injectés sont contrôlables à l’aide de trois
vannes prenant les niveaux suivants :

Faible / Moyen / Fort.

Utilisons dans la suite les codages 0, 1 et 2 afin de désigner plus facilement
ces trois niveaux respectifs. La réponse mesurée en sortie est ici une mesure
de la fluidité du produit mis au point. L’objectif est de maximiser cette quan-
tité. Supposons maintenant que cette fluidité obéit au modèle mathématique
additif donné ci-dessous (où Y désigne la réponse observée et i1, i2, i3 sont
les niveaux des trois facteurs c’est-à-dire les positions des diverses vannes) :

Y = Y (i1, i2, i3) = β0 + β
[i1]
1 + β

[i2]
2 + β

[i3]
3 + β

[i1i2]
12

avec les différents effets tels que :
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β0 = +120,

β
[0]
1 = 0, β

[1]
1 = +10, β

[2]
1 = −20,

β
[0]
2 = 0, β

[1]
2 = −20, β

[2]
2 = +10,

β
[0]
3 = 0, β

[1]
3 = −10, β

[2]
3 = −30,

β
[22]
12 = +60, β

[i1i2]
12 = 0 sinon.

Le fait de ramener systématiquement les divers niveaux bas à 0 est une tech-
nique classique avec ce type de modèle où lorsqu’un facteur est à h modalités
il suffit alors d’en estimer les (h− 1) effets (voir le chapitre 8 pour plus de
détails). En d’autres termes on suppose donc ici à l’aide du modèle postulé
que :

i) il existe un ”effet moyen général” d’une valeur de 120 (traduisant le fait
que si tous les débits sont au niveau faible alors la fluidité est de 120),

ii) les trois facteurs présentent divers ”effets simples” influençant directe-
ment la réponse mesurée (par exemple l’additif 3 seul semble avoir un effet
néfaste sur la fluidité lorsqu’il est utilisé en grande quantité puisque plus son
débit est grand plus la fluidité diminue),

iii) il existe un ”effet d’interaction” entre les additifs 1 et 2 car s’ils sont
utilisés simultanément avec un débit élevé alors une nette augmentation de
la fluidité apparâıt (+60). Ceci peut être dû, par exemple, à une réaction
chimique se produisant uniquement lorsque les quantités de ces deux additifs
sont assez élevées.

Remarquons qu’un tel exemple est présenté uniquement à titre pédagogique et
deux grandes hypothèses simplificatrices ont été utilisées. Premièrement il est
bien entendu évident que dans la réalité le modèle mathématique expliquant
le phénomène étudié est généralement inconnu. Deuxièmement on a supposé
ici que le modèle mathématique est déterministe (i.e. si deux expériences
identiques sont réalisées alors les réponses observées sont les mêmes). Là
aussi c’est rarement le cas dans la réalité car répéter une expérience conduit
généralement à des résultats différents à cause de diverses sources de variations
externes (erreurs humaines, facteurs non-contrôlés, erreurs dues aux appareils
de mesure, etc...). Des modèles plus complexes, dits modèles statistiques,
seront étudiés et utilisés dans la suite de l’ouvrage (voir le chapitre 2).

Supposons maintenant que les valeurs des différents paramètres du modèle
sont inconnues et qu’un utilisateur cherche à les retrouver par le biais de
l’expérimentation. Voici diverses façons classiques pour réaliser des expériences
afin de collecter des informations sur le phénomène étudié.



1.2 La démarche de planification expérimentale 9

1) Utilisation de toutes les expériences
La méthode la ”plus sûre” afin d’étudier le phénomène consiste à réaliser

la totalité des expériences possibles. Ceci conduit donc (puiqu’il y a ici 3
modalités par facteur) à la réalisation exhaustive des 27 expériences présentées
dans la table 1.1 (où la notation DV1 désigne le débit fixé pour la vanne 1,
etc...).

Table 1.1. Réalisation de toutes les expériences.

Exp. DV1 DV2 DV3 Rep.
1 Faible Faible Faible 120
2 Moyen Faible Faible 130
3 Fort Faible Faible 100
4 Faible Moyen Faible 100
5 Moyen Moyen Faible 110
6 Fort Moyen Faible 80
7 Faible Fort Faible 130
8 Moyen Fort Faible 140
9 Fort Fort Faible 170
10 Faible Faible Moyen 110
11 Moyen Faible Moyen 120
12 Fort Faible Moyen 90
13 Faible Moyen Moyen 90
14 Moyen Moyen Moyen 100
15 Fort Moyen Moyen 70
16 Faible Fort Moyen 120
17 Moyen Fort Moyen 130
18 Fort Fort Moyen 160
19 Faible Faible Fort 90
20 Moyen Faible Fort 100
21 Fort Faible Fort 70
22 Faible Moyen Fort 70
23 Moyen Moyen Fort 80
24 Fort Moyen Fort 50
25 Faible Fort Fort 100
26 Moyen Fort Fort 110
27 Fort Fort Fort 140

Les 8 paramètres non-nuls du modèle (β0, β
[1]
1 , β

[2]
1 , β

[1]
2 , β

[2]
2 , β

[1]
3 , β

[2]
3 et

β
[22]
12 ) vont pouvoir facilement être déterminés puisque les expériences réalisées

permettent d’établir un système linéaire de 27 équations. Les équations
obtenues, par exemple, à l’aide des trois premières expériences réalisées sont :
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β0 = 120

β0 + β
[1]
1 = 130

β0 + β
[2]
1 = 100

Puisque aucune expérience n’a été omise, il est donc possible de déterminer les
réglages optimaux en sélectionnant tout simplement l’expérience qui conduit
à maximiser la réponse. Il s’agit ici de l’expérience 9 associée aux débits ci-
dessous :

Débit 1 : Fort / Débit 2 : Fort / Débit 3 : Faible.

Une telle démarche pose cependant le problème du nombre d’expériences
à réaliser qui peut devenir rapidement trop important. On peut en effet sup-
poser ici que chaque expérience est longue et coûteuse à mettre en oeuvre. Il
est alors beaucoup trop lourd de réaliser concrètement 27 expériences alors
que seulement 8 paramètres sont à déterminer. Remarquons de plus que le
problème est ici assez simple car seulement 3 facteurs à 3 modalités intervi-
ennent. Pour 5 facteurs à 6 modalités le nombre total d’expériences est cette
fois de 65 = 7776. Lorsque les facteurs sont quantitatifs continus (pression,
température, ...) il devient impossible de réaliser toutes les expériences disct-
inctes puisqu’il en existe une infinité.

2) Utilisation de la technique ”un facteur à la fois”
L’expérimentateur devant faire face à une situation où la réalisation de

toutes les expériences est beaucoup trop lourde se rabat souvent sur ce type
de technique. Comme son nom l’indique elle consiste à faire varier chacun
des facteurs, l’un après l’autre, en lui affectant toutes les modalités possibles.
Puisqu’ici chaque facteur est à 3 modalités ceci conduit donc à la réalisation
d’un total de 9 expériences données dans la table 1.2.

Table 1.2. Technique ”un facteur à la fois”.

Exp. DV1 DV2 DV3 Rep.
13 Faible Moyen Moyen 90
14 Moyen Moyen Moyen 100
15 Fort Moyen Moyen 70
11 Moyen Faible Moyen 120
14 Moyen Moyen Moyen 100
17 Moyen Fort Moyen 130
5 Moyen Moyen Faible 110
14 Moyen Moyen Moyen 100
23 Moyen Moyen Fort 80

La démarche suivie consiste ici à fixer systématiquement au niveau moyen les
deux facteurs ne variant pas. L’expérience numéro 14 a ainsi été répétée à
trois reprises. Dans un contexte déterministe cela n’a aucun intérêt (puisque
la réponse mesurée est trois fois la même) mais une telle démarche n’est pas
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inutile dans un contexte statistique afin de quantifier l’importance des sources
de variations externes non-controlées. Les expériences se traduisent par les 7
équations linéaires :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 +β
[1]
2 +β

[1]
3 = 90

β0 +β
[1]
1 +β

[1]
2 +β

[1]
3 = 100

β0 +β
[2]
1 +β

[1]
2 +β

[1]
3 = 70

β0 +β
[1]
1 +β

[1]
3 = 120

β0 +β
[1]
1 +β

[2]
2 +β

[1]
3 = 130

β0 +β
[1]
1 +β

[1]
2 = 110

β0 +β
[1]
1 +β

[1]
2 +β

[2]
3 = 80

On vérifie sans peine que ce système d’équations permet de retrouver les
valeurs exactes de l’effet moyen général ainsi que des divers effets linéaires. Par
contre l’effet d’interaction ne peut être déterminé (ce qui est logique puisque
aucune expérience ne fait intervenir simultanément les débits forts pour les
additifs 1 et 2). Remarquons que même si le niveau des deux facteurs fixés à
chaque expérience avait été ”fort” au lieu de ”moyen” alors l’estimation de cet
effet d’interaction aurait encore été impossible car 7 équations distinctes ne
permettent pas de déterminer les 8 paramètres inconnus. Ceci est le principal
défaut de ce type de technique. De manière générale les inconvénients associés
à cette technique sont les suivants :

i) faire varier les facteurs un par un masque les éventuels effets d’inter-
actions entre plusieurs facteurs,

ii) le choix du niveau pour les facteurs ne variant pas (”moyen” ici) n’est
pas évident et peut avoir un effet sur la qualité des résultats obtenus,

iii) le plan d’expérience obtenu présente le problème d’être déséquilibré
dans le sens où ici le niveau ”moyen” est sur-représenté au détriment des
deux autres niveaux.

Remarquons enfin que l’utilisation de la table 1.2 conduit à une mauvaise
modélisation du phénomène étudié puisque, l’effet d’interaction étant omis, la
plus grande réponse théorique prédite par le modèle vaut 140 pour la situation
suivante :

Débit 1 : Moyen / Débit 2 : Fort / Débit 3 : Faible.

D’après la totalité des expériences de la table 1.1 il est clair que ce résultat
est faux puisqu’il ne s’agit pas du meilleur choix possible.
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3) Utilisation d’un sous-ensemble quelconque d’expériences
L’utilisateur n’ayant pas réalisé toutes les expériences pour des raisons de

coût et n’étant pas satisfait des résultats donnés par la méthode ”un facteur
à la fois” se trouve souvent désemparé et s’oriente la plupart du temps vers
le choix d’un sous-ensemble d’expériences. Ce choix est bien souvent réalisé
de manière empirique : des expériences peuvent être rajoutées à celles de
la technique ”un facteur à la fois” dans le but d’améliorer les résultats, un
sous-ensemble d’expérience peut être déterminé de manière aléatoire, etc...
Généralement, tout choix d’un sous ensemble d’expériences qui n’est pas guidé
par une méthodologie rigoureuse peut entrâıner les problèmes suivants :

i) un tel choix peut conduire à sélectionner des expériences qui ne perme-
ttront pas d’estimer tous les paramètres inconnus du modèle étudié,

ii) même si tous les paramètres inconnus du modèle étudié peuvent être
estimés la qualité des résultats obtenus ne sera généralement pas optimale.

Illustrons ceci à l’aide des 9 expériences présentées dans la table 1.3. Ce choix
peut parâıtre, à priori, plus judicieux que celui de la table 1.2 dans le sens où
la configuration présentée ici est équilibrée puisque chacun des niveaux des
facteurs apparâıt le même nombre de fois. Déterminons maintenant les divers
paramètres du modèle. L’expérience 1 permet immédiatement de retrouver la
valeur β0 = 120 pour l’effet moyen général. De même les expériences 10 et 19
conduisent aux divers effets de l’additif 3 puisque :

β
[1]
3 = −10 et β

[2]
3 = −30.

Table 1.3. Utilisation d’un sous-ensemble d’expériences.

Exp. DV1 DV2 DV3 Rep.
1 Faible Faible Faible 120
10 Faible Faible Moyen 110
19 Faible Faible Fort 90
8 Moyen Fort Faible 140
17 Moyen Fort Moyen 130
26 Moyen Fort Fort 110
6 Fort Moyen Faible 80
15 Fort Moyen Moyen 70
24 Fort Moyen Fort 50

Les 6 autres expériences conduisent à seulement deux équations distinctes
supplémentaires données par :

⎧
⎨

⎩

β
[1]
1 +β

[2]
2 = 20

β
[2]
1 +β

[1]
2 = −40
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On constate donc que les 9 expériences sélectionnées ici ne permettent pas
d’estimer tous les paramètres du modèle. Ceci est dû au fait que dans la ta-
ble 1.3 les facteurs 1 et 2 sont ”liés” car ils changent de niveau en même
temps ce qui rend impossible l’estimation de leurs effets respectifs (on mon-
trera plus tard que les expériences sélectionnées forment une fraction du plan
complet ayant une résolution trop basse pour permettre ce type d’estimation).
Il serait en pratique possible de rajouter des expériences afin de résoudre ce
type de problème mais ce serait en contradiction avec l’objectif principal qui
est d’avoir peu d’expériences à réaliser.

4) Utilisation d’un plan d’expérience
Toutes les démarches vues précédemment présentent systématiquement un

certain nombre d’inconvénients, il est alors fortement recommandé d’utiliser
un protocole expérimental ”optimal” donné par un plan d’expérience tel que
celui présenté dans la table 1.4. Les expériences proposées ici sont choisies
selon la technique des fractions régulières (on a en fait la fraction régulière
du plan complet définie par la relation I =123). Il en résulte un petit nombre
d’expériences (9) permettant de réaliser l’estimation de tous les paramètres
inconnus du modèle (effet d’interaction compris). La qualité de ce plan
d’expérience réside à la fois dans le fait qu’il est équilibré pour les traitements
(i.e. chaque traitement est utilisé 3 fois pour chaque facteur) mais aussi pour
les couples de traitements (i.e. chaque couple de traitements est testé une
fois pour chaque couple de facteurs). C’est cette dernière propriété (qualifiée
généralement d’orthogonalité) qui assure que, contrairement aux tables 1.2 et
1.3, il existe bien ici une expérience faisant intervenir les niveaux hauts des
facteurs 1 et 2 et permet ainsi de détecter l’effet d’interaction qui leur est
associé.

Table 1.4. Utilisation d’un plan d’expérience.

Exp. DV1 DV2 DV3 Rep.
1 Faible Faible Faible 120
6 Fort Moyen Faible 80
8 Moyen Fort Faible 140
12 Fort Faible Moyen 90
14 Moyen Moyen Moyen 100
16 Faible Fort Moyen 120
20 Moyen Faible Fort 100
22 Faible Moyen Fort 70
27 Fort Fort Fort 140

Un plan d’expérience consiste donc aussi à proposer peu d’expériences tout en
faisant varier tous les facteurs simultanément afin d’obtenir un maximum
d’informations (cette démarche est diamétralement opposée à celle de la tech-
nique ”un facteur à la fois”). Enfin, la détermination de tous les paramètres
inconnus du modèle permet ici de retrouver de manière purement théorique
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que la valeur maximale de la réponse devrait être de 170 lorsque les différents
réglages suivants sont effectués :

Débit 1 : Fort / Débit 2 : Fort / Débit 3 : Faible.

Il est donc possible de déterminer les conditions optimales de fonctionnement
sans même avoir réalisé l’expérience correspondante.

1.3 Historique

Réaliser des expériences afin d’étudier et de comprendre un phénomène est une
démarche qui remonte à la nuit des temps. Dès le moyen-âge Nicolas Oresme
(1325-1382) aborde cette question dans ses écrits. Inspirateur de Descartes
et Leibnitz, Francis Bacon (1561-1626) est un des précurseur de la méthode
expérimentale. En 1627 il fait, par exemple, macérer des grains de blé dans
neuf concoctions différentes afin d’étudier leur effet sur la rapidité de germi-
nation. Arthur Young (1746-1820) cherche ensuite à systématiser le procédé
et aborde la notion de répétabilité des expériences afin de prendre en compte
leur variabilité. Ses travaux concernent surtout l’agronomie et la mise en œu-
vre de méthodes ”modernes” de culture, basées plus sur l’expérimentation
que sur des préjugés ou l’habitude. Citons aussi les travaux de Cretté de
Palluel (1741-1798) qui publie en 1788 un ”Mémoire sur les avantages et
l’économie que procurent les racines employées à l’engrais des moutons à
l’étable”. L’auteur propose un protocole expérimental destiné à comparer les
mérites des pommes de terre, des turneps, de la betterave et de la chicorée dans
l’engrais des moutons de l’étable. C’est ensuite principalement au 19ème siècle
que les méthodes expérimentales se démocratisent. Citons à titre d’exemple
les expériences médicales menées par Claude Bernard (1813-1878) ainsi que
son ouvrage ”Principes de médecine expérimentale”.

Les méthodes rigoureuses d’expérimentation, basées sur l’utilisation des
plans d’expérience, sont dues aux travaux de Sir Ronald Fisher (1890-1962).
Ce brillant mathématicien, très productif dans le domaine de la Statistique,
a été amené à s’intéresser aux techniques d’expérimentation suite à son em-
ploi, en 1919, à la ”Rothamsted Experimental Station”, centre de recherche
agronomique situé au nord de Londres. Il cherche alors à augmenter les ren-
dements agricoles en combinant divers types d’engrais, de variétés végétales,
de méthodes de cultures, de types de sols, etc... Face à l’impossibilité de
réaliser la totalité des expériences ceci l’amène à proposer des configurations
expérimentales basées sur des modèles statistiques rigoureux (tels que les
carrés latins). Ceci constitue le point de départ de la méthode théorique des
plans d’expérience. Un célèbre ouvrage sur le sujet a été publié en 1935 [41].
Une synthèse des travaux de Fisher dans le domaine des plans d’expérience a
été réalisée par D. A. Preece [74].
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Divers chercheurs ont par la suite marché dans les traces de Fisher
afin de promouvoir et développer l’utilisation des techniques de planifica-
tion expérimentales dans d’autres domaines que l’agronomie. Dès les années
50 les travaux de Box et de ses collaborateurs (principalement sur les sur-
faces de réponse) ont entrainé bon nombre d’application pratiques. Mais ce
sont certainement les travaux de G. Taguchi qui ont permi une vaste diffu-
sion des plans d’expérience, notamment dans le milieu industriel. Travaillant,
entre autre, comme consultant pour de multiples entreprises japonaises G.
Taguchi a eu l’idée de réaliser des tables de configurations expérimentales
de référence facilement utilisables par des non-spécialistes. Il a de plus in-
clu l’expérimentation au sein d’une démarche plus large de ”qualité totale”
amenant à la conception de produits fiables et de bonne qualité. Ses idées ont
été mises en œuvre dans bon nombre d’industries japonaises dès les années
70.

De nombreux chercheurs contemporains ont continué le développement de
cette branche de la Statistique dans des voies diverses et variées : adaptation
des plans d’expérience pour les problèmes de mélanges, introduction d’effets
de blocs, utilisation de modèles non-linéaires, utilisation de modèles contenant
des effets de voisinage, plans d’expérience pour expériences simulées, etc ...

Voici une liste, non-exhaustive, d’ouvrages ayant fait avancer l’état de l’art
dans ce domaine lors des dernières années (ces références, ainsi que d’autres,
seront rappelées par la suite dans les divers chapitres correspondants) : Benoist
et al. [3], Collombier [19], Cox [24], Cox et Reid [25], Cornell [22], Dagnelie
[27], Dodge [29], Federer et King [39], John [52], Khuri et Cornell [56], Phan-
Tan-Luu et Mathieu [71], Pukelsheim [75], Saporta et al. [84], etc...

1.4 Guide de lecture de l’ouvrage

1.4.1 Positionnement

Cet ouvrage a pour objectif de présenter une vision très générale de la méthode
des plans d’expérience. Pour cela un grand nombre de configurations sont
étudiées (plans pour criblage, plans à effets d’interactions, plans pour surfaces
de réponse, plans en blocs, plans pour mélanges, plans pour facteurs qualitat-
ifs, plans pour facteurs qualitatifs en blocs, etc ...) ainsi qu’un grand nombre
de notions mathématiques (estimation, prédiction, fractions régulières, iso-
variance, efficacité ...). Cette approche est originale car beaucoup d’ouvrages
actuels sur ce sujet se cantonnent bien souvent à un thème précis (les surfaces
de réponse par exemple) et séparent souvent le cas des facteurs quantitatifs
du cas des facteurs qualitatifs. Une synthèse des méthodes de planification est
ici proposée dans ces divers contextes en essayant de les unifier au maximum
(notion de ”plans usuels” par exemple).
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Des approches originales, ou rarement traitées, sont de plus proposées pour
diverses notions telles que, entre autres, le blocage d’un plan d’expérience,
l’estimation des effets de blocs, la définition rigoureuse des fractions régulières
pour des facteurs à plus de deux niveaux, etc ... Une autre originalité de
l’ouvrage réside dans le fait que quasiment tous les résultats énoncés sont
démontrés (dans des annexes figurant à la fin de chacun des chapitres). Re-
marquons enfin que cet ouvrage offre, de par sa structure, plusieurs niveaux
de lecture. Il peut en effet être abordé :

1) de manière linéaire dans une approche pédagogique d’apprentissage
des techniques de planification (les compléments et démonstrations en
annexes peuvent alors être omis),

2) de manière approfondie en s’intéressant aux résultats théoriques
présentés en annexe (le lecteur expérimenté pourra dans ce cas omettre
la lecture des deux premiers chapitres),

3) de manière ponctuelle en allant chercher directement l’information
nécessaire dans un des chapitres (les diverses notations sont rappelées
au début de chacun d’eux afin de les rendre relativement autonomes),

4) de manière transversale si l’utilisateur doit se documenter sur une
notion générale abordée dans plusieurs chapitres (pour acquérir, par
exemple, des informations sur les plans en blocs on pourra se référer
à la fois aux chapitres 6 pour des facteurs quantitatifs et 9 pour des
facteurs qualitatifs).

1.4.2 Structure

Cet ouvrage est structuré en quatre grandes parties présentées brièvement
ci-dessous. La première partie aborde un certain nombre de généralités utiles
pour une bonne compréhension de la méthode de planification expérimentale.
Elle est décomposée en deux chapitres.

Chapitre un : ”La notion de plan d’expérience”.
Il s’agit du présent chapitre. Il propose une introduction à la méthode
de planification expérimentale en présentant le cadre de cette méthode,
ses objectifs ainsi que le vocabulaire et le contexte de base. Toutes les
notions traitées ou non traitées dans cet ouvrage sont clairement ex-
posées. Un exemple, basé sur une étude complète à l’aide d’un plan
d’expérience, est proposée à la fin.

Chapitre deux : ”Outils mathématiques pour les plans
d’expérience”.
Ce chapitre a pour objet de présenter les principales notions d’algèbre,
de probabilité et de statistique nécessaires à une bonne compréhension
de la mise en oeuvre et de l’analyse d’un plan d’expérience. Le lecteur
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familiarisé avec la statistique mathématique pourra sans peine omettre
une lecture approfondie de cette partie.

La deuxième partie de l’ouvrage aborde le problème, très courant en pratique,
des plans d’expérience pour facteur quantitatifs. Elle est constituée des cinq
chapitres présentés ci-dessous.

Chapitre trois : ”Plans d’expérience pour modèles d’ordre un”.
Ce chapitre aborde les techniques adaptées à l’ajustement du modèle
polynomial le plus simple c’est-à-dire de degré (ou d’ordre) égal à
un. Les plans factoriels, les fractions régulières de plans factoriels,
les plans de Plackett et Burman ainsi que les plans simplexes sont
les principales structures étudiées dans ce chapitre. Les résultats ex-
plicites concernant l’ajustement du modèle avec de tels plans sont
démontrés.

Chapitre quatre : ”Plans d’expérience pour modèles à effets
d’interactions”.
On s’intéresse cette fois à l’ajustement des modèles polynomiaux
obtenus en rajoutant tous les termes croisés associés aux interactions
entre deux facteurs distincts. Il est alors prouvé que les plans facto-
riels complets ainsi que certaines fractions régulières judicieusement
choisies permettent d’ajuster un tel modèle de façon extrèmement sim-
ple. Une généralisation aux interactions plus complexes est proposée.

Chapitre cinq : ”Plans d’expérience pour surfaces de réponse”.
Ce chapitre aborde le problème de l’ajustement d’un polynôme d’ordre
deux complet. Les plans d’expérience classiques (composite centrés,
Box et Behnken, etc...) sont présentés. Leur analyse est réalisée à
l’aide d’une théorie unifiée. Diverses propriétés statistiques telles que
l’isovariance par transformations orthogonales sont étudiées en détail.

Chapitre six : ”Plans d’expérience en blocs”.
Les plans d’expérience abordés dans ce chapitre permettent de
s’adapter aux situations dans lesquelles les observations ne sont pas
issues de conditions expérimentales homogènes. On partitionne clas-
siquement de tels plans en sous-ensembles homogènes appelés blocs.
Diverses techniques de construction des blocs sont présentées afin de
rester au sein d’une classe de plans d’expérience faciles à analyser.
Une attention particulière est portée aux plans d’expérience bloqués
orthogonalement.

Chapitre sept : ”Plans d’expérience pour mélanges”.
On s’intéresse cette fois au problème du choix des diverses propor-
tions des composants d’un mélange. Différents modèles pour mélange
sont présentés en détail. Les réseaux de Scheffé ainsi que les réseaux
centrés de Scheffé sont ensuite étudiés afin de déterminer les divers
estimateurs des paramètres des modèles mis en oeuvre.
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Une troisième partie est consacrée aux plans d’expérience pour facteurs qual-
itatifs. Elle est constituée par les deux chapitres présentés ci-dessous.

Chapitre huit : ”Plans d’expérience pour facteurs qualitatifs”.
Ce chapitre présente les dispositifs expérimentaux adaptés à ce type
de facteurs. Le modèle additif est étudié en détails principalement
concernant la propriété d’orthogonalité. Les plans d’expérience facto-
riels complets sont présentés puis la théorie des fractions régulières est
étendue au cas de ces facteurs qualitatifs. Diverses situations ”non-
standard” (fraction pour nombre de modalités non premier, pour nom-
bres de modalités différents, etc...) sont étudiées. Le modèle à effets
d’interactions est brièvement présenté.

Chapitre neuf : ”Plans d’expérience en blocs pour facteurs
qualitatifs”.
Tout comme pour les facteurs quantitatifs il est possible que les obser-
vations ne soient pas issues de conditions expérimentales homogènes. Il
est alors nécessaire d’effectuer des regroupements en sous-ensembles
homogènes encore appelés blocs. Les plans d’expérience permettant
d’analyser facilement un modèle à effets de blocs sont présentés. Ce
chapitre s’intéresse tout particulièrement aux plans en blocs complets,
aux plans en blocs incomplets équilibrés, aux plans en blocs partielle-
ment équilibrés et enfin aux plans en blocs cycliques.

Une dernière partie aborde enfin le problème très général de l’optimalité
des plans d’expérience. Elle est constituée par l’unique chapitre présenté ci-
dessous.

Chapitre dix : ”Optimalité des plans d’expérience”.
Les éléments mathématiques permettant de juger de la qualité d’un
plan d’expérience sont introduits tout au long de ce chapitre. Les
notions d’optimalité uniforme, de φq-optimalité (incluant les A, D et
E-optimalités) ainsi que d’optimalité universelle sont présentées. Il est
pris soin d’expliciter le lien entre ces différentes optimalités ainsi que
les outils techniques permettant de rechercher des plans optimaux. La
dernière partie de ce chapitre revient sur les principales configurations
étudiées tout au long de l’ouvrage pour montrer qu’elles sont le plus
souvent optimales pour bon nombre de critères.

Trois annexes, désignées par annexes A, B et C, figurent ensuite à la fin
de l’ouvrage. Ces différentes annexes sont dédiées aux thèmes présentés ci-
dessous.

Annexe A : ”Plans factoriels et représentation linéaire des
groupes”.
Cette annexe est consacrée à des rappels sur la théorie algébrique de
représentation linéaire des groupes finis ainsi qu’à son application aux
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plans factoriels complets ou bien aux fractions régulières de ce type de
plans. Certaines démonstrations déjà présentées dans divers chapitres
sont reprises dans cette nouvelle optique. Des résultats primordiaux
relatifs aux fractions régulières sont ensuite démontrés.

Annexe B : ”Plans d’expérience classiques”.
Cette annexe résume brièvement les diverses grandes classes de plans
d’expérience présentés dans l’ouvrage.

Annexe C : ”Notations utilisées”.
Cette annexe fait le bilan des diverses notations utilisées. Le lecteur est
prié de s’y reporter afin d’éviter toute confusion relative aux notations
ainsi qu’à la terminologie utilisée dans les différents chapitres.

Les références bibliographiques ainsi qu’un INDEX sont enfin regroupés à la
fin de cet ouvrage.

La plupart des chapitres contiennent un exemple final afin d’illustrer
concrètement les résultats théoriques. Ces exemples sont soit tirés de la
littérature existante soit des exemples à but pédagogique (tout en restant
pour la plupart inspirés de situations déjà rencontrées en réalité). Il perme-
ttent à la fois de mener une analyse complète à partir de toutes les notions
présentées mais aussi d’introduire les codes informatiques nécessaires.

Dans le but de ne pas alourdir les chapitres des compléments contenant les
démonstrations ainsi que certains aspects théoriques sont présents à la fin de
chacun d’eux. Ces compléments contiennent les démonstrations des résultats
signalés par le symbole [�].

1.4.3 Analyse des exemples

Afin de ne pas alourdir inutilement ce livre l’analyse des différent exemples est
focalisée sur la mise en oeuvre et l’interprétation des résultats découlant de la
planification expérimentale réalisée. Le lecteur ayant de bonnes connaissances
en statistique ne s’étonnera donc pas du fait qu’une analyse exhaustive
des résultats n’a volontairement pas été menée. Citons les principaux traite-
ments statistiques qui ne sont pas abordés dans les exemples mais qui peuvent
s’avérer très utiles pour enrichir et interpréter avec rigueur toute étude.

1) Afin de juger de la qualité du modèle ajusté à l’aide d’un in-
dicateur numérique on se limite à l’utilisation du coefficient de
corrélation linéaire multiple R2. Il est bien connu que ce coefficient est
à manier avec précaution (principalement dans les cas où le modèle
est saturé ou proche de la saturation) donc il est plus prudent de
l’accompagner en pratique par le calcul d’autres coefficients tels que
le coefficient de corrélation linéaire multiple ajusté R2

a, le coefficient
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PRESS (pour Prediction Error Sum of Square) mesurant cette fois les
capacités prédictives du modèle, le R2 de prédiction calculé à partir
du PRESS, etc...

2) Toujours pour évaluer la qualité du modèle ajusté un certain nom-
bre d’indicateurs graphiques peuvent aider l’utilisateur. Il s’agit
principalement du nuage de points des résidus estimés permettant
de visualiser ou non une bonne répartition des résidus ou encore du
nuage de points des résidus studentisés plus adapté à la détection de
mesures aberrantes. De même, des graphiques du type droite de Henry
ou QQ-plot (pour quantile-quantile) permettent de juger la validité de
l’hypothèse de normalité des observations.

3) Une fois le meilleur modèle déterminé le détail des diverses tech-
niques d’optimisation conduisant à la recherche du ou des extrema
n’est pas présenté. En effet en dehors du cas des modèles linéaires
particulièrement simples (tels les modèles de degré un) le problème
de l’optimisation (sous la contrainte de rester au sein du domaine
expérimental) est un sujet très vaste qui pourrait faire l’objet à lui
seul d’un ouvrage spécialisé. Le lecteur souhaitant se documenter plus
en détail sur ces diverses techniques pourra se référer au chapitre 5
de l’ouvrage de Khuri et Cornell [56] concernant la méthode générale
dite ”d’analyse canonique” basée sur un changement de repère facili-
tant l’analyse d’un modèle polynomial d’ordre deux. La méthode clas-
sique qualifiée de ”ridge analysis” y est aussi présentée. Concernant
l’optimisation de manière plus générale on pourra se référer à l’ouvrage
de Ciarlet [18] pour la présentation de la technique des multiplicateurs
de Lagrange ainsi qu’un certain nombre d’algorithmes classiques (gra-
dient, relaxation, etc...).

Le lecteur souhaitant en savoir plus sur ces diverses méthodes peut aussi
consulter l’étude menée à la fin de ce chapitre ou bien se référer à la plupart
des ouvrages de statistique générale tels que celui de Saporta [83] (ou Khuri
et Cornell [56] pour une approche plus orientée vers les plans d’expérience).

1.5 Thèmes non abordés dans l’ouvrage

Le but premier de cet ouvrage est de proposer au lecteur de solides bases
permettant d’appréhender la méthode des plans d’expérience sous ses aspects
les plus généraux et les plus classiques. Il en résulte qu’un certain nombre de
thèmes plus spécialisés ne sont pas abordés ici. Il s’agit principalement des
thèmes cités ci-dessous.
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1.5.1 Plans pour modèles mixtes

Le chapitre six de cet ouvrage aborde la problématique des plans d’expérience
en blocs pour facteurs quantitatifs. Le modèle considéré est alors le modèle
le plus classique, appelé modèle à effets de blocs fixes (puisque les effets des
traitements ainsi que les effets des divers blocs sont supposés inconnus mais
non-aléatoires).

Une alternative consiste à supposer cette fois que les effets des blocs sont
aléatoires. Le modèle ainsi obtenu, mélangeant effets fixes pour les traitements
et effets aléatoires pour les blocs, est souvent qualifié de modèle mixte.
Concrètement un tel modèle peut être intéressant dans toutes les situations
où un grand nombre de blocs interviennent et on ne veut tester qu’un
petit nombre de blocs choisis aléatoirement dans la population totale. Un
exemple concret est proposé par Khuri [55] pour une usine produisant des
barres d’acier en continu. Il est alors tout à fait naturel de regrouper dans
ce cas en blocs les productions supposées a priori homogènes, c’est-à-dire
issues d’un même arrivage de matière première. Ceci conduit cependant à la
distinction d’un trop grand nombre de blocs différents. Le service qualité de
l’entreprise préfère alors vérifier la qualité de fabrication des barres produites
uniquement sur certains lots choisis aléatoirement dans la production totale.
Le modèle mixte est dans ce cas mieux adapté à une telle étude que le modèle
classique à effets de blocs fixes.

Les travaux de Khuri [55] ou Tinsson [99] ont montré qu’un tel modèle
peut être analysé de manière relativement aisée à l’aide de la plupart des
plans d’expérience classiques pour modèles d’ordre deux à effets de blocs fixes
(plans composites centrés, plans de Box et Behnken, etc...). Une grande partie
de ces configurations sont présentées en détail dans cet ouvrage.

1.5.2 Plans pour modèles non linéaires

Cet ouvrage est consacré exclusivement à l’étude de plans d’expérience pour
modèles linéaires (polynomiaux d’ordre un ou deux le plus souvent). Cette
hypothèse est très courante dès lors qu’une modélisation statistique est requise
car elle permet de traduire matriciellement le problème étudié et d’utiliser
ensuite un grand nombre de résultats théoriques établis dans le cadre linéaire.
Il est de plus naturel d’approcher une fonction inconnue, mais relativement
régulière, par un polynôme de degré fixé afin d’obtenir ainsi un développement
limité. Lorsque cependant la fonction expliquant le phénomène étudié semble
être très irrégulière, ou bien qu’une modélisation linéaire n’a pas donné de bons
résultats, une possibilité consiste à s’orienter vers l’ajustement de modèles
non linéaires.

Beaucoup de travaux de recherche ont abordé cette vaste problématique
(le lecteur pourra, par exemple, consulter les chapitres relatifs à ce sujet de
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l’ouvrage de Saporta et al. [84], et principalement le chapitre 8 écrit par
Gauchi [43]). La difficulté principale réside dans le fait qu’il n’existe pas
de configuration ”optimale” pour l’ajustement de n’importe quel modèle.
Pour chaque modèle non-linéaire postulé il convient donc de mettre au
point une méthode proposant un plan d’expérience adapté. Beaucoup de ces
méthodes sont basées sur des constructions algorithmiques recherchant des
plans d’expériences optimaux selon divers critères (voir le chapitre 10 de cet
ouvrage pour la notion d’optimalité d’un plan d’expérience). Une difficulté
supplémentaire liée à cette démarche est qu’il n’est pas forcément évident de
choisir a priori un modèle non-linéaire bien adapté au phénomène étudié.
C’est pourquoi une autre approche de la non-linéarité consiste à utiliser tou-
jours des modèles polynomiaux mais pour modéliser cette fois non plus la
réponse mesurée mais la transformée de cette réponse par une application
bien choisie (appelée fonction de lien). On dit alors que l’on considère un
modèle linéaire généralisé. Il a été prouvé dans un article de Dossou-Gbété et
Tinsson [30] qu’un choix judicieux de ces fonctions de lien permet d’utiliser
très facilement les plans d’expérience classiques afin d’ajuster ces nouveaux
modèles non-linéaires. Ceci permet de s’adapter de manière rigoureuse à un
certain nombre de situations non-standard comme, par exemple, le cas de
réponses binaires.

1.5.3 Plans à effets de voisinage

Une autre grande classe de plans d’expérience est celle des configurations dites
à effets de voisinage. Dans un cadre agronomique de tels plans d’expérience
correspondent à des situations où l’on s’intéresse à l’effet du traitement (di-
rect) appliqué à une parcelle donnée mais aussi aux traitements appliqués
aux parcelles voisines. Ces deux derniers effets sont les effets de voisinage à
droite et à gauche (lorsque ces effets n’interviennent que dans une direction).
Pour une expérience se déroulant au fil du temps l’utilisation de tels modèles
est utile lorsque la réponse de la i-ème expérience peut être influencée par la
réponse obtenue préalablement pour la (i-1)-ème expérience (une telle situa-
tion est par exemple courante en agro-alimentaire où une personne goûtant
un aliment peut être influencée par le dernier produit gouté). D’un point de
vue mathématique la situation s’interprète alors comme une généralisation
du contexte des plans d’expérience en blocs pour facteurs qualitatifs (voir le
chapitre 9) par adjonction d’un ou de plusieurs effets de voisinage. Ces nou-
veaux effets rendent évidemment la recherche de configurations optimales bien
plus difficile que dans le cas classique. De telles configurations (lorsqu’elles ex-
istent) sont plus lourdes en terme de nombre d’expériences que les plans usuels
à cause des effets supplémentaires introduits dans le modèle.

Les premiers travaux sur cette problématique et l’introduction de plans
dits en ”cross-over” sont l’oeuvre de Hedayat et Afsarinejad [49] ou [50]. Le
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lecteur souhaitant approfondir ce sujet et disposer d’une bibliographie plus
importante pourra aussi consulter le thèse de doctorat de Druilhet [36].

1.5.4 Plans d’expérience numériques

Le développement de l’informatique et des moyens de calcul a entrâıné
l’élaboration de simulateurs de phénomènes physiques de plus en plus com-
plexes (basés sur des lois de la physique, de la chimie, des systèmes d’équations
différentielles, etc...). Il résulte de cette complexification que la réalisation
de simulations peut devenir longue en terme de temps de calcul (et donc
coûteuse). Une des solutions permettant de résoudre un tel problème consiste
à réaliser un ensemble de simulations bien choisies afin d’obtenir à moindre
coût des informations sur le phénomène simulé. Ce choix d’un petit nombre
de simulations donnant un maximum d’information entre une nouvelle fois
dans la problématique des plans d’expérience.

Notons que la spécificité de ce contexte résulte de la nature déterministe
du phénomène étudié (puisque deux expériences identiques réalisées par le
simulateur vont donner deux réponses égales). Ceci amène à considérer des
modèles souvent différents des modèles classiques, en introduisant notamment
des corrélations spatiales. Une analyse de toute cette problématique a été
effectuée dans la thèse de doctorat de Jourdan [53]. Il y apparâıt que des plans
d’expérience adaptés à une telle situation sont, par exemple, des fractions
régulières de plans complets (présentés dans les chapitres 3, 4 et 8 de cet
ouvrage), d’où l’intérêt, une nouvelle fois, de bien mâıtriser au préalable les
techniques classiques.

1.6 Logiciels pour les plans d’expérience

L’outil informatique est nécessaire à la réalisation rapide et précise d’une étude
menée à l’aide d’un plan d’expérience. Ceci peut être utile tout d’abord pour
bénéficier d’une assistance à la création du plan d’expérience (plan classique,
plans optimaux, etc...), puis pour réaliser tous les calculs fastidieux (recherche
des estimateurs, tests d’hypothèses, etc...) et enfin pour obtenir tous les
types de sorties conviviales existant (diagrammes de Pareto, représentations
graphiques des surfaces de réponses, etc...). Présentons ici brièvement diverses
solutions logicielles.

1) Logiciels non-spécialisés.
Certains utilisateurs ne disposent parfois d’aucun logiciel spécialisé dans

le traitement des données statistiques. Les résultats présentés dans cet ou-
vrage sont cependant quasiment tous donnés de manière explicite à l’aide de
formules mathématiques. Il est donc tout à fait possible de programmer ces
diverses formules puis de les utiliser sur des données réelles. Ceci peut être
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fait à l’aide de simples tableurs tels que Excel ou OpenOffice d’ailleurs très
conviviaux afin d’écrire facilement le plan d’expérience ainsi que les observa-
tions. Tout langage de programmation (C, C++, Pascal, Fortran, etc...)
permet aussi de programmer aisément les divers résultats présentés.

2) Logiciels spécialisés en statistique.
Un grand nombre de logiciels spécialisés en statistique existent sur le

marché. Des codes SAS sont la plupart du temps utilisés dans cet ouvrage
afin de réaliser les traitements proposés. Ce choix a été fait par rapport aux
performances et à la richesse de ce logiciel mais aussi en tenant compte de sa
popularité dans de nombreuses entreprises. Si l’utilisation de ce logiciel n’est
pas possible l’utilisateur peut alors se tourner sans crainte vers le logiciel R
qui a la particularité d’être totalement gratuit. D’autres logiciels statistiques
peuvent évidemment aussi être utilisés tels que : S-Plus, SPSS, Statgraph-
ics, Genstat, etc...

3) Logiciels spécialisés en plans d’expérience.
Il est enfin possible d’utiliser des logiciels directement spécialisés dans la

problématique des plans d’expérience. Il s’agit le plus souvent de modules par-
ticuliers des logiciels de statistique présentés précédemment. Pour reprendre
l’exemple du logicial SAS le module SAS/QC (dédié au contrôle de la qualité)
permet d’avoir accés a de multiples procédures relatives à la construction de
plans d’expérience (ce module n’est par contre pas fourni dans le ”package”
de base SAS).

Il existe cependant un logiciel en langue française, Nemrod, qui est
exclusivement dédié à la construction et l’analyse des plans d’expérience.
Il présente de plus l’avantage d’être continuellement amélioré par une
équipe active dans la ”méthodologie de la recherche expérimentale”
(http://www.nemrodw.com/). Ce logiciel est utilisé, parallèlement à SAS,
pour traiter certains exemples de l’ouvrage. Comme tout logiciel très spécialisé
il présente l’avantage d’être rapidement utilisable pour traiter une étude
menée à l’aide d’un plan d’expérience et très convivial (quelques ”clics” de
souris suffisent). Ses points forts sont de plus les plans d’expérience pour
mélanges ainsi que les sorties graphiques très claires (2D et 3D simultanées).
Evidemment un tel logiciel va s’avérer par contre parfois difficile à utiliser
pour des situations non-standard, c’est pourquoi dans ce cas l’utilisation de
SAS (en mode programmation) sera préférable.

1.7 Présentation d’une étude

Terminons ce chapitre par la présentation complète d’une étude menée à l’aide
de la méthode des plans d’expérience. Considérons une entreprise fabriquant
des pièces en plastique. L’objectif est la conception de pièces les plus rigides
possibles. Le phénomène étudié ici étant a priori complexe à étudier une série
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d’expérimentations est réalisée afin de mieux le cerner. Chaque expérience
correspond concrètement à l’arrêt de la châıne de production, à un nouveau
réglage des diverses machines-outil, à la fabrication d’une ou plusieurs pièces
et enfin à l’analyse des pièces fabriquées. Tout ceci a donc un coût relativement
important, c’est pourquoi la réalisation d’un petit nombre d’expériences judi-
cieusement choisies est vivement souhaité. D’où l’intérêt de mettre en oeuvre
un plan d’expérience.

Toute l’analyse présentée dans cette partie a été menée à l’aide du logi-
ciel Nemrod (”Generation de matrices d’expérience en fonction des objectifs
et traitement des réponses expérimentales”, Version 2000, Didier Mathieu,
Jean Nony et Roger Phan-Than-Luu, LPRAI, Marseille, France) qui permet
de générer bon nombre de plans d’expérience et de réaliser la plupart des
traitements statistiques classiques.

Tout au long de cette section des références du type [voir 2.4.3] sont pro-
posées. Ceci indique au lecteur que la notion utilisée est étudiée en détails
au paragraphe 2.4.3 de cet ouvrage (i.e. au chapitre 2, quatrième section et
troisième sous-section).

1.7.1 Facteurs et réponse

Les ingénieurs spécialistes du phénomène étudié estiment que trois facteurs
influent principalement sur la rigidité des pièces fabriquées :

⎧
⎨

⎩

la température (mesurée par x1 en ◦C),
la pression dans la presse (mesurée par x2 en g/cm2),
la durée de l’opération (mesurée par x3 en secondes).

La réponse est quantifiée par l’élasticité de la pièce fabriquée. L’objectif est la
minimisation de cette réponse afin d’obtenir les pièces les plus rigides possible.

1.7.2 Domaine expérimental

Concernant maintenant le domaine expérimental voici les valeurs de fonc-
tionnement classiquement utilisées sur la châıne de production :

60 ≤ x1 ≤ 70 , 20 ≤ x2 ≤ 30 , 5 ≤ x3 ≤ 8.

Ces diverses valeurs vont être utilisées maintenant comme valeurs de référence
(afin de réaliser l’opération dite de codage des variables). Il convient en
pratique d’être prudent vis-à-vis de ces valeurs, le plus souvent issues de
l’expérience acquise par les utilisateurs, qui parfois peuvent aussi les induire
en erreur. C’est pourquoi une majorité des expériences vont être réalisées en
restant dans ces plages de fonctionnement mais certaines d’entre elles seront
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hors de ces modes de fonctionnement courants (si bien entendu cela est tech-
niquement possible). Ceci pourra être le cas ici puisque les spécialistes du
phénomène étudié donnent les valeurs suivantes associées cette fois aux con-
traintes techniques du procédé industriel (il s’agit donc des valeurs à re-
specter obligatoirement) :

30 ≤ x1 ≤ 90 , x2 ≤ 60

Ceci montre, par exemple, que la presse utilisée ne peut techniquement pas
fonctionner au delà de 60 g/cm2. Il n’y a bien sur dans l’absolu aucune con-
trainte pour la durée de l’opération x3 si ce n’est qu’elle doit être positive.

1.7.3 Codage des facteurs

Afin de ramener chacun des facteurs à un même intervalle, de supprimer
leurs unités, de permettre leur comparaison et enfin de simplifier l’analyse
mathématique à venir on va systématiquement les coder [voir 3.2.1]. Cette
opération classique est résumée dans la table 1.5 où diverses valeurs initiales
et codées sont présentées. Comme indiqué précédemment les codages ont été
réalisés de manière à ce que les valeurs ±1 soient systématiquement associées
aux niveaux hauts et bas des valeurs de fonctionnement. Les valeurs codées
±1.68 figurent aussi dans ce tableau car elles vont être utilisées par la suite.

Table 1.5. Codage des facteurs.

Température (◦C) 56.6 60.0 62.5 65.0 67.5 70.0 73.4
Pression (g/cm2) 16.6 20.0 22.5 25.0 27.5 30.0 33.4
Durée (s) 3.98 5.00 5.75 6.50 7.25 8.00 9.02

Valeur codée −1.68 −1.00 −0.50 0.00 0.50 1.00 1.68

1.7.4 Plan d’expérience utilisé

Une fois les facteurs clairement identifiés et la réponse connue on peut pro-
poser un plan d’expérience, c’est-à-dire une liste d’expériences à réaliser
afin de cerner au mieux le phénomène étudié. Dans l’absolu le choix d’un
plan d’expérience n’a pas de sens tant qu’il n’est pas subordonné au choix
préalable d’un modèle mathématique. Les modèles les plus classiques sont
les modèles polynomiaux (le plus souvent de degré inférieur ou égal à deux).

Supposons que pour l’étude réalisée ici on ait, a priori, aucune idée précise
concernant le choix d’un modèle approprié. Afin de pouvoir ajuster plusieurs
modèles polynomiaux il est possible d’utiliser un plan d’expérience très clas-
sique, de type composite centré [voir 5.3], présenté dans la table 1.6. Ce plan
d’expérience est constitué par un total de 17 expériences écrites ligne par ligne
avec les niveaux des différents facteurs sous forme codée.
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Table 1.6. Plan d’experience (de type composite centré).

N◦Exp X1 X2 X3

1 −1.0000 −1.0000 −1.0000
2 1.0000 −1.0000 −1.0000
3 −1.0000 1.0000 −1.0000
4 1.0000 1.0000 −1.0000
5 −1.0000 −1.0000 1.0000
6 1.0000 −1.0000 1.0000
7 −1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000
9 −1.6818 0.0000 0.0000

10 1.6818 0.0000 0.0000
11 0.0000 −1.6818 0.0000
12 0.0000 1.6818 0.0000
13 0.0000 0.0000 −1.6818
14 0.0000 0.0000 1.6818
15 0.0000 0.0000 0.0000
16 0.0000 0.0000 0.0000
17 0.0000 0.0000 0.0000

Un tel plan d’expérience est qualifié de composite car il est constitué de trois
parties différentes utilisables pour divers types d’ajustements. La première
partie (expériences 1 à 8) est la partie factorielle constituée par les 8 sommets
du cube unité. La seconde partie (expériences 9 à 14) est la partie axiale con-
stituée par des points sur les axes du repère utilisé. Tous ces points sont situés
à une distance égale à 1.6818 du centre du repère (la valeur exacte étant en
fait 81/4) dans le but d’obtenir la propriété classique d’isovariance par trans-
formations orthogonales [voir 5.2.5]. Il s’agit ici du choix proposé par défaut
par le logiciel. Chacune de ces 6 expériences utilise donc pour un des facteurs
des niveaux hors des valeurs de fonctionnement usuelles. Enfin la dernière
partie du plan composite (expériences 15 à 17) est constituée par une triple
répétition de l’expérience qualifiée de centrale (i.e. avec tous les facteurs fixés
à leur niveau moyen). Dans un contexte statistique il est intéressant de répéter
plusieurs fois certaines expériences car la nature aléatoire du phénomène va
entrâıner que les réponses observées ne seront pas égales. Ceci permet de plus
de réaliser une analyse plus fine du phénomène étudié [voir 2.5.4]. L’usage de
facteurs sous forme codée simplifie le travail d’analyse mais cette transforma-
tion est inutile pour l’utilisateur. C’est pourquoi il est courant d’éditer à la
fois le plan d’expérience avec les facteurs codés et le plan d’expérience avec
les facteurs exprimés dans leurs unités initiales.
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Table 1.7. Protocole expérimental.

N◦Exp Température Pression Durée

◦C g/cm 2 s
1 60.0 20.0 5.0
2 70.0 20.0 5.0
3 60.0 30.0 5.0
4 70.0 30.0 5.0
5 60.0 20.0 8.0
6 70.0 20.0 8.0
7 60.0 30.0 8.0
8 70.0 30.0 8.0
9 56.6 25.0 6.5
10 73.4 25.0 6.5
11 65.0 16.6 6.5
12 65.0 33.4 6.5
13 65.0 25.0 4.0
14 65.0 25.0 9.0
15 65.0 25.0 6.5
16 65.0 25.0 6.5
17 65.0 25.0 6.5

Cette seconde forme (table 1.7) est souvent appelée protocole expérimental
(le terme de plan d’expérimentation est aussi utilisé par le logiciel Nemrod).
Lorsque la liste des expériences est fournie au technicien devant les réaliser il
convient, bien entendu, de lui donner directement le protocole expérimental
auquel il devra se tenir.

1.7.5 Ajustement d’un modèle d’ordre un

Commençons par étudier le phénomène à l’aide du modèle le plus simple
possible, en l’occurence un polynôme du premier degré (en trois variables qui
sont les trois facteurs sous forme codée). En d’autres termes on essaie donc
d’expliquer au mieux la réponse moyenne à l’aide du modèle tel que :

f (x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3.

On montre que pour estimer les 4 paramètres inconnus de ce modèle (l’effet
moyen général β0 ainsi que les trois effets linéaires β1, β2 et β3) il est possible
de n’utiliser que les expériences 2, 3, 5 et 8 de la table 1.6 (on dit que l’on
considère une fraction régulière de la partie factorielle [voir 3.4]). Afin de
gagner en qualité il est possible de rajouter les expériences centrales 15, 16 et
17. Les diverses réponses observées lors de la réalisation de ces 7 expériences
sont données ci-dessous (table 1.8, colonne notée Y 1).
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Table 1.8. Plan d’expérience et réponses observées.

N◦Exp X1 X2 X3 Y1

1 1.0000 −1.0000 −1.0000 63.4
2 −1.0000 1.0000 −1.0000 57.2
3 −1.0000 −1.0000 1.0000 70.2
4 1.0000 1.0000 1.0000 56.6
5 0.0000 0.0000 0.0000 54.8
6 0.0000 0.0000 0.0000 55.2
7 0.0000 0.0000 0.0000 54.6

L’analyse statistique de ce modèle conduit dans un premier temps à la
table d’analyse de la variance [voir 2.5] suivante. Elle indique principalement
que le modèle utilisé est mal ajusté ici puisque la somme des carrés due à
l’erreur est très importante par rapport à la somme des carrés totale.

Source de Somme des Degrés de Carré Rapport Signif
variation carrés liberté moyen

Régression 121.3100 3 40.4367 1.4478 38.4
Résidus 83.7871 3 27.9290
Total 205.0971 6

Ceci est confirmé par l’analyse plus fine complémentaire donnée ci-dessous. On
retiendra principalement la valeur du coefficient de corrélation linéaire multi-
ple [voir 2.5.2] qui est bien trop faible (0.591) pour rendre compte d’un ajuste-
ment correct. De même la plupart des paramètres estimés pour ce modèle ne
sont pas significativement différents de zéro [voir 2.6] ce qui, une nouvelle fois,
confirme que l’ajustement réalisé n’est pas satisfaisant.

Ecart Type de la réponse 5.285

R2 0.591
R2A 0.183

R2pred N.D.
PRESS 3186.361

Nombre de degrés de liberté 3

Nom Coefficient F.Inflation Ecart-Type t.exp. Signif. %

b0 58.857 1.997 29.47 <0.01∗∗∗

b1 −1.850 1.00 2.642 −0.70 53.7
b2 −4.950 1.00 2.642 −1.87 15.7
b3 1.550 1.00 2.642 0.59 60.0
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En conclusion il apparâıt donc clairement qu’un modèle polynomial d’ordre
un ne permet pas d’expliquer correctement le phénomène étudié.

1.7.6 Ajustement d’un modèle à effets d’interactions

Considérons ici un modèle tenant compte, comme précédemment, des effets
linéaires des différents facteurs mais aussi d’éventuels effets d’interactions en-
tre couples de facteurs. Ajustons donc maintenant le polynôme d’ordre deux
incomplet suivant :

f (x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3+
β12x1x2 + β13x1x3 + β23x2x3.

Afin de pouvoir estimer au mieux les 7 paramètres inconnus de ce modèle
(l’effet moyen général, trois effets linéaires et trois effets d’interactions) on
montre [voir 4.3] qu’il est possible d’utiliser le plan factoriel complet constitué
par les expériences 1 à 8 de la table 1.6. En conservant toujours les trois
expériences centrales supplémentaires ceci conduit donc à la réalisation du
plan d’expérience donné à la table 1.9. Pour les 11 expériences de ce plan 7
d’entre elles ont déjà été menées afin d’ajuster le modèle d’ordre 1 (avec la
numérotation de la table 1.9 les nouvelles expériences sont seulement celles
repérées par 1, 4, 6 et 7).

Table 1.9. Plan d’expérience et réponses observées

N◦Exp X1 X2 X3 Y1

1 −1.0000 −1.0000 −1.0000 58.9
2 1.0000 −1.0000 −1.0000 63.4
3 −1.0000 1.0000 −1.0000 57.2
4 1.0000 1.0000 −1.0000 61.3
5 −1.0000 −1.0000 1.0000 70.2
6 1.0000 −1.0000 1.0000 74.5
7 −1.0000 1.0000 1.0000 52.6
8 1.0000 1.0000 1.0000 56.6
9 0.0000 0.0000 0.0000 54.8
10 0.0000 0.0000 0.0000 55.2
11 0.0000 0.0000 0.0000 54.6

L’analyse statistique de ce modèle conduit cette fois à la table d’analyse de la
variance suivante. On constate une nette amélioration de l’ajustement réalisé
puisque la somme des carrés due aux résidus (i.e. à l’erreur d’ajustement) est
alors inférieure au tiers de la somme des carrés due à la régression.

Source de Somme des Degrés de Carré Rapport Signif
variation carrés liberté moyen

Régression 368.3600 6 61.3933 2.3368 21.5
Résidus 105.0981 4 26.2723
Total 473.4491 10
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Une analyse plus fine donne maintenant les résultats ci-dessous. Malgré
l’amélioration de la qualité d’ajustement constatée précédemment, le coef-
ficient de corrélation linéraire multiple a une valeur qui est encore trop faible
ici (0.778) pour que l’ajustement réalisé soit de bonne qualité. On retrouve
ce même résultat en considérant le tableau des divers paramètres estimés qui
montre que, hormis l’effet moyen général β0, aucun d’entre eux n’est signi-
ficativement différent de zéro.

Ecart Type de la réponse 5.13

R2 0.778
R2A 0.445

R2pred N.D.
PRESS 1223.474

Nombre de degrés de liberté 4

Nom Coefficient F.Inflation Ecart-Type t.exp. Signif. %

b0 59.91 1.55 38.77 <0.0124∗∗∗

b1 2.07 1.00 1.81 1.15 31.7
b2 −4.87 1.00 1.81 −2.69 5.5
b3 1.60 1.00 1.81 0.88 43.0
b12 −0.05 1.00 1.81 −0.03 97.8
b13 −0.07 1.00 1.81 −0.04 96.8
b23 3.93 1.00 1.81 −2.17 9.6

Les problèmes d’ajustement de ce modèle peuvent être cernés plus précisem-
ment à l’aide du nuage des résidus. Ce nuage de points (donné ci-dessous)
représente, pour chacune des expériences réalisées, l’erreur d’ajustement com-
mise (Y − Ŷ ).

Résidus

Y Calculé

1.45

0.00
50.71 55.09 59.47 63.85 68.23 72.61

–1.45

–2.90

–4.35
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1.7.7 Ajustement d’un modèle d’ordre deux

Considérons maintenant le modèle polynomial d’ordre deux complet, c’est-
à-dire incluant aussi les effets dits quadratiques β11, β22 et β33 (on parle
encore de modèle pour surface de réponse [voir 5]). Ce modèle est donc donné
explicitement par :

f (x1, x2, x3) = β0 + β1x1 + β2x2 + β3x3 + β11x
2
1 + β22x

2
2 + β33x

2
3+

β12x1x2 + β13x1x3 + β23x2x3.

Un plan d’expérience classique permettant d’estimer les 10 paramètres incon-
nus d’un tel modèle est le plan composite centré donné ci-dessous (qui n’est
autre que le plan complet proposé précédemment aux tables 1.6 et 1.7). Il
est donc nécessaire de réaliser un total de 17 expériences mais seulement les
expérimentations allant de 9 à 14 sont nouvelles

Table 1.10. Plan d’expeérience et réponses observées.

N◦Exp X1 X2 X3 Y1

1 −1.0000 −1.0000 −1.0000 58.9
2 1.0000 −1.0000 −1.0000 63.4
3 −1.0000 1.0000 −1.0000 57.2
4 1.0000 1.0000 −1.0000 61.3
5 −1.0000 −1.0000 1.0000 70.2
6 1.0000 −1.0000 1.0000 74.5
7 −1.0000 1.0000 1.0000 52.6
8 1.0000 1.0000 1.0000 56.6
9 −1.6818 0.0000 0.0000 53.2
10 1.6818 0.0000 0.0000 61.7
11 0.0000 −1.6818 0.0000 74.5
12 0.0000 1.6818 0.0000 58.0
13 0.0000 0.0000 −1.6818 57.4
14 0.0000 0.0000 1.6818 63.3
15 0.0000 0.0000 0.0000 54.8
16 0.0000 0.0000 0.0000 55.9
17 0.0000 0.0000 0.0000 54.6

L’analyse statistique conduit à la table d’analyse de la variance suivante :

Source de Somme des Degrés de Carré Rapport Signif
variation carrés liberté moyen

Régression 751.4572 9 83.4592 357.8215 <0.01∗∗∗∗

Résidus 1.6334 7 0.2333
Validité 0.6534 5 0.1307 0.2667 89.9
Erreur 0.9800 2 0.4900
Total 753.0906 16
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La somme des carrés due à l’erreur est maintenant très faible devant la somme
totale. Ceci indique que le modèle semble être maintenant bien ajusté. Le
tableau d’analyse de la variance proposé ici par le logiciel est plus complexe
que pour les deux modèles précédents car la somme des carrés due aux résidus
a été décomposée en somme due à la ”validité” et somme due à ”l’erreur”. Il
s’agit d’une technique permettant d’affiner l’analyse de la variance, utilisable
dès lors qu’au moins une expérience a été répétée, et permettant de tester
l’hypothèse H0 : ”le modèle est bien ajusté en moyenne” [voir 2.6.5]. Une
analyse plus fine donne ensuite les résultats ci-dessous :

Ecart Type de la réponse 0.483

R2 0.998
R2A 0.995

R2pred 0.990
PRESS 7.164

Nombre de degrés de liberté 7

Nom Coefficient F.Inflation Ecart-Type t.exp. Signif. %

b0 55.093 0.278 197.93 <0.01∗∗∗

b1 2.284 1.00 0.131 17.47 <0.01∗∗∗

b2 −4.910 1.00 0.131 −37.56 <0.01∗∗∗

b3 1.686 1.00 0.131 12.90 <0.01∗∗∗

b11 0.855 1.16 0.144 5.94 0.0701∗∗∗

b22 3.966 1.16 0.144 27.57 <0.01∗∗∗

b33 1.880 1.16 0.144 13.07 <0.01∗∗∗

b12 −0.088 1.00 0.171 −0.51 62.8
b13 −0.037 1.00 0.171 −0.22 82.6
b23 −3.693 1.00 0.171 −23.20 <0.01∗∗∗

Le coefficient de corrélation linéaire multiple quantifie maintenant de manière
claire la très bonne qualité de l’ajustement (puisque R2 = 0.998 � 1). Con-
cernant maintenant l’estimation des divers paramètres inconnus du modèle il
est intéressant de remarquer que seul l’effet d’interaction entre les facteurs
2 et 3 (i.e. entre la température et la pression) semble être significativement
différent de zéro (et ceci d’après les tests d’hypothèse réalisés au niveau de la
dernière colonne [voir 2.6]). Il ne semble donc pas y avoir d’effet d’interaction
significatif entre la température et la durée ou bien entre la température et
la pression (i.e. l’effet sur la réponse de la température semble être le même
quel que soit le niveau choisi pour la durée ou la pression). Le logiciel peut
aussi éditer maintenant le ”tableau des résidus” (donné ci-dessous) permet-
tant de juger de manière plus précise, c’est-à-dire expérience par expérience, de
la qualité de l’ajustement réalisé. La comparaison entre les colonnes ”Yexp”
(réponses mesurées) et ”Ycalc” (réponses prédites par le modèle) confirme
que l’ajustement est de très bonne qualité. Les autres colonnes proposées
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par ce logiciel évaluent la différence entre les réponses mesurées et prédites
(colonne ”Différence”) et font subir un certain nombre de transformations à
ces valeurs afin de les rendre statistiquement plus faciles à interpréter (par
exemple tout résidu dit ”studentisé” supérieur à 2 en valeur absolue traduit
un défaut d’ajustement important).

N◦Exp Y exp. Y calc Différence Normée dU Student R R-Student D-Cook

1 58.900 58.646 0.254 0.525 0.670 0.914 0.901 0.169
2 63.400 63.465 −0.065 −0.134 0.670 −0.234 −0.217 0.011
3 57.200 56.927 0.273 0.565 0.670 0.983 0.980 0.196
4 61.300 61.396 −0.096 −0.198 0.670 −0.345 −0.322 0.024
5 70.200 70.018 0.182 0.377 0.670 0.656 0.627 0.087
6 74.500 74.686 −0.186 −0.386 0.670 −0.672 −0.643 0.091
7 52.600 52.449 0.151 0.313 0.670 0.545 0.515 0.060
8 56.600 56.767 −0.167 −0.346 0.670 0.545 0.515 0.060
9 53.200 53.670 −0.470 −0.972 0.607 −1.551 −1.773 0.373

10 61.700 61.353 0.347 0.719 0.607 1.148 1.179 0.204
11 74.500 74.568 −0.068 −0.141 0.607 −0.225 −0.209 0.008
12 58.000 58.054 −0.054 −0.112 0.607 −0.179 −0.166 0.005
13 57.400 57.576 −0.176 −0.364 0.607 −0.581 −0.552 0.052
14 63.300 63.246 0.054 0.111 0.607 0.178 0.165 0.005
15 54.800 55.093 −0.293 −0.607 0.332 −0.742 −0.716 0.027
16 55.900 55.093 0.807 1.671 0.332 2.044 2.981 0.208
17 54.600 55.093 −0.493 −1.021 0.332 −1.249 −1.311 0.078

Les différents résidus peuvent une nouvelle fois être représentés sous forme
graphique.

Résidus

Y Calculé

0.78

0.52

0.26

0.00
52.45 56.90 61.34 65.79 70.24 74.69

–0.26

La plus grande erreur d’ajustement commise (de l’ordre de 0.8 pour une
réponse observée de 55.9) correspond à l’une des expériences dites ”centrales”
(expériences 15, 16 et 17). Ceci était prévisible car il est impossible que la
réponse moyenne prédite au centre du domaine par le modèle soit parfaite-
ment ajustée aux trois valeurs différentes obtenues lors des trois répétitions
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de l’expérience (54.8, 55.9 et 54.6). Au sens des moindres carrés la meilleure
réponse moyenne que peut prédire le modèle correspond à la moyenne de ces
trois réponses, c’est-à-dire 55.1 ici (cette valeur est d’ailleurs très proche de
celle donnée par le modèle ajusté).

1.7.8 Recherche des conditions optimales

Maintenant qu’un ajustement de bonne qualité a été réalisé l’étape finale
consiste à rechercher les conditions optimales pour le problème posé, c’est-à-
dire les valeurs de la température, de la pression ainsi que la durée amenant
à minimiser l’élasticité de la pièce fabriquée. D’après les résultats obtenus
précédemment le meilleur modèle au sens des moindres carrés permet d’écrire
la réponse moyenne prédite sous la forme :

Ŷ (x1, x2, x3) = 55.093 + 2.284x1 − 4.910x2 + 1.686x3

+0.855x2
1 + 3.966x2

2 + 1.880x2
3 − 3.963x2x3.

Ce modèle a été volontairement simplifié par élimination des deux effets
d’interactions jugés non significatifs dans l’analyse précédente (ceci permet
de manipuler plus facilement cette expression réduite tout en gardant une
qualité d’ajustement quasiment similaire). La problématique est maintenant
la recherche du minimum d’une fonction de plusieurs variables sous la con-
trainte de rester dans le domaine expérimental. Tout point critique d’une telle
fonction (i.e. tout point annulant les dérivées partielles) a pour coordonnées
x1, x2 et x3 solutions du système d’équations :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂Ŷ

∂x1
(x1, x2, x3) = 0

∂Ŷ

∂x2
(x1, x2, x3) = 0

∂Ŷ

∂x3
(x1, x2, x3) = 0

⇔
⎧
⎨

⎩

2.284 + 1.710x1 = 0
−4.910 + 7.932x2 − 3.963x3 = 0

1.686 + 3.760x3 − 3.963x2 = 0

Ce système d’équations admet alors une unique solution donnée par :

x1 = −1.336 , x2 = 0.834 , x3 = 0.431.

On vérifie aisément que ce point critique est bien un minimum (global) de la
fonction Ŷ . Ce point est de plus situé dans le domaine expérimental donc il
constitue bien la solution cherchée pour le problème. On verifie de plus par
un simple calcul que la réponse moyenne prédite par le modèle en ce point est
donnée par :

Ŷ (−1.336, 0.834, 0.431)� 51.8.

Une valeur aussi faible pour l’élasticité n’a jamais été obtenue lors des 17
expériences réalisées donc ce résultat est a priori très intéressant. Remar-
quons que le minimum a été recherché ici par dérivation et il a été ainsi
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immédiatemment déterminé car le point critique obtenu est à la fois un ex-
tremum et un point du domaine expérimental. Ceci n’est pas toujours le
cas (on peut en effet obtenir par exemple un point selle annulant toutes les
dérivées partielles aussi bien qu’un extremum hors du domaine expérimental).
Il est alors nécessaire d’utiliser dans de tels cas des méthodes d’optimisation
plus générales (multiplicateurs de Lagrange, analyse canonique, etc...) ou
bien des techniques algorithmiques de recherche approchée d’extrema. Des
représentations graphiques telles que celle proposée à la figure 1.2 (avec une
représentation simultanée en deux et trois dimensions pour plus de clarté)
permettent aussi de cerner la position du minimum cherché.

Durée

8.0

6.5

5.0

20.0 25.0 30.0

55.0

53.055.057.0

X3

X2

1.00

0.50

–0.50

–1.00

1.000.50–0.50–1.00 0.00

69.061.0

Pression

Fig. 1.2. Réponse moyenne prédite (x1 = −1.336 fixé).

1.7.9 Conclusion

Cette étude a montré qu’un modèle polynomial d’ordre deux complet semble
modéliser correctement le phénomène étudié ici. Il apparâıt que les condi-
tions expérimentales optimales, c’est-à-dire celles permettant de minimiser
l’élasticité du produit sont obtenues pour les niveaux codés suivants :

x1 = −1.336 , x2 = 0.834 , x3 = 0.431.

En revenant aux unités initiales ceci correspond donc aux réglages donnés
ci-dessous :

Facteur 1 58.3 ◦C

Facteur 2 29.2 g/cm2

Facteur 3 7.1 s
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Il convient maintenant de réaliser concrètement une ou plusieurs expériences
en fixant ces niveaux là afin de vérifier si l’élasticité obtenue correspond bien
à la valeur moyenne prédite par le modèle, c’est-à-dire à :

ŶOPT � 51.8
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Outils mathématiques pour les plans
d’expérience

2.1 Introduction

Ce chapitre présente les notions mathématiques de base utiles pour une bonne
compréhension de la méthode des plans d’expérience.

Les notions algèbriques les plus courantes en statistique sont abordées
dans un premier temps. Il s’agit principalement des notions d’algèbre linéaire
que sont le calcul matriciel, les projections orthogonales ainsi que l’analyse
spectrale d’une matrice. Quelques notions de base concernant les groupes sont
aussi énoncées. Il sera parfois nécessaire par la suite d’aller plus loin avec la
structure de groupe (notamment par utilisation de la théorie de représentation
linéaire des groupes finis pour la construction de fractions régulières) mais ceci
fait l’objet d’une annexe à la fin de l’ouvrage.

Il convient ensuite de mâıtriser quelques notions élémentaires de prob-
abilité, notamment l’utilisation de variables aléatoires vectorielles ainsi que
l’expression de leurs moments d’ordre un ou deux.

Les notions de statistique utilisées sont traitées dans une section suivante.
La définition d’un estimateur, d’un modèle statistique ainsi que de l’estimation
au sens des moindres carrés pour un modèle linéaire sont présentées. Ceci
étant posé les techniques de base d’analyse de la variance sont explicitées afin,
entre autres, d’être capable de juger de la qualité d’un modèle ajusté. Enfin
quelques éléments concernant la notion de test d’hypothèse sont introduits.
Ceci sera d’un grand intérêt afin de pouvoir juger de la significativité ou non
des paramètres estimés.

Remarquons enfin qu’il n’est pas possible de rappeler ici toutes les notions
de mathématiques utiles et que le lecteur pourra, le cas échéant, se référer à des
ouvrages d’algèbre linéaire concernant les notion d’espace vectoriel, d’image
ou de noyau d’une application linéaire, etc...

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 2,
c© Springer-Verlag Berlin Heidelberg 2010
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2.2 Algèbre

2.2.1 Calcul matriciel

La plupart des plans d’expérience sont utilisés avec des modèles que l’on
peut facilement décrire en utilisant les outils du calcul matriciel classique.
Rappelons que l’élément de base est une matrice, c’est-à-dire un tableau A
contenant n lignes et p colonnes. On note A ∈ M (n, p) et A = (aij) avec
aij ∈ R terme général de la matrice pour i ∈ {1, 2, ..., n} et j ∈ {1, 2, ..., p}
(on utilisera par la suite les notations plus simples i = 1, ..., n et j = 1, ..., p).
La matrice A peut aussi être vue comme la représentation d’une application
linéaire de R

n dans R
p dans deux bases données. Les opérations classiques à

connâıtre sont données à la suite :

1) La somme de A ∈ M (n, p) et B ∈ M (n, p) est R = A + B ∈ M (n, p)
avec :

∀ i = 1, ..., n, ∀ j = 1, ..., p , rij = aij + bij .

2) Le produit de A ∈ M (n, p) et B ∈ M (p, m) est R = AB ∈ M (n, m)
avec :

∀ i = 1, ..., n , ∀ j = 1, ..., m , rij =
p∑

l=1

ailblj .

3) La transposée de A ∈M (n, p) est R = tA ∈M (p, n) avec :

∀ i = 1, ..., p , ∀ j = 1, ..., n , rij = aji.

4) L’inverse de A ∈M (n, n) (si elle existe) est l’unique matrice A−1 vérifiant
la relation :

AA−1 = A−1A = In.

Il sera souvent utile dans la suite de déterminer facilement si une matrice est
inversible ou non. Ceci amène à chercher le rang de la matrice considérée,
c’est-à-dire la dimension de l’espace vectoriel engendré par ses colonnes (i.e.
rg (A) = dim (Im A)). On dit alors qu’une matrice A est de plein rang si et
seulement si son rang est maximal, c’est-à-dire lorsque :

rg (A) = nombre de colonnes de A.

Un résultat classique d’algèbre linéaire énonce qu’une matrice carrée est in-
versible si et seulement si elle est de plein rang. Etant donnés deux vecteurs
u, v ∈ R

n on appelle produit scalaire (usuel) le réel :

(u | v) = tuv =
n∑

i=1

uivi.

La norme du vecteur u est alors définie par :
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‖u‖ =
√

(u | u) =
√

tuu =

√
√
√
√

n∑

i=1

u2
i .

Il est très courant lors de l’analyse d’un plan d’expérience d’avoir à effectuer
des produits matricels de la forme tXX. Une telle matrice (appelée matrice
de Gram) est obtenue à l’aide des produits scalaires de tous les couples de
colonnes. En effet, si X ∈ M (n, p) avec c1, ..., cp ses vecteurs colonnes on a
donc X = [c1 | ... | cp] et tXX a pour terme général :

∀ i, j = 1, ..., p ,
(
tXX

)

ij
= (ci | cj) .

Il est souvent utile d’énoncer des conditions simples de régularité pour ce type
de matrice. Le résultat suivant est très classique (sa démonstration figure dans
la plupart des livres d’algèbre linéaire).

Lemme 2.1. Pour toute matrice X on a rg (tXX) = rg (X) donc :
(
tXX est régulière

)⇔ (X est de plein rang) .

2.2.2 Projection orthogonale

Considérons l’espace vectoriel R
n muni du produit scalaire usuel. La notion de

projection orthogonale sur un sous-espace vectoriel engendré par les colonnes
d’une matrice X va être d’une grande utilité par la suite. Rappelons le résultat
suivant (dont la démonstration est aussi très classique) :

Proposition 2.2. Pour toute matrice X ∈ M (n, p) , de plein rang, le pro-
jecteur orthogonal de R

n sur Im X a pour expression matricielle :

P = P(ImX) = X
(
tXX

)−1 tX.

De même, on démontre facilement que (In − P ) est le projecteur orthogonal
de R

n sur le sous-espace vectoriel (Im X)⊥ .

2.2.3 Analyse spectrale

Il sera parfois utile de réaliser l’analyse spectrale d’une matrice carrée. Il s’agit
alors de déterminer l’ensemble de ses valeurs et vecteurs propres. Rappelons
que si A ∈ M (p, p) on dit que λ est une valeur propre de A si et seulement
si il existe un vecteur u ∈ R

p − {0} tel que :

Au = λu.

Un tel vecteur est qualifié de vecteur propre associé à λ.
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On appelle spectre de A l’ensemble de ses valeurs propres. S’il est pos-
sible de déterminer une base de R

p formée de vecteurs propres la matrice
A est alors diagonalisable sur cette base avec pour éléments diagonaux les
valeurs propres. Une des multiples utilisations des valeurs propres consiste
à déterminer facilement la trace ainsi que le déterminant d’une matrice
carrée. On démontre en effet que ces deux quantités sont invariantes par
changement de base. Si {λ1, ..., λp} est le spectre de la matrice diagonalis-
able A il vient immédiatement par passage à la base de vecteurs propres :

Trace (A) =
p∑

i=1

λi et Det (A) = |A| =
p∏

i=1

λi.

2.2.4 Matrices particulières

Présentons ici brièvement trois classes de matrices carrées particulières qui
seront d’un grand intérêt par la suite.

1) Les matrice symétriques. Une matrice A ∈ M (p, p) est dite symétrique
si et seulement si tA = A (i.e. la matrice reste inchangée si ses lignes sont
transformées en colonnes). Un résultat classique énonce que toute matrice
symétrique est diagonalisable. Ceci est particulièrement intéressant en statis-
tique où des matrices de la forme tXX sont souvent utilisées; elles sont donc
toujours symétriques.

2) Les matrices orthogonales. Une matrice A ∈M (p, p) est dite orthogonale
si et seulement si tAA = Ip (ou de manière équivalente AtA = Ip). D’après les
résultats du paragraphe 2.2.1 une matrice est donc orthogonale si et seulement
si chacune de ses colonne a pour norme 1 et les produits scalaires de tous les
couples de colonnes distinctes sont nuls. Remarquons que, par définition, toute
matrice orthogonale A est inversible avec :

A−1 = tA.

3) Les matrices symétriques définies positives. Une matrice symétrique
A ∈ M (p, p) est dite définie positive si et seulement si :

∀ x ∈ R
p avec x 	= 0 , txAx > 0.

De manière moins contraignante une matrice symétrique A ∈ M (p, p) est dite
semi-définie positive si :

∀ x ∈ R
p , txAx ≥ 0.

Le lecteur souhaitant plus d’informations sur l’origine de ces définitions pourra
consulter dans les ouvrages d’algèbre linéaire de base (par exemple Queysanne
[76]) la notion de forme quadratique. Il est intéressant de traduire ces deux
hypothèses en terme de valeurs propres. On montre alors qu’une matrice di-
agonalisable est définie positive (resp. semi-définie positive) si et seulement si
toutes ses valeurs propres sont strictement positives (resp. positives ou nulles).



2.3 Probabilités 43

2.2.5 Notion de groupe

Rappelons ici la définition ainsi que certaines notions élémentaires concer-
nant les groupes. Le lecteur pourra aussi consulter, par exemple, l’ouvrage
de Queysanne [76] pour des généralités ou bien l’ouvrage de Calais [17] s’il
désire appronfondir ces notions. Etant donné un ensemble G muni d’une loi
de composition interne notée ∗ (i.e. pour x, y ∈ G , x ∗ y ∈ G) on dit que G
est un groupe (et on note (G, ∗)) si les trois axiomes suivants sont vérifiés :

1) la loi ∗ est associative : ∀ x, y, z ∈ G , (x ∗ y) ∗ z = x ∗ (y ∗ z) ,

2) il existe un élément e dans G tel que : ∀ x ∈ G , e ∗ x = x ∗ e = x.
On dit que e est l’ élément neutre de (G, ∗) .

3) tout élément de G est symétrisable :

∀ x ∈ G , ∃ x−1 ∈ G tel que x ∗ x−1 = x−1 ∗ x = e.

Etant donné un groupe (G, ∗) on utilise souvent un de ses sous-groupes. On dit
que (H, ∗) est un sous-groupe de (G, ∗) , et on note H ≤ G, si et seulement
si H est une partie non-vide de G (i.e. H 	= ∅ et H ⊂ G) vérifiant :

∀ x, y ∈ H , x ∗ y ∈ H et ∀ x ∈ H , x−1 ∈ H.

Lorsque la loi ∗ est de plus commutative (i.e. ∀ x, y ∈ G , x ∗ y = y ∗ x) le
groupe est alors qualifié d’abélien (ou commutatif). Lorsque le groupe est
constitué de n ∈ N

∗ éléments il s’agit d’un groupe fini d’ordre n.

2.3 Probabilités

2.3.1 Variables aléatoires réelles

On considére toujours dans la suite des variables aléatoires réelles (v.a.r.) ab-
solument continues, c’est-à-dire admettant une densité de probabilité (notée
f) par rapport à la mesure de Lebesgue sur R. Dans certains cas il est
nécessaire de connâıtre exactement la loi des v.a.r. étudiées (par exemple
pour réaliser des tests d’hypothèses), on supposera alors couramment qu’elles
sont de loi normale. On supposera aussi que l’on utilise toujours des v.a.r.
admettant une espérance mathématique et une variance selon la définition
classique suivante :

1) L’espérance mathématique de la v.a.r. Y est : E (Y ) =
∫

R

tfY (t) dt.

2) La variance de la v.a.r. Y est :

Var (Y ) = E
[
(Y − E (Y ))2

]
= E

(
Y 2

)− [E (Y )]2 .
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L’espérance donne une caractéristique de position de la v.a.r. (elle est con-
fondue avec la notion usuelle de moyenne d’un échantillon lorsque la taille de
celui-ci tend vers l’infini). La propriété suivante de linéarité de l’espérance est
souvent utile :

E (X + Y ) = E (X) + E (Y ) et ∀ a ∈ R , E (aX) = aE (X)

ainsi que le résultat classique :

X et Y indépendantes ⇒ E (XY ) = E (X)E (Y ) .

Concernant la variance, il s’agit cette fois d’un indicateur de la dispersion
(autour de la moyenne) de la variable aléatoire. La variance est une forme
quadratique vérifiant les principales propriétés suivantes :

⎧
⎪⎪⎨

⎪⎪⎩

Var (X) ≥ 0 et (Var (X) = 0 ⇐⇒ X = Cte) ,

∀ a, b ∈ R , Var (aX + b) = a2 Var (X) ,

X et Y indépendantes ⇒ Var (X + Y ) = Var (X) + Var (Y ) .

On considère aussi souvent l’écart-type σY =
√

Var (Y ) au lieu de la vari-
ance. Il a pour principal avantage d’être exprimé avec les mêmes unités que
Y (alors que si Y est exprimée, par exemple, en m la variance est elle en m2).

2.3.2 Vecteurs aléatoires

On dit que Y est un vecteur aléatoire de R
n si et seulement si les coor-

données du vecteur Y = t (Y1, ..., Yn) sont des variables aléatoires réelles. On
généralise les notions d’espérance et de variance, désignées par E et V dans le
cas vectoriel par :

1) L’espérance mathématique du vecteur aléatoire Y est :

E (Y ) = t (E (Y1) , ..., E (Yn)) .

2) La matrice des covariances du vecteur aléatoire Y est :

V (Y ) = E
[
(Y − E (Y )) t (Y − E (Y ))

]
.

La notion de linéarité de l’espérance conduit dans le cas vectoriel à la propriété
supplémentaire suivante :

E (AY ) = AE (Y ) si A est une matrice non-aléatoire.

En ce qui concerne la matrice des covariances remarquons que V (Y ) est con-
stituée par les éléments suivants (∀ i, j = 1, ..., n avec i 	= j) :

{
Var (Yi) = E

(
Y 2

i

)− [E (Yi)]
2 sur la diagonale,

Cov (Yi, Yj) = E (YiYj)− E (Yi)E (Yj) hors de la diagonale.
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On généralise de même le fait que la variance est une forme quadratique en
remarquant que :

V (AY ) = AV (Y ) tA si A est une matrice non-aléatoire.

2.4 Statistiques

2.4.1 Notion d’estimateur

Considérons un phénomène aléatoire dépendant d’un paramètre β ∈ R in-
connu. Suite à n expériences qui sont des réalisations des v.a.r. Y1, ..., Yn on
appelle estimateur de β toute v.a.r. Y telle que Y = f (Y1, ..., Yn) avec f
fonction connue (en d’autres termes f ne doit pas dépendre du paramètre β

inconnu). On désigne classiquement un estimateur de β par la notation β̂.
Deux propriétés classiques d’un estimateur sont :

Définition 2.3. On dit que :
1) un estimateur de β est sans biais si et seulement si : E(β̂) = β,

2) si β̂1 et β̂2 sont deux estimateurs sans biais de β alors β̂1 est plus efficace

que β̂2 si et seulement si : Var
(
β̂1

)
≤ Var

(
β̂2

)
.

Un estimateur de β de bonne qualité est donc un estimateur à la fois sans biais
(”centré” sur la cible à atteindre) et le plus efficace possible (le moins dispersé
possible autour de cette cible). Considérons l’analogie graphique suivante avec
β assimilé au centre d’une cible et les observations aux divers impacts (on
admettra ici que la notion d’efficacité est identique dans le cas d’un estimateur
biaisé) :

Fig. 2.1.
Estimateur biaisé peu efficace.

Fig. 2.2.
Estimateur biaisé efficace.
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Fig. 2.3.
Estimateur sans biais peu efficace.

Fig. 2.4.
Estimateur sans biais efficace.

Lorsque la condition 1 de la définition 2.3 n’est pas vérifiée le biais est la
quantité E(β̂) − β (non nulle dans ce cas). Un bon estimateur doit aussi
être convergent, c’est-à-dire que β̂ doit tendre vers β lorsque la taille de
l’échantillon tend vers +∞. Cette propriété n’est pas détaillée ici car la notion
de convergence des variables aléatoires n’est pas abordée dans cet ouvrage
(voir, par exemple, Saporta [83]).

2.4.2 Modèle statistique

Considérons un phénomène aléatoire dépendant de m variables et supposons
que l’on cherche à modéliser au mieux ce phénomène. La démarche statistique
consiste alors à effectuer n expériences, judicieusement choisies dans le cas des
plans d’expérience. Chacune d’entre elles est repérée par un point x ∈ R

m (ceci
est possible si les variables étudiées sont quantitatives, pour le cas qualitatif on
utilise un sous-ensemble de N

m). En désignant par Y (x) la réponse mesurée
en x on suppose classiquement que cette réponse résulte de la somme de la
loi de réponse f en x (i.e. la réponse réelle recherchée) et du résidu ε en x
(i.e. l’erreur commise). Donc :

Y (x) = f (x) + ε (x) .

Le résidus peut rendre compte de bon nombre de causes telles que des erreurs
dues à l’expérimentateur, un mauvais modèle postulé, l’oubli de certaines
variables, etc... On suppose généralement que les résidus sont des variables
aléatoires réelles vérifiant les trois hypothèses suivantes :

⎧
⎪⎪⎨

⎪⎪⎩

centrage, (∀ x, E (ε (x)) = 0),

indépendance, (donc ∀ x 	= x′, Cov (ε (x) , ε (x′)) = 0),

homoscédasticité, (∀ x, Var (ε (x)) = σ2).

(H)

Ces trois hypothèses ont pour but de simplifier l’analyse des modèles étudiés.
Concrètement, l’hypothèse de centrage impose que les erreurs commises
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sont ”de moyenne nulle”, ceci est naturellement le cas si les erreurs sont
bien aléatoires (cette hypothèse va par contre poser problème lorsque les
résidus présentent une structure particulière). L’hypothèse d’indépendance
est vérifiée dès lors que les expériences réalisées le sont de manière réellement
indépendante les unes des autres. Enfin, l’hypothèse d’homoscédasticité im-
pose que l’erreur commise est de même amplitude tout au long du processus
(cette hypothèse peut poser problème pour, par exemple, une machine se
dégradant au fur et à mesure de son utilisation).

Un problème classique consiste à estimer au mieux les paramètres inconnus
du modèle donné par la fonction f (on supposera désormais qu’ils sont au
nombre de p). Voici quelques exemples de modèles :

1) m = 2, p = 2, f (x1, x2) = β1 + β2x1,

2) m = 3, p = 5, f (x1, x2, x3) = β1x1 + β2x2 + β3x
2
3 + β4x1x

2
2 + β5 exp (x1) ,

3) m = 2, p = 3, f (x1, x2) = β1 + β2x1 + sin (β3x2) .

Il convient de distinguer les modèle linéaires (i.e. linéaires par rapport aux
coefficients inconnus, comme les deux premiers) des modèles non-linéaires
(le troisième). Mathématiquement, un modèle est linéaire par rapport aux
paramètres βi (i = 1, ..., p) si et seulement si chacune des dérivées partielles
∂f (x) /∂βi (i = 1, ..., p) ne dépend plus de βi. Etant donné un phénomène
aléatoire à expliquer, il n’est généralement pas simple de proposer un modèle
adéquat. La fonction f est très souvent inconnue (ou trop complexe). C’est
pourquoi il est courant de l’approcher à l’aide d’une classe de fonctions usuelles
(développements de Taylor, séries de Fourier...).

2.4.3 Modélisation linéaire

On considère ici un modèle statistique dépendant de m variables avec f fonc-
tion linéaire par rapport à p paramètres inconnus. Si n expériences ont été
réalisées, repérées par les points (zu)u=1,...,n de R

m on a donc :

∀ u = 1, ..., n , Y (zu) = f (zu) + ε (zu) .

Puisque f est une fonction linéaire par rapport aux paramètres inconnus, on
peut donc aussi écrire ce modèle matriciellement sous la forme suivante :

Y = Xβ + ε

avec Y ∈ R
n vecteur des observations, ε ∈ R

n vecteur des résidus, β ∈ R
p

vecteur des paramètres inconnus du modèle et X ∈ M (n, p) matrice du
modèle. Les hypothèses (H) se traduisent alors simplement par :

E (ε) = 0 et V (ε) = σ2In. (H)
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Ceci implique donc, d’après les propriétés vues précédemment, que :

E (Y ) = Xβ et V (Y ) = σ2In.

En conséquence, Xβ est donc la réponse moyenne donnée par ce modèle.

Exemple

On mesure ici le rendement Y d’une réaction chimique en fonction de
la température t et on envisage d’utiliser le modèle linéaire suivant
appelé modèle quadratique :

Y (t) = β0 + β1t + β11t
2 + ε (t) .

On réalise 5 expériences et les résultats suivants sont obtenus (les
rendements sont en % et les températures en ◦C) :

t 10 15 20 25 30
Y 15 35 40 33 10

Le modèle linéaire associé se traduit pour les 5 expériences réalisées
par le système d’équations ci-dessous :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

15 = β0 + 10β1 + 100β11 + ε (10)
35 = β0 + 15β1 + 225β11 + ε (15)
40 = β0 + 20β1 + 400β11 + ε (20)
33 = β0 + 25β1 + 625β11 + ε (25)
10 = β0 + 30β1 + 900β11 + ε (30)

Ce système peut être réécrit matriciellement Y = Xβ + ε en posant :

Y =

⎡

⎢
⎢
⎢
⎢
⎣

15
35
40
33
10

⎤

⎥
⎥
⎥
⎥
⎦

, X =

⎡

⎢
⎢
⎢
⎢
⎣

1 10 100
1 15 225
1 20 400
1 25 625
1 30 900

⎤

⎥
⎥
⎥
⎥
⎦

, β =

⎡

⎣
β0

β1

β11

⎤

⎦ et ε =

⎡

⎢
⎢
⎢
⎢
⎣

ε (10)
ε (15)
ε (20)
ε (25)
ε (30)

⎤

⎥
⎥
⎥
⎥
⎦

.

On a donc ici : n = 5, m = 1 et p = 3.

Comme illustré dans cet exemple, les lignes de la matrice du modèle sont
donc associées aux diverses expériences réalisées alors que ses colonnes sont
associées aux divers paramètres inconnus du modèle postulé (la première
colonne de X donne les coefficients multipliant β0 lors des 5 expériences, la
seconde colonne fait de même pour β1 et la dernière est associée à β11).
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2.4.4 Estimation au sens des moindres carrés

Une fois le modèle posé le problème consiste maintenant à déterminer un
estimateur β̂ de β le ”meilleur” possible. Une démarche classique consiste à
chercher β̂ de manière à ce que le vecteur des réponses observées Y et le vecteur
des réponses moyennes prédites Ŷ = Xβ̂ soient les ”plus proches” possi-
bles. Ceci conduit à l’estimateur des moindres carrés de β selon la définition
suivante (où ‖.‖ est la norme usuelle de R

n) :

Définition 2.4. On dit que β̂ est l’estimateur des moindres carrés de β
si et seulement si β̂ minimise la fonction :

Q (β) = ‖Y −Xβ‖2 .

L’estimateur des moindres carrés de β donne le minimum de la fonction Q et
ce minimum vaut alors :

Q
(
β̂
)

=
∥
∥
∥Y −Xβ̂

∥
∥
∥
2

=
∥
∥
∥Y − Ŷ

∥
∥
∥
2

=
n∑

i=1

(
Yi − Ŷi

)2

.

Ceci montre que cette quantité est bien liée à l’erreur (quadratique) commise
entre les réponses observées Yi et les réponses moyennes prédites par le modèle
Ŷi. Concernant la détermination pratique de cet estimateur, on montre que :

Proposition 2.5. [�] Soit le modèle statistique Y = Xβ + ε avec X matrice
de plein rang. L’estimateur des moindres carrés de β est donné par :

β̂ =
(
tXX

)−1 tXY.

Sauf indication contraire, on supposera toujours dans la suite que X est une
matrice de plein rang p. L’égalité (tXX) β̂ = tXY traduit les équations
dites normales. Le vecteur des réponses moyennes prédites par le modèle est
alors :

Ŷ = Xβ̂ = PY avec P = X
(
tXX

)−1 tX.

Géométriquement, Ŷ est donc la projection orthogonale de Y sur Im X . Les
propriétés suivantes découlent de la proposition 2.5 :

Proposition 2.6. [�] Si les hypothèses (H) sur les résidus sont vérifiées et
si β̂ est l’estimateur des moindres carrés de β alors :
1) β̂ est un estimateur sans biais de β,

2) β̂ admet pour matrice des covariances : V

(
β̂
)

= σ2 (tXX)−1
.

Ce dernier résultat montre donc que la qualité de l’estimateur obtenu dépend
directement de la matrice du modèle utilisé. Un des objectifs de la planification
expérimentale est la recherche d’une matrice X telle que tXX soit la plus
simple possible avec β̂ le moins dispersé possible.
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Exemple

En reprenant l’exemple du paragraphe 2.4.3 on obtient :

tXX =

⎡

⎣
5 100 2250

100 2250 55000
2250 55000 1421250

⎤

⎦ et tXY =

⎡

⎣
133

2600
55000

⎤

⎦ .

Il en découle que :

(
tXX

)−1 =

⎡

⎣
15.8 −1.68 0.04

−1.68 0.187 −4.57.10−3

0.04 −4.57.10−3 1.14.10−4

⎤

⎦ .

Les estimateurs des moindres carrés du modèle étudié sont obtenus
par la relation β̂ = (tXX)−1 tXY, ils sont donnés dans la colonne ”Es-
timat.” du tableau suivant. De même, la colonne ”Ec. type” contient
les écart-types associés à ces estimateurs (obtenus avec les racines
carrées des éléments diagonaux de (tXX)−1) :

Param. Estimat. Ec. type
β0 −66.60 3.97σ
β1 10.96 0.43σ
β11 −0.28 0.01σ

Remarquons que le vecteur des réponses observées Y est à comparer
au vecteur des réponses moyennes Ŷ prédites par le modèle avec :

Y =

⎡

⎢
⎢
⎢
⎢
⎣

15
35
40
33
10

⎤

⎥
⎥
⎥
⎥
⎦

et Ŷ = Xβ̂ =

⎡

⎢
⎢
⎢
⎢
⎣

15.0
34.8
40.6
32.4
10.2

⎤

⎥
⎥
⎥
⎥
⎦

.

2.4.5 Prédiction de la réponse moyenne

Une fois β̂ déterminé l’expérimentateur est souvent intéressé par l’utilisation
du modèle obtenu afin de prédire la réponse moyenne en un point quel-
conque (où aucune expérience n’a été réalisée). Ceci est primordial lorsque
la modélisation doit conduire, par exemple, à la recherche des conditions
expérimentales susceptibles de maximiser (ou minimiser) la réponse étudiée.

Exemple

Toujours avec l’exemple des paragraphes précédents, quel rendement
prédit le modèle pour une température de 12◦C ?
Le meilleur modèle obtenu au sens des moindres carrés est :
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∀ t ∈ [10, 30] , Ŷ (t) = −66.6 + 10.96t− 0.28t2 = tg (t) β̂

en notant tg (t) =
[
1 t t2

]
. On en déduit que le rendement prédit

pour une température de 12◦C est égal à :

Ŷ (12) = tg (12) β̂ = 24.6.

La méthode présentée dans cet exemple est généralisable sans difficulté et la
prédiction de la réponse moyenne au point x ∈ R

m est donnée par :

Ŷ (x) = tg (x) β̂

avec g (x) ∈ R
p vecteur de régression c’est-à-dire tel que tg (x) est construit

de manière identique aux lignes de la matrice X. Connaissant la valeur de la
réponse moyenne prédite au point x la qualité de cette prédiction est quantifiée
à l’aide du résultat suivant :

Proposition 2.7. [�] La qualité de la prédiction Ŷ (x) = tg (x) β̂ réalisée au
point x ∈ R

m est mesurée par :

Var Ŷ (x) = σ2 tg (x)
(
tXX

)−1
g (x) .

On constate donc que la qualité de la prédiction au point x ∈ R
m dépend :

1) du point choisi,
2) de la dispersion du résidu,
3) de la matrice du modèle X utilisée.

Ceci montre, une nouvelle fois, que la qualité des prédictions obtenues dépend
de la façon dont les expériences ont été menées via la matrice X.

2.5 Analyse de la variance

2.5.1 Décomposition fondamentale

Une fois le modèle ajusté, le problème de la qualité de l’ajustement obtenu se
pose alors. Il est possible d’obtenir des indicateurs numériques permettant de
quantifier ceci à l’aide des techniques dites d’analyse de la variance. Ces
techniques reposent sur des décompositions judicieuses en sommes de carrés.
Désignons dans la suite par Y la réponse moyenne observée et par Y ∗ le
vecteur des réponses observées centrées (i.e. le vecteur ayant pour éléments
Yi−Y pour i = 1, ..., n). Remarquons que si In est l’indicatrice d’ordre n (i.e.
le vecteur de R

n dont toutes les composantes sont égales à 1) alors :

Y =
1
n

t
InY et Y ∗ = Y − Y In.
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On définit ensuite les trois sommes classiques suivantes (la notation SS venant
de l’anglais Sum of Squares) :

1) On appelle somme totale des carrés (centrés) la quantité :

SST =
n∑

i=1

(Y ∗
i )2 =

n∑

i=1

(
Yi − Y

)2
.

2) On appelle somme des carrés due à l’erreur la quantité :

SSE =
n∑

i=1

(
Yi − Ŷi

)2

.

3) On appelle somme des carrés due à la régression la quantité :

SSR =
n∑

i=1

(
Ŷi − Y

)2

.

On montre que ces trois quantités sont liées par la relation suivante :

Proposition 2.8. [�] Si P = X (tXX)−1 tX est le projecteur orthogonal de
R

n sur Im X et si In ⊂ Im X alors les sommes de carrés SST, SSE et SSR
s’écrivent :

SST = tY Y − nY
2
, SSE = tY (In − P )Y et SSR = tY PY − nY

2
.

Il en découle la décomposition fondamentale suivante :

SST = SSR + SSE.

Pour Y vecteur aléatoire de R
n et A ∈ M (n, n) matrice non-aléatoire, on

appelle nombre de degrés de liberté de tY AY le rang de la matrice A.
Cette notion de degrés de liberté provient de la loi usuelle du khi-deux. En
effet, on montre (voir, par exemple, l’ouvrage de Searle [88]) que si Y est un
vecteur aléatoire de loi gaussienne N

(
μ, σ2In

)
et si A est la matrice d’un

projecteur alors tY AY suit une loi du khi-deux décentrée, de paramètre de
décentrage (1/2) tμAμ, avec un nombre de degrés de liberté égal à rg (A) .
Les degrés de liberté associés aux différentes sommes de carrés sont donnés
ci-dessous. Il en découle les sommes moyennes des carrés (avec la notation MS
pour Mean Square) :

Proposition 2.9. [�] Les sommes de carrés SST, SSE et SSR sont as-
sociées, respectivement, à (n− 1) , (n− p) et (p− 1) degrés de liberté. Ceci
permet de définir les sommes moyennes de carrés par :

MSE =
SSE

n− p
et MSR =

SSR

p− 1
.

On a maintenant pour l’exemple de la réaction chimique :
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Exemple

Il vient ici n = 5, p = 3 et Y = 26.6 donc :

SST = 701.2 , SSE = 0.8 et SSR = 700.4

Le tableau d’analyse de la variance est alors :

Source ddl S. Carrés M. Carrés
Régression 2 700.4 350.2
Erreur 2 0.8 0.4
Total 4 701.2

Remarque. Les résultats présentés ci-dessus ne sont vrais que si In ⊂ Im X.
Cette hypothèse n’est pas contraignante en pratique car elle est en particulier
vérifiée dès lors que l’on utilise un modèle incluant un terme constant (i.e.
β0 pour l’exemple du paragraphe 2.4.3) ce qui implique que X contient une
colonne constituée uniquement de 1. Si cependant l’hypothèse In ⊂ Im X
n’est pas vérifiée alors la décomposition fondamentale n’est plus vraie. On
peut encore conserver cette décomposition mais il faut considérer les sommes
de carrés non-centrées suivantes :

SSt =
n∑

i=1

Y 2
i , SSe =

n∑

i=1

(
Yi − Ŷi

)2

et SSr =
n∑

i=1

Ŷ 2
i .

On montre, de manière similaire au cas centré, que SSt est associée à n ddl,
SSe à (n− p) ddl et enfin SSr est associée à p ddl.

2.5.2 Coefficient de corrélation linéaire multiple

La décomposition fondamentale de la proposition 2.8 permet d’évaluer la
qualité de l’ajustement du modèle utilisé. En effet, le modèle est d’autant
meilleur que SSE est faible (le cas ”limite” SSE = 0 correspondant à un
modèle prédisant les résultats expérimentaux sans la moindre erreur). On in-
troduit alors le coefficient suivant :

Définition 2.10. On appelle coefficient de corrélation linéaire multiple
le réel :

R2 =
SSR

SST
= 1− SSE

SST
.

Il découle immédiatement de la proposition 2.8 que :

0 ≤ R2 ≤ 1.

Le modèle ajusté est d’autant plus ”proche” des réponses observées que R2

est proche de 1. Un seuil classique consiste à valider le modèle dès lors que
R2 ≥ 0.95.
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Exemple

Pour la réaction chimique on obtient R2 � 0.999. Le modèle quadra-
tique utilisé est donc de très bonne qualité. Ce résultat est confirmé
graphiquement par la figure 2.5 où la parabole ajustée est très proche
du nuage des 5 points observés.

0

20

40

302010
t

Fig. 2.5. Ajustement d’un modèle linéaire.

Inversement, on montre qu’avec le modèle polynomial du premier
degré Y (t) = β0 + β1t + ε (t) on obtient alors R2 � 0.021. Un tel
modèle n’est donc absolument pas adapté au phénomène étudié (cf.
droite en pointillés de la figure 2.5).

2.5.3 Estimation de σ2

Un autre intérêt des techniques d’analyse de la variance est d’obtenir une
estimation de la dispersion inconnue σ2 des résidus. On a alors le résultat
classique suivant :

Proposition 2.11. [�] Lorsque X est une matrice de plein rang p, un esti-
mateur sans biais de la variance des résidus σ2 est :

σ̂2 = MSE =
SSE

n− p
.

On démontre que cet estimateur est généralement très efficace (notamment
lorsque les observations suivent une loi normale). Ce résultat permet donc
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d’effectuer un calcul explicite de toutes les quantités faisant intervenir la valeur
inconnue σ2 en la remplaçant par l’estimateur σ̂2.

Exemple

Toujours pour l’exemple de la réaction chimique, il vient :

σ̂2 = MSE =
SSE

2
= 0.4.

On en déduit les valeurs suivantes pour les dispersions des estimateurs
des paramètres du modèle :

Param. Estimat. Ec. type
β0 −66.60 2.51
β1 10.96 0.27
β11 −0.28 0.007

2.5.4 Décomposition plus fine de SSE

Il a été montré précédemment que la quantité SSE quantifie l’ampleur de
l’erreur globale commise lors de l’ajustement. Cette erreur peut cependant
découler de plusieurs sources différentes. Deux causes principales sont soit le
choix d’un mauvais modèle soit une grande variabilité des résultats observés
(qui peut être due, par exemple, à l’oubli de variables influentes). Une tech-
nique classique afin de distinguer ces deux sources d’erreur consiste à réaliser
un certain nombre de répétitions d’expériences. Désignons alors par n∗ le
nombre total de conditions expérimentales distinctes (par exemple le nom-
bre de températures distinctes pour la réaction chimique) et supposons que
l’expérience i (1 ≤ i ≤ n∗) a été répétée ci ∈ N

∗ fois. Pour la i-ème expérience
notons les ci réponses observées sous la forme suivante :

Y
(1)
i , Y

(2)
i , ... , Y

(ci)
i .

Il découle de ces hypothèses que le nombre total d’expériences réalisées est :

n =
n∗
∑

i=1

ci.

Dans la suite Y désigne le vecteur des observation écrit dans l’ordre suivant :

tY =
(
Y

(1)
1 , ..., Y

(c1)
1 , Y

(1)
2 , ..., Y

(c2)
2 , ... , Y

(1)
n∗ , ..., Y

(cn∗)
n∗

)
.

Notons enfin, pour 1 ≤ i ≤ n∗, Yi la réponse moyenne observée pour les ci

répétitions de la i-ème expérience, donc :

Yi =
1
ci

ci∑

u=1

Y
(u)
i .
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Ces notations généralisent bien le cas classique, sans répétition, qui correspond
à c1 = c2 = ... = cn∗ = 1 (n et n∗ sont identiques). Lorsque l’expérience i
n’est pas répliquée (ci = 1) on notera, comme précédemment, Yi au lieu de
Y

(1)
i . On définit classiquement les deux nouvelles sommes suivantes (avec les

notations LOF pour Lack Of Fit et PE pour Pure Error) :

1) On appelle somme des carrés due au manque d’ajustement la quan-
tité :

SSLOF =
n∗
∑

i=1

ci

(
Ŷi − Yi

)2

.

2) On appelle somme des carrés due à l’erreur pure la quantité :

SSPE =
n∗
∑

i=1

ci∑

u=1

(
Y

(u)
i − Yi

)2

.

On montre alors que (en désignant par Jn = In
t
In la matrice carrée d’ordre

n composée par l’unique valeur 1) :

Proposition 2.12. [�] Si P ∗ désigne le projecteur orthogonal de R
n sur

l’image de la matrice indicatrice des répétitions (c’est à dire que P ∗ =
diag

(
r−1
1 Jr1 , r

−1
2 Jr2 , ... ,r−1

n∗ Jrn∗
)
) et P est le projecteur orthogonal de R

n

sur Im X alors les sommes de carrés SSLOF et SSPE s’écrivent aussi :

SSLOF = tY (P ∗ − P )Y et SSPE = tY (In − P ∗) Y.

Il en découle la décomposition suivante :

SSE = SSLOF + SSPE.

Les sommes de carrés SSLOF et SSPE sont de plus associées respectivement
à (n∗ − p) et (n− n∗) degrés de liberté, donc les sommes moyennes des carrés
associées vérifient :

MSLOF =
SSLOF

n∗ − p
et MSPE =

SSPE

n− n∗ .

Cette décomposition permet de distinguer la part de SSE qui est due au choix
d’un mauvais modèle (SSLOF ) de celle qui, par contre, découle de variations
non-contrôlées (SSPE).
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Exemple

Reprenons l’exemple du rendement de la réaction chimique mais sup-
posons maintenant que l’expérience a été dupliquée pour la tempéra-
ture 10◦C et a donné les résultats suivants :

t 10 10 15 20 25 30
Y 10 20 35 40 33 10

On a donc toujours n∗ = 5 conditions expérimentales différentes (i.e.
5 températures distinctes) mais n = 6 expériences réalisées. Pour les
réplications il vient c1 = 2 et c2 = c3 = c4 = c5 = 1 avec :

Y
(1)
1 = 10 et Y

(2)
1 = 20 donc Y1 = 15.

Ceci conduit au tableau d’analyse de la variance suivant :

Source ddl S. Carrés M. Carrés
Régression (SSR) 2 812.5 406.3
Erreur (SSE) 3 50.8 16.9

Pure. (SSPE) 1 50 .0 50 .0
Ajus. (SSLOF) 2 0 .8 0 .4

Total 5 863.3

Il en découle que :

σ̂2 = MSE = 16.9 et R2 = 1− SSE

SST
= 0.941.

Concernant le modèle ajusté, on obtient :

Param. Estimat. Ec. type
β0 −66.60 13.66
β1 10.96 1.59
β11 −0.28 0.04

Le modèle ajusté est identique à celui du paragraphe 2.4.4 (où il n’y
avait pas de répétition). Ceci est dû au fait que la méthode utilisée
est celle des moindres carrés dite ordinaire, c’est-à-dire que toutes
les observations ont un poids identique. Il en résulte que, pour la
température 10◦C, le modèle ajusté a pour objectif de passer au
plus près de la réponse moyenne observée (i.e. 15 %) qui est iden-
tique à celle du cas sans répétition. Le modèle ajusté obtenu est
de bonne qualité (faible valeur de SSLOF ) mais la précision des
résultats obtenus souffre de la grande variabilité constatée lors de
l’expérience dupliquée (forte valeur de SSPE). La dispersion associée
à chaque paramètre estimé est donc maintenant beaucoup plus im-
portante qu’au paragraphe 2.5.3. Cette forte imprécision peut s’avérer
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problématique mais le fait de dupliquer une expérience et de mesurer
une réponse pouvant varier du simple au double montre qu’il y a un
problème au niveau de l’analyse du phénomène étudié (toutes les vari-
ables importantes ont-elles été considérées ?).

2.6 Tests d’hypothèses

2.6.1 Exemple introductif

Considérons une unité de production de composants électroniques. Il est
préférable, pour la qualité des produits fabriqués, que l’hygrométrie moyenne
dans les locaux soit fixée à un niveau de 40%. Afin de juger si cette con-
dition est vérifiée ou non on mesure à divers moments de la journée n taux
d’hygrométrie qui sont des réalisations des variables aléatoires réelles Y1, ...,Yn.
Désignons par θ le taux moyen d’hygrométrie (inconnu) et par θ̂ un estimateur
sans biais découlant des observations. Un tel estimateur est classiquement :

θ̂ =
1
n

n∑

i=1

Yi.

Intuitivement il est clair que les conditions seront satisfaisantes si θ̂ est proche
de 40 alors que le taux d’hygrométrie mesuré posera problème dans le cas con-
traire. Toute la difficulté pratique réside dans la traduction de l’hypothèse ”θ̂
est proche de 40” car θ̂ est une quantité aléatoire (donc susceptible de varier).
Réaliser un test d’hypothèse consiste à proposer une stratégie permettant de
faire un choix entre ici les hypothèses :

H0 : ”θ = 40” et H1 : ”θ 	= 40”.

Supposons maintenant que les observations sont des réalisations indépendantes
d’une même loi normale N (θ, σ) avec l’écart-type σ connu (pour simplifier).
Il découle alors des propriétés de la loi normale que θ̂ suit lui-même une loi
normale d’espérance θ (on a bien un estimateur sans biais) et d’écart-type
σ/
√

n. Il est donc possible de prendre une décision en utilisant la statistique
de test θ̂ sous l’hypothèse H0. En effet, si H0 est vraie on peut affirmer que :

θ̂ � N

(

40,
σ√
n

)

.

La distribution de θ̂ est donc bien connue et il est possible de déterminer une
région critique, c’est-à-dire une région dans laquelle θ̂ a très peu de chances
de se trouver si H0 est vraie. Il s’agira ici (par symétrie de la loi normale)
d’une région de la forme :

CRα = ]−∞, 40− kα[ ∪ ]40 + ka, +∞[
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où ka est déterminé de manière à ce que θ̂ ait une probabilité égale à α de se
trouver dans cette région. L’utilisateur va choisir une valeur de α, en déduire
la région critique CRα et enfin utiliser la règle de décision suivante :

{
si Y ∈ CRα alors on rejette H0,

si Y /∈ CRα alors on accepte H0.

La quantité α mesure la probabilité de rejeter H0 alors que cette hypothèse
est vraie (on a donc tout intérêt à prendre de faibles valeurs pour α).

2.6.2 Cas général

De manière générale un test d’hypothèse est une méthode permettant, à
partir des résultats observés expérimentalement, de choisir entre deux hy-
pothèses. Les étapes d’un test sont données dans le cheminement ci-dessous.

1) Formulation des deux hypothèses.
Il convient de formuler clairement, au préalable, les hypothèses associées au
problème posé. Ces deux hypothèses sont désignées par la suite par H0 (hy-
pothèse nulle) et H1 (hypothèse alternative). On supposera qu’une des deux
est forcément vraie et qu’elles sont incompatibles (H0 ∩ H1 = ∅). Un choix
fréquent consiste à prendre pour H1 la négation de H0 (H1 = H0).

2) Détermination d’une statistique de test.
La méthode des tests d’hypothèses consiste ensuite à élaborer une statistique
de test T (quantité aléatoire ne dépendant pas du ou des paramètres inconnus
du problème). Cette quantité doit être adaptée à la nature des hypothèses
postulées et doit surtout être assez simple pour que sa loi de probabilité soit
connue lorsque H0 est supposée vraie.

3) Détermination d’une région critique.
La loi de T étant connue lorsque H0 est vraie il est maintenant possible de
construire une région critique CRα, c’est-à-dire un ensemble de valeurs de T
ayant une probabilité d’apparition égale à α sous l’hypothèse H0.

4) Décision finale.
La dernière étape consiste à déterminer une estimation t de T à partir de
l’échantillon des valeurs observées. On appliquer alors la règle de décision
suivante :

{
si t ∈ CRα alors on rejette H0 (et donc on accepte H1),
si t /∈ CRα alors on accepte H0.

Puisque deux hypothèses coexistent avec chaque fois deux décisions possi-
bles (acceptation ou rejet), un test d’hypothèse conduit aux quatre situations
possibles suivantes faisant intervenir les probabilités α et α̃ :
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Décision Probabilité associée
Accepter H0 quand H0 est en réalité vraie 1− α

Rejeter H0 quand H0 est en réalité fausse 1− α̃

Rejeter H0 quand H0 est en réalité vraie α

Accepter H0 quand H0 est en réalité fausse α̃

Les deux premières probabilités (1 − α et 1 − α̃) correspondent à de bonnes
décisions (elles ont donc tout intérêt à être élevées) alors que les deux dernières
(α et α̃) sont associées à des décisions éronées. Il est aussi possible d’exprimer
ces différentes probabilités à l’aide de probabilités conditionnelles puisque :

P
(
CRα | H0

)
= 1− α

P (CRα | H0) = α
et

P (CRα | H1) = 1− α̃

P
(
CRα | H1

)
= α̃

Le réel α est appelé probabilité d’erreur de première espèce et on qualifie
alors le test d’hypothèse utilisé de test de niveau α. De même, α̃ est appelé
probabilité d’erreur de deuxième espèce et (1− α̃) est la puissance du
test. En pratique, le niveau α du test est fixé par l’utilisateur alors que α̃
est inconnu. Des valeurs très courantes sont 0.05 (on a donc 5% de chances de
rejeter à tort H0) 0.1 ou encore 0.01. Nous n’entrons pas ici dans plus de détails
concernant la théorie générale des tests d’hypothèses mais, le niveau étant
fixé, il se pose maintenant le problème de la puissance du test utilisé. L’idéal
est de mettre en œuvre un test d’hypothèse optimal, c’est-à-dire maximisant
la puissance pour une valeur donnée de la probabilité d’erreur de première
espèce (le lecteur souhaitant aller plus loin sur ces notions peut, par exemple,
se référer au livre de Saporta [83]).

2.6.3 Test de validité du modèle

Exploitons ici les résultats de l’analyse de la variance afin d’effectuer un test
relatif à l’utilité du modèle postulé. En d’autres termes, il s’agit de tester
l’hypothèse :

H0 : ”tous les paramètres du modèle (sauf β0) sont nuls” contre H1 = H0.

La formulation de H1 est donc ”il existe au moins un des paramètres du modèle
(différent de β0) non nul”. En d’autres termes, choisir H0 équivaut donc à en
déduire que le modèle postulé est totalement inadapté au phénomène étudié
car seul le paramètre constant β0 est utile. On démontre que si les observations
sont des réalisations indépendantes d’une loi normale, la statistique :

T =
SSR/ (p− 1)
SSE/ (n− p)

=
MSR

MSE

suit, sous l’hypothèse H0, une loi de Fisher avec (p− 1) et (n− p) degrés de
liberté. La construction d’une région critique est donc possible à partir de la
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connaissance des fractiles fα,p−1,n−p de la loi de Fisher à (p− 1) et (n− p)
ddl (i.e. des valeurs ayant une probabilité égale à α d’être dépassées par une
telle loi). Il en résulte le test suivant (avec t valeur de T obtenue à partir de
l’échantillon observé) :

Proposition 2.13. Un test d’hypothèse de H0 : ”tous les paramètres du
modèle (sauf β0) sont nuls” contre l’hypothèse H1 = H0 peut être réalisé à
l’aide de la statistique :

T =
MSR

MSE
.

La règle de décision est alors donnée par (avec fα,p−1,n−p fractile de la loi de
Fisher à (p− 1) et (n− p) ddl) :

on rejette H0 au niveau α si t ≥ fα,p−1,n−p.

2.6.4 Test de significativité des paramètres

Considérons un modèle linéaire dont le vecteur des paramètres inconnus β est
estimé par la méthode des moindres carrés. On a alors (voir le paragraphe
2.4.4) :

β̂ =
(
tXX

)−1 tXY et V

(
β̂
)

= σ2
(
tXX

)−1
.

Supposons que les observations sont des réalisations indépendantes d’une loi
normale. Il résulte de cette hypothèse que si β̂i désigne la i-ème composante
de β̂, on peut affirmer que β̂i suit une loi normale d’espérance βi et de vari-
ance Var

(
β̂i

)
. L’objectif est ici de tester la significativité (i.e. l’utilité) du

paramètre βi dans le modèle postulé. Il en résulte que l’on considère les hy-
pothèses :

H0 : ”βi = 0” contre H1 : ”βi 	= 0”.

Le paramètre βi est considéré comme non-significatif si l’hypothèse H0 est
choisie. Afin de déterminer une statistique de test on estime Var

(
β̂i

)
à l’aide

des résultats du paragraphe 2.5.3 et on considère :

T =
β̂i

(
Var

(
β̂i

))1/2
=

β̂i

σ̂
√

aii

avec aii i-ème élément diagonal de (tXX)−1 et σ̂2 = MSE = SSE/ (n− p) .
Sous l’hypothèse H0, la statistique T suit une loi de Student à (n− p) degrés
de liberté. La construction d’une région critique est possible à partir de la
connaissance des fractiles fα,n−p de la loi de Student à (n− p) ddl (i.e. des
valeurs ayant une probabilité égale à α d’être dépassées par une telle loi). On
en déduit que (avec t valeur de T obtenue à partir de l’échantillon observé) :
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Proposition 2.14. Soit βi le i-ème élement du vecteur des paramètres in-
connus du modèle linéaire utilisé. Un test d’hypothèse de H0 : ”βi = 0”
contre H1 : ”βi 	= 0” peut être réalisé à l’aide de la statistique :

T =
β̂i√

aiiMSE

avec aii i-ème élément diagonal de (tXX)−1. La règle de décision est alors
donnée par (avec fα/2,n−p fractile de la loi de Student à (n− p) ddl) :

on rejette H0 au niveau α si |t| ≥ tα/2,n−p.

2.6.5 Test d’ajustement du modèle

Supposons ici qu’au moins une des expériences a été répliquée. Il est alors
possible d’aller plus loin qu’au paragraphe 2.6.3 afin de juger de la qualité du
modèle utilisé. En effet on peut maintenant évaluer le défaut d’ajustement
du modèle, c’est-à-dire sa capacité ou non à bien décrire en moyenne le
phénomène étudié. Mathématiquement, on dit que le modèle postulé est mal
ajusté si :

on suppose que E (Y ) = Xβ alors qu’en réalité E (Y ) = Xβ + X∗β∗

avec β∗ vecteur des paramètres négligés à tort (il s’agit souvent dans le cas
polynomial de paramètres de plus haut degré qu’il n’aurait pas fallu omettre).
Une telle situation a déjà été rencontrée au paragraphe 2.5.2 où l’ajustement
d’une droite (i.e. d’un modèle de degré 1) était forcément de mauvaise qualité
car le nuage de points avait une forme parabolique (i.e. il fallait en réalité
rajouter un terme quadratique). Testons maintenant l’hypothèse :

H0 : ”le modèle est bien ajusté en moyenne” contre H1 = H0.

Remarquons que du point de vue mathématique, l’hypothèse H0 se traduit
par :

H0 : ” (In − P )X∗β∗ = 0” avec P = X
(
tXX

)−1 tX.

En d’autres termes, si le modèle est bien ajusté le terme X∗β∗ ne va pas ap-
porter d’information nouvelle par rapport à Xβ et donc sa projection orthog-
onale sur (ImX)⊥ doit être nulle. On démontre alors que si les observations
sont des réalisations indépendantes d’une loi normale, la statistique :

T =
SSLOF/ (n∗ − p)
SSPE/ (n− n∗)

=
MSLOF

MSPE

suit, sous l’hypothèse H0, une loi de Fisher avec (n∗ − p) et (n− n∗) degrés de
liberté. Il en résulte que (avec t valeur de T obtenue à partir de l’échantillon
observé) :
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Proposition 2.15. Un test d’hypothèse de H0 : ”le modèle est bien ajusté
en moyenne” contre l’hypothèse H1 = H0 peut être réalisé à l’aide de la
statistique :

T =
MSLOF

MSPE
.

La règle de décision est alors donnée par (avec fα,n∗−p,n−n∗ fractile de la loi
de Fisher à (n∗ − p) et (n− n∗) ddl) :

on rejette H0 au niveau α si t ≥ fα,n∗−p,n−n∗ .

2.6.6 Exemples

Terminons par des exemples d’utilisation de ces tests d’hypothèses. Les
tableaux d’analyse de la variance usuels sont alors complétés, dans un pre-
mier temps, en rajoutant la statistique de test correspondante (colonne ”St.
Test”).

Comme cela a été montré au paragraphe 2.6.2, il est courant de fixer le
niveau du test d’hypothèse avec des valeurs égales le plus souvent à 0.05,
0.02 ou 0.01. Ces valeurs correspondent aux tabulations usuelles des lois de
Student ou de Fisher et permettent de mener à bien les tests d’hypothèses
sans disposer de moyens de calcul. L’utilisation de tables est cependant in-
satisfaisante car, par exemple, le fait de rejeter une hypothèse au niveau 5%
n’est pas ”optimale” dans le sens où ce même test réalisé au niveau 3% au-
rait peut être permis de rejeter aussi cette hypothèse. En d’autres termes il
serait donc intéressant de pouvoir tester l’hypothèse pour de multiples valeurs
du niveau α afin d’obtenir la probabilité égale au niveau minimal du test
permettant de rejeter l’hypothèse H0. Les logiciels de statistique permettent
d’effectuer facilement un tel traitement et ces probabilités figurent dans la
colonne ”Proba.” des différents tableaux. Une telle probabilité est aisément
déterminable d’un point de vue théorique. En effet soit un test associé à une
statistique T, de loi de probabilité connue sous l’hypothèse H0, avec une règle
de décision du type :

”on rejette H0 au niveau α si t ≥ fα”

où fα est un fractile de niveau α de la loi suivie par T. La valeur minimale α∗

de α permettant de rejeter H0 est alors clairement obtenue lorsque t = fα∗ .
Or, fα étant un fractile il vient (toujours en supposant H0 vraie) :

P [T ≥ fα∗ ] = α∗ ⇔ P [T ≥ t] = α∗ ⇔ α∗ = 1− P [T < t] .

Les valeurs α∗ (appelées p-values dans la terminologie anglo-saxone) données
dans la colonne ”Proba.” sont donc égales à 1−FT (t) où FT est la fonction de
répartition associée à la statistique T sous l’hypothèse H0. Une autre vision
des choses consiste à dire, comme cela est présenté dans l’ouvrage d’Azäıs et
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Bardet [1], que la valeur α∗ est donc la ”valeur critique de α qui fait basculer
le résultat du test”.

Afin de rendre la lecture des probabilités α∗ plus lisibles, la convention
d’écriture suivante est proposée :

⎧
⎪⎪⎨

⎪⎪⎩

on note (α∗) ◦◦◦ lorsque 0.05 < α∗ ≤ 1,
on note (α∗) •◦◦ lorsque 0.01 < α∗ ≤ 0.05,
on note (α∗) ••◦ lorsque 0.001 < α∗ ≤ 0.01,
on note (α∗) ••• lorsque 0 ≤ α∗ ≤ 0.001.

En d’autres termes, plus le résultat du test d’hypothèse est significatif, plus il
est associé à un nombre important de disques pleins. Un utilisateur souhaitant
travailler avec le niveau (très classique) de α = 5% peut donc utiliser tous les
résultats associés à •◦◦, ••◦ ou encore •••.

Reprenons maintenant les diverses modélisations de ce chapitre pour le ren-
dement de la réaction chimique.

Exemple

Considérons l’ajustement d’une droite (paragraphe 2.5.2). On obtient
le tableau d’analyse de la variance complété suivant :

Source ddl S. carrés M. Carrés St. Test Proba.
Régression 1 14.4 14.4 0.06 0.8182 ◦◦◦

Erreur 3 686.8 228.9
Total 4 701.2

Le test de validité du modèle ne permet pas de rejeter ici significative-
ment l’hypothèse nulle ”tous les paramètres du modèle (sauf β0) sont
nuls”. En d’autres termes, ajuster une droite n’apporte pas un gain
de qualité par rapport au simple ajustement d’une constante. Ceci est
de plus confirmé par les tests de significativité des deux paramètres
du modèle qui ne donnent pas de bons résultats :

Param. Estimat. Ec. type St. Test Proba.
β0 31.40 20.30 1.55 0.2196◦◦◦

β1 −0.24 0.96 −0.25 0.8182◦◦◦

Ces résultats montrent que le modèle utilisé ici est un mauvais modèle,
incapable d’expliquer correctement le phénomène étudié (une telle
conclusion avait déjà été tirée à partir du coefficient R2).

Considérons maintenant l’ajustement d’une parabole (voir le para-
graphe 2.5.2). On obtient alors le tableau d’analyse de la variance
suivant :
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Source ddl S. carrés M. Carrés St. Test Proba.
Régression 2 700.4 350.2 875.5 0.0011 ••◦

Erreur 2 0.8 0.4
Total 4 701.2

On peut cette fois rejeter très significativement (avec une probabilité
d’erreur de première espèce de 0.11%) l’hypothèse nulle ”tous les
paramètres du modèle (sauf β0) sont nuls”. Le modèle utilisé est donc
(au moins en partie) adapté au phénomène étudié. L’analyse indi-
viduelle des facteurs montre de plus que chacun d’entre eux peut être
supposé significatif car les hypothèses nulles ”β0 = 0”, ”β1 = 0” et
”β11 = 0” peuvent être rejetées avec, chaque fois, une probabilité
infime de se tromper.

Param. Estimat. Ec. type St. Test Proba.
β0 −66.60 2.51 −26.49 0.0014••◦

β1 10.96 0.27 40.09 0.0006•••

β11 −0.28 0.007 −41.41 0.0006•••

Considérons enfin le dispositif expérimental où l’expérience correspon-
dant à la température de 10◦C a été dupliquée (voir le paragraphe
2.5.4).

Source ddl S. carrés M. Carrés St. Test Proba.
Régression 2 812.5 406.3 23.99 0.0143 •◦◦

Erreur 3 50.8 16.9 0.008 0.9921 ◦◦◦

Pure. 1 50 .0 50 .0
Ajus. 2 0 .8 0 .4

Total 5 863.3

Concernant le tableau d’analyse de la variance ou celui des facteurs
estimés, on peut tirer les mêmes conclusions que dans l’exemple
précédent mais avec des niveaux des test d’hypothèses en augmen-
tation. Par exemple l’hypothèse nulle ”tous les paramètres du modèle
(sauf β0) sont nuls” pouvait être rejetée précédemment au niveau 1%
alors que maintenant un tel niveau ne permet plus de le faire. Les
résultats obtenus ici restent cependant assez corrects pour en déduire
que le modèle utilisé est bon. Cependant, la décomposition plus fine de
SSE permet maintenant de tester l’hypothèse H0 ”le modèle est bien
ajusté en moyenne”. On constate alors, très clairement, qu’il n’est
pas possible de rejeter significativement H0. Ceci montre donc, une
nouvelle fois, que le défaut d’ajustement constaté ici est dû aux varia-
tions de la réponse (puisque pour 10◦C le rendement varie du simple
au double lorsqu’on répète l’expérience) et non pas au modèle qui, en
moyenne, est donc très bien ajusté.
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Param. Estimat. Ec. type St. Test Proba.
β0 −66.60 13.66 −4.87 0.0165 •◦◦

β1 10.96 1.59 6.91 0.0062 ••◦

β11 −0.28 0.04 −6.91 0.0062 ••◦
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2.7 (Compléments) Démonstrations

Proposition 2.5. Soit le modèle statistique Y = Xβ + ε avec X matrice de
plein rang. L’estimateur des moindres carrés de β est donné par :

β̂ =
(
tXX

)−1 tXY.

Démonstration. On cherche β̂ minimisant ‖Y −Xβ‖2 ou, de manière
équivalente, ‖Y −Xβ‖. Or, la distance entre Y et Xβ est minimale si et
seulement si Xβ est la projection orthogonale de Y sur Im X. Comme le pro-
jecteur orthogonal sur ImX s’écrit matriciellement P(ImX) = X (tXX)−1 tX,
on en déduit que l’estimateur des moindres carrés de β est donné par :

Xβ̂ = P(ImX)Y = X
(
tXX

)−1 tXY

La multiplication à gauche par tX donne alors :

tXXβ̂ = tXX
(
tXX

)−1 tXY ⇔ β̂ =
(
tXX

)−1 tXY �

Proposition 2.6. Si les hypothèses (H) sur les résidus sont vérifiées et si β̂
est l’estimateur des moindres carrés de β alors :
1) β̂ est un estimateur sans biais de β,

2) β̂ admet pour matrice des covariances : V

(
β̂
)

= σ2 (tXX)−1
.

Démonstration. Utilisons les propriétés de l’espérance mathématique et de
la matrice des covariances vues au paragraphe 2.3.2. Pour l’espérance de β̂,
on sait d’après (H) que E (Y ) = Xβ donc il vient :

E

(
β̂
)

= E

[(
tXX

)−1 tXY
]

=
(
tXX

)−1 tXE (Y ) = β.

De même, l’hypothèse (H) nous dit aussi que V (Y ) = σ2 (tXX)−1 donc :

V

(
β̂
)

= V

[(
tXX

)−1 tXY
]

=
(
tXX

)−1 tXV (Y )X
(
tXX

)−1 = σ2
(
tXX

)−1

d’où le résultat �

Proposition 2.7. La qualité de la prédiction Ŷ (x) = tg (x) β̂ réalisée au
point x ∈ R

m est mesurée par :

Var Ŷ (x) = σ2 tg (x)
(
tXX

)−1
g (x) .

Démonstration. Les propriétés de la matrice des covariances vues au para-
graphe 2.3.2 entrainent que :
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Ŷ (x) = tg (x) β̂ ⇒ V

[
Ŷ (x)

]
= tg (x) V

(
β̂
)

g (x) .

Or V

(
β̂
)

= σ2 (tXX)−1 d’après la proposition 2.6, d’où le résultat puisque

V

[
Ŷ (x)

]
n’est autre que Var Ŷ (x) �

Proposition 2.8. Si P = X (tXX)−1 tX est le projecteur orthogonal de R
n

sur Im X et si In ⊂ Im X alors les sommes de carrés SST, SSE et SSR
s’écrivent :

SST = tY Y − nY
2
, SSE = tY (In − P )Y et SSR = tY PY − nY

2
.

Il en découle la décomposition fondamentale suivante :

SST = SSR + SSE.

Démonstration. Matriciellement, on peut dire que :

SST = t
(
Y − Y In

) (
Y − Y In

)
= tY Y − Y tY In − Y t

InY + Y
2t

InIn.

Or tY In = t
InY = nY et t

InIn = n, donc : SST = tY Y − nY
2
.

De même, il vient pour SSE puisque Ŷ = PY et (In − P )2 = In − P (par
idempotence car In − P est un projecteur) :

SSE = t
(
Y − Ŷ

)(
Y − Ŷ

)
= tY (In − P ) (In − P )Y = tY (In − P )Y.

Pour SSR on a enfin :

SSR = t
(
Ŷ − Y In

)(
Ŷ − Y In

)
= tŶ Ŷ − 2Y tŶ In + Y

2t
InIn

Or tŶ Ŷ = t (PY ) (PY ) = tY PPY = tY PY et comme In ⊂ Im X on en
déduit que P In = In donc :

tŶ In = tY P In = tY In = nY .

Ceci entrâıne bien que SSR = tY PY −nY
2

et la décomposition fondamentale
est alors bien démontrée �

Proposition 2.9. Les sommes de carrés SST, SSE et SSR sont associées,
respectivement, à (n− 1) , (n− p) et (p− 1) degrés de liberté. Ceci permet de
définir les sommes moyennes de carrés de la manière suivante :

MSE =
SSE

n− p
et MSR =

SSR

p− 1
.
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Démonstration. D’après la proposition 2.8 on sait que SST = tY Y − nY
2
.

Comme cependant Y = (1/n) t
InY , on a donc aussi :

SST = tY

(

In − 1
n

Jn

)

Y avec Jn = In
t
In.

Or (1/n)Jn = In (t
InIn)−1 t

In est le projecteur orthogonal sur Im In. Il en
découle que (In − 1/nJn) est le projecteur orthogonal sur (Im In)⊥ , donc il a
pour rang (n− 1) . On a de même :

SSR = tY PY − nY
2

= tY

(

P − 1
n

Jn

)

Y

donc SSR est associée à (p− 1) ddl (en effet le vecteur In est, par hypothèse,
dans l’image de P et il se retrouve donc aussi dans le noyau de P − (1/n)Jn

et le rang de P − (1/n)Jn est alors égal à (p− 1)). Le résultat est immédiat
concernant SSE �

Proposition 2.11. Lorsque X est une matrice de plein rang p, un estimateur
sans biais de la variance des résidus σ2 est :

σ̂2 = MSE =
SSE

n− p
.

Démonstration. Considérons tout d’abord une variable aléatoire vectorielle
Y telle que E (Y ) = μ et V (Y ) = V. Il vient, par linéarité de l’espérance :

V = E
[
(Y − μ) t (Y − μ)

]
= E

(
Y tY

)− μtμ.

On en déduit que, pour toute matrice carrée A non aléatoire de dimension
compatible avec Y , la forme quadratique tY AY a pour espérance :

E
(
tY AY

)
= E

[
Tr

(
tY AY

)]
= E

[
Tr

(
AY tY

)]
car Tr (AB) = Tr (BA) .

D’où :

E
(
tY AY

)
= Tr

[
AE

(
Y tY

)]
= Tr

[
A
(
V + μtμ

)]
= Tr (AV ) + tμAμ.

Appliquons maintenant ce résultat à Y donnée par un modèle linéaire de la
forme Y = Xβ + ε. Les hypothèses (H) entrâınent que (voir le paragraphe
2.4.3) :

E (Y ) = Xβ et V (Y ) = σ2In.

Comme SSE = tY (In − P )Y il vient donc :

E (SSE) = Tr
[
σ2 (In − P ) In

]
+ tβtX (In − P )Xβ.

Remarquons maintenant que :
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1) un projecteur admet pour valeur propre uniquement 0 ou 1 (c’est une
conséquence directe de l’idempotence). Il en découle que la trace d’un pro-
jecteur est toujours égale à la dimension de son image. Comme (In − P ) est
le projecteur orthogonal de R

n sur (Im X)⊥ et que X est supposée de rang
égal à p, on en déduit que :

Tr
[
σ2 (In − P ) In

]
= σ2Tr (In − P ) = σ2 dim

[
(Im X)⊥

]
= σ2 (n− p) ,

2) le fait que (In − P ) soit le projecteur orthogonal de R
n sur (Im X)⊥ en-

traine immédiatement que (In − P )Xβ = 0,

En conclusion, la proposition est bien démontrée puisqu’il a été prouvé que :

E (SSE) = σ2 (n− p) �

Proposition 2.12. Si P ∗ désigne le projecteur orthogonal de R
n sur l’image

de la matrice indicatrice des répétitions (c’est à dire que P ∗ =
diag

(
r−1
1 Jr1 , r

−1
2 Jr2 , ... ,r−1

n∗ Jrn∗
)
) et P est le projecteur orthogonal de R

n

sur Im X alors les sommes de carrés SSLOF et SSPE s’écrivent aussi :

SSLOF = tY (P ∗ − P )Y et SSPE = tY (In − P ∗) Y.

Il en découle la décomposition suivante :

SSE = SSLOF + SSPE.

Les sommes de carrés SSLOF et SSPE sont de plus associées respectivement
à (n∗ − p) et (n− n∗) degrés de liberté, donc les sommes moyennes des carrés
associées vérifient :

MSLOF =
SSLOF

n∗ − p
et MSPE =

SSPE

n− n∗ .

Démonstration. Commençons par détailler les deux résultats suivants.

1) Résultat préliminaire 1 : définition et écriture de P ∗. Soit la matrice
R ∈ M (n, n∗) des indicatrices des répétitions (i.e. la matrice formée de 0
et de 1 telle que la colonne j repère toutes les répétitions de la j-ième unité
expérimentale). Pour, par exemple, n∗ = 3 unités expérimentales telles que
c1 = c2 = 1 et c3 = 2, il vient :

R =

⎡

⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 1

⎤

⎥
⎥
⎦ .

Il en découle que le projecteur orthogonal sur l’image de R est donné par la
matrice diagonale par blocs suivante (en notant Jn = In

t
In) :
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P ∗ = R
(
tRR

)−1 tR = diag (1/c1Jc1 , 1/c2Jc2 , ... ,1/cn∗Jcn∗ ) .

2) Résultat préliminaire 2 : Im P ⊂ Im P ∗. Ceci est équivalent à prouver que
Im X ⊂ Im R. Or :

Im X ⊂ Im R ⇐⇒ (Im R)⊥ ⊂ (Im X)⊥ ⇐⇒ Ker tR ⊂ Ker tX.

La dernière relation concernant l’inclusion des noyaux est évidente. Détaillons
là sur l’exemple précédent. On a alors (avec g (x) vecteur de régression au point
x, voir le paragraphe 2.4.5) :

tR =

⎡

⎣
1 0 0 0
0 1 0 0
0 0 1 1

⎤

⎦ et tX =
[
g (x1) g (x2) g (x3) g (x3)

]
.

Donc Ker tR = {a (0, 0, 1,−1) , a ∈ R} est inclu dans Ker tX puisque les
colonnes 3 et 4 de cette dernière matrice sont identiques. Ce raisonnement
est généralisable sans difficulté.

Explicitons maintenant la forme de SSPE. Par définition, SSPE est égale
à la norme au carré du vecteur u tel que :

tu =
(
Y

(1)
1 − Y1, ... , Y

(c1)
1 − Y1, ... , Y

(1)
n∗ − Yn∗ , ... , Y

(cn∗)
n∗ − Yn∗

)
.

Comme
P ∗Y = t

(
Y1, ... , Y1, ... , Yn∗ , ... , Yn∗

)

on a donc u = Y − P ∗Y et alors :

SSPE = ‖(In − P ∗)Y ‖2 = tY (In − P ∗)2 Y = tY (In − P ∗)Y.

En effet, (In − P ∗)2 = In − P ∗ car In − P ∗ est le projecteur orthogonal de
R

n sur (Im R)⊥. Le rang de P ∗ étant égal à n∗, SSPE est donc associée
à (n− n∗) ddl. Concernant SSLOF on peut dire, de même, qu’il s’agit par
définition de la norme au carré du vecteur v tel que :

tv =
(
Ŷ1 − Y1, ... , Ŷ1 − Y1, ... , Ŷn∗ − Yn∗ , ... , Ŷn∗ − Yn∗

)

où Ŷ1 − Y1 est répété c1 fois, ... , Ŷn∗ − Yn∗ est répété cn∗ fois. Il en découle
que :

SSLOF = ‖(P − P ∗)Y ‖2 = tY (P − P ∗) (P − P ∗) Y.

Le résultat préliminaire 2 entrâıne que P ∗P = PP ∗ = P et donc :

SSLOF = tY (P ∗ − P )Y.

La décomposition SSE = SSLOF +SSPE est alors évidente. Pour terminer,
on remarque que SSLOF est associée à (n∗ − p) ddl. Ceci découle, par exem-
ple, de la somme directe suivante (en deux sous-espaces orthogonaux) :

Im (In − P ) = Im (In − P ∗)⊕ Im (P ∗ − P ) �
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Plans d’expérience pour modèles d’ordre un

3.1 Introduction

Ce chapitre concerne les plans d’expérience pour facteurs quantitatifs et pro-
pose une étude des dispositifs expérimentaux associés à l’un des modèles les
plus simple possible, en l’occurence le modèle polynomial de degré un.

L’hypothèse principale utilisée ici est que la loi de réponse f peut être
approchée par un polynôme du premier degré à m variables. Il est clair qu’un
tel modèle n’est pas d’une grande richesse mais son utilisation est cependant
intéressante dans certains cas. Par exemple, utiliser un tel polynôme peut
donner une bonne approximation de f lorsque le domaine expérimental est
petit. Un autre cas d’application classique est celui où l’on dispose, a priori,
d’un grand nombre de facteurs susceptibles d’agir sur la réponse observée.
L’utilisation d’un modèle plus riche est alors généralement impossible à cause
de la grande taille de celui-ci. C’est pourquoi il est courant de débuter une telle
étude par un modèle facile à manipuler afin de détecter quels sont les facteurs
qui semblent être les plus influents. On dit que l’on utilise des techniques de
criblage (ou screening avec la terminologie anglaise).

Ce chapitre est structuré de la manière suivante. Une première partie
aborde des généralités concernant les plans d’expérience pour modèle d’ordre
un et amène à la définition d’une classe de plans particulièrement simple
qualifiée de classe des plans usuels. Les plans classiques que sont les plans
factoriels complets, les plans factoriels fractionnaires et enfin les plans sim-
plexes sont présentés. Un exemple à vocation pédagogique est détaillé à la fin
de ce chapitre et les codes SAS des principaux traitements statistiques sont
donnés.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 3,
c© Springer-Verlag Berlin Heidelberg 2010
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3.2 Généralités

3.2.1 Variables codées

Les plans d’expérience considérés ici sont à facteurs quantitatifs. Ceci im-
plique que les variables étudiées vont souvent prendre leurs valeurs dans des
intervalles de R de la forme [a, b] . Les bornes a et b sont différentes d’un fac-
teur à l’autre ainsi que d’une étude à l’autre. Afin de résoudre ce problème
on va dans la suite systématiquement coder les variables utilisées dans le but
de ramener leurs variations à un intervalle centré de la forme [−Δ, Δ] . Etant
donnée une variable x à valeurs dans l’intervalle [a, b], la variable codée qui
lui est associée est x∗ à valeurs dans [−Δ, Δ] obtenue par la transformation
affine suivante :

x∗ = Δ

[
2x− (a + b)

(b − a)

]

.

Une telle transformation est intéressante si l’on utilise la même valeur de
Δ pour tous les facteurs de l’étude (ainsi toutes les variables prendront leurs
valeurs dans l’intervalle commun [−Δ, Δ]). Dans la plupart des cas la valeur
Δ = 1 est utilisée. Un facteur étant codé on appelle niveau haut la valeur
+Δ, niveau bas la valeur −Δ et niveau intermédiaire la valeur 0 (i.e. la valeur
obtenue en moyennant les deux valeurs extrêmes). Voici quelques avantages
de cette transformation :

1) il est possible d’uniformiser les constructions de plans d’expérience en ra-
menant le domaine expérimental à [−Δ, Δ]m, ou dumoins à une région centrée
sur l’origine du repère (en effet, on n’utilise pas toujours un domaine cubique
car il est parfois plus pratique de travailler dans un domaine expérimental à
géométrie sphérique),

2) la plupart des analyses mathématiques vont être simplifiées par l’utilisation
de deux niveaux (−Δ et Δ) ou de trois niveaux (−Δ, 0 et Δ) qui s’expriment
très simplement sous forme codée,

3) les effets des facteurs sont facilement comparables puisque sous forme codée
ils varient tous dans le même intervalle [−Δ, Δ] ,

4) les variables codées s’expriment sans unité.

Exemple

Supposons que la variable t (température d’entrée en ◦C) soit à valeurs
dans l’intervalle [60, 80] . On peut donc coder cette variable en utilisant
t∗ telle que :

t∗ =
t− 70

10
⇔ t = 10t∗ + 70.

On a alors les correspondances suivantes :

t 60◦C 70◦C 80◦C
t∗ −1 0 +1
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3.2.2 Modèle utilisé

Considérons ici un plan d’expérience D = {zu, u = 1, ..., n} à m facteurs quan-
titatifs avec donc zu ∈ R

m repérant les niveaux des facteurs pour l’expérience
u (1 ≤ u ≤ n). Supposons que ce plan d’expérience est mis en oeuvre sur
le domaine expérimental E ⊂ R

m. Utiliser un modèle polynomial d’ordre un
implique donc que l’on considère le modèle statistique Y (x) = f (x) + ε (x)
avec la loi de réponse donnée par :

∀ x ∈ E , f (x) = β0 +
m∑

i=1

βixi.

Pour un tel modèle, on dit que :
{

β0 (i.e. la constante polynomiale) est l’effet moyen général,
βi (i = 1, ..., m) est l’effet linéaire du i-ème facteur.

Le nombre de paramètres inconnus d’un tel modèle, à m facteurs, est donc :

p = m + 1.

Il sera souvent utile, dans la suite, de décomposer le vecteur β ∈ R
m+1 des

paramètres du modèle en tβ = (β0 | tβL) avec donc βL ∈ R
m vecteur des effets

linéaires. Concernant la matrice du modèle X ∈ M (n, p) elle est donnée par
(avec zu1, ..., zum les m coordonnées du point zu) :

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 z11 z12 . . . z1(m−1) z1m

1 z21 z22 . . . z2(m−1) z2m

...
...

...
...

...
1 z(n−1)1 z(n−1)2 . . . z(n−1)(m−1) z(n−1)m

1 zn1 zn2 . . . zn(m−1) znm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

La première colonne de X est donc uniquement constituée par les valeurs
1 (car elle est associée à β0) alors que les m colonnes suivantes (associées à
β1, ..., βm) comportent toutes les coordonnées des points du plan d’expérience
utilisé. On appelle matrice du plan d’expérience la matrice à n lignes
et m colonnes (notée par la suite D) constituée par les coordonnées, écrites
en ligne, des points du plan d’expérience. Il en résulte que, pour un modèle
d’ordre un, la matrice du modèle est donnée par (avec In le vecteur de R

n

constitué uniquement par les valeurs 1) :

X =
[

In D
]
.

3.2.3 Moments d’un plan d’expérience

La notion classique de moment des points d’un plan d’expérience va être d’une
grande utilité dans la suite afin de construire la matrice tXX .
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Définition 3.1. On appelle moment des points du plan d’expérience
D = {zu, u = 1, ..., n} tout réel obtenu par la relation suivante (avec
δ1, δ2, ..., δm ∈ N) :

[
1δ12δ2 ...mδm

]
=

1
n

n∑

u=1

zδ1
u1z

δ2
u2...z

δm
um

On dit que le moment est d’ordre δ = δ1 + ... + δm, pair si tous les δi sont
pairs, impair dans tous les autres cas.

Il en découle que pour un modèle linéaire polynomial, la matrice :

M = M (D) =
1
n

tXX

a pour éléments divers moments des points du plan utilisé, elle est couramment
appelée matrice des moments du plan d’expérience. En particulier, cette
matrice contient tous les moments jusqu’à l’ordre 2 dans le cas d’un polynôme
du premier degré et on a plus précisement :

M =
1
n

[ t
InIn

t
InD

tDIn
tDD

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 [1] [2] . . . [m]
[1]

[
12
]

[12] . . . [1m]
[2] [12]

[
22
]

. . . [2m]
...

...
...

...
[m] [1m] [2m] . . .

[
m2

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On qualifie de moments purs d’ordre 2 les moments de la forme
[
i2
]

alors que ceux de la forme [ij] (avec i 	= j) sont appelés moments croisés
d’ordre 2. La matrice M est primordiale dans le processus d’estimation au
sens des moindres carrés puisqu’elle apparâıt (à une constante près) dans les
équations normales (cf. proposition 2.5). Il est alors évident que l’on a tout
intérêt à construire un dispositif expérimental tel que la matrice M soit la plus
simple possible. Ceci amène à définir la notion classique de plan d’expérience
orthogonal :

Définition 3.2. Un plan d’expérience est qualifié d’orthogonal si et seule-
ment si la matrice tXX (ou de manière équivalente M) est une matrice
diagonale.

Il est évident que pour un modèle d’ordre un l’orthogonalité équivaut donc à
avoir tous les moments impairs jusqu’à l’ordre deux nuls.

3.2.4 Plans d’expérience usuels

Définissons ici une classe de plans d’expérience d’analyse aisée, incluant la
plupart des configurations classiques.
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Définition 3.3. Un plan d’expérience est qualifié d’usuel pour un modèle
linéaire d’ordre un si et seulement si :
1) tous ses moments impairs jusqu’à l’ordre deux sont nuls

(∀ i, j = 1, ..., m avec i 	= j , [i] = [ij] = 0),

2) tous ses moments purs d’ordre deux sont égaux (
[
12
]

= ... =
[
m2

]
).

Pour tout plan usuel D = {zu, u = 1, ..., n} il est donc possible de définir la
constante s2 par :

∀ i, = 1, ..., m , s2 = n
[
i2
]

=
n∑

u=1

z2ui.

Il découle de cette définition que tout plan usuel pour un modèle d’ordre un
est orthogonal (mais la réciproque est fausse). Les principales propriétés d’un
plan usuel sont :

Proposition 3.4. [�] Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre un.
1) L’estimateur des moindres carrés de β est donné par :

β̂0 = Y et β̂L =
1
s2

tDY.

2) Concernant la dispersion de cet estimateur, il vient :

Var β̂0 =
σ2

n
et ∀ i = 1, ..., m , Var β̂i =

σ2

s2
.

3) Les composantes de β̂ sont de plus non-corrélées entre elles.

Le résultat suivant est relatif aux propriétés de prédiction :

Proposition 3.5. [�] Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre un. En désignant par ‖.‖ la norme usuelle de R

m, la dispersion de la
réponse prédite en x = t (x1, ..., xm) ∈ E est donnée par :

Var Ŷ (x) = σ2

(
1
n

+
1
s2
‖x‖2

)

.

Cette dispersion ne dépend que de la distance entre x et le centre du domaine,
c’est pourquoi tout plan d’expérience usuel pour un modèle d’ordre un est
qualifié d’ isovariant par transformations orthogonales.

La propriété d’isovariance par transformations orthogonales est souvent ap-
pelée ”isovariance par rotations” dans la littérature francophone (et rotatabil-
ity en anglais). Cette terminologie est cependant inexacte car cette propriété
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traduit que pour toute transformation orthogonale T de R
m (i.e. conservant

les distances) alors :
Var Ŷ (Tx) = Var Ŷ (x) .

Attention au fait qu’une rotation est bien une transformation orthogonale
mais la réciproque est fausse. Cette propriété d’isovariance est très intéressante
car, quel que soit le nombre de facteurs considérés, il est alors possible
d’évaluer la qualité de la dispersion au sein du domaine expérimental en
fonction d’une seule inconnue (le rayon mesurant la distance au centre du
domaine).

3.3 Plans factoriels complets

3.3.1 Définition

L’objectif de cette partie est d’étudier un des dispositifs expérimentaux les
plus simple à construire. Pour 2 facteurs (exprimés sous forme codée) il con-
siste à réaliser les 4 expériences associées aux sommets du carré [−1, 1]2. Dans
le cas de 3 facteurs il s’agit des 8 sommets du cube [−1, 1]3. Ce procédé peut
être étendu au cas de m facteurs à l’aide de la définition suivante :

Définition 3.6. Pour m facteurs, on appelle plan d’expérience factoriel
complet toute configuration constituée des éléments suivants :

1) tous les sommets du cube [−1, 1]m ,

2) n0 réplications éventuelles du centre du domaine expérimental.

Les sommets du cube [−1, 1]m constituent la partie factorielle du plan alors
que les (éventuelles) réplications du centre du domaine constituent la par-
tie centrale. Du point de vue mathématique, la partie factorielle est donc
l’ensemble des points obtenus à l’aide des produits cartésiens suivants :

{−1, 1} × {−1, 1} × ...× {−1, 1} = {−1, 1}m
.

Le nombre d’expériences à réaliser avec un plan factoriel complet est alors :

n = 2m + n0.

Dans bon nombre d’ouvrages on désigne par plan d’expérience factoriel com-
plet la seule partie factorielle présentée ici (c’est-à-dire que n0 = 0). Cette
définition est plus générale car réaliser des réplications centrales peut s’avérer
d’un grand intérêt pratique (voir la suite). Un plan d’expérience factoriel com-
plet est entièrement déterminé par la connaissance du nombre de facteurs et
du nombre de réplications du centre du domaine, c’est pourquoi un tel plan
sera désigné dans la suite par la notation suivante (FD venant de la termi-
nologie anglaise Factorial Design) :
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FD (2m, n0) .

Afin d’uniformiser l’écriture de la matrice de ces plans d’expérience il est
possible de disposer leurs lignes suivant l’ordre standard (encore appelé
ordre de Yates). Il s’agit de respecter les conventions suivantes pour la partie
factorielle du plan :

1) la première ligne de D n’est constituée que des valeurs −1 (i.e. la première
expérience est réalisée en fixant tous les facteurs à leur niveau bas),

2) la première colonne de D est obtenue en changeant de signe toutes les
lignes. La seconde colonne est obtenue en changeant de signe toutes les 2
lignes, ... , la k-ième colonne de D est obtenue en changeant de signe toutes
les 2k−1 lignes.

Voici deux exemples d’illustration de cette convention.

Exemple

La matrice du plan FD
(
22, 3

)
est : La matrice du plan FD

(
23, 0

)
est :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1
1 −1

−1 1
1 1
0 0
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1
1 −1 −1

−1 1 −1
1 1 −1

−1 −1 1
1 −1 1

−1 1 1
1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Un important problème d’ordre pratique concerne l’ordre des expériences à
réaliser. En d’autres termes, faut-il suivre ou non en pratique l’ordre donné
par les lignes de la matrice D ? Les techniques relatives à ce problème ne
sont pas abordées en détails ici. Remarquons simplement que dans certaines
situations pouvant présenter un effet de dérive systématique (par exemple une
machine-outil se déréglant au fur et à mesure de son utilisation) il est plus
judicieux de randomiser l’ordre des expériences, c’est-à-dire d’effectuer les
expériences dans un ordre aléatoire (voir l’ouvrage de Sado et Sado [82] ou bien
Azäıs et Bardet [1]). Concernant maintenant les colonnes de D remarquons
aussi qu’en pratique il est recommandé de les associer à chacun des facteurs en
fonction de leur facilité ou non à changer de niveau. Supposons que l’exemple
précédent du plan FD

(
23, 0

)
est utilisé concrètement pour une expérience

de cuisson industrielle dépendant de trois facteurs qui sont : la durée de la
cuisson, la pression utilisée et la température du four industriel. Si on décide
de réaliser les expériences dans l’ordre donné par les lignes de la matrice D
alors on a certainement tout intérêt à affecter la troisième colonne de D à la
température du four industriel. En effet, il est généralement long et coûteux de
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faire varier la température d’un tel four entre ses niveaux haut et bas et donc
la troisième colonne de D permet ainsi de ne changer cette température qu’une
seule fois durant la totalité des expériences. Pour plus de détails concernant
ces techniques, associées à ce que l’on appelle la ”méthode Taguchi”, consulter
l’ouvrage de Pillet [72].

3.3.2 Propriétés

Détaillons les principales propriétés des plans d’expérience factoriels com-
plets. Remarquons tout d’abord qu’un des avantages de ce type de plans est
d’une part leur facilité de construction et d’autre part, comme il sera
démontré par la suite par la suite, leur facilité d’analyse. A contrario, le
grand désavantage de ces configurations est leur taille qui, bien évidemment,
devient rapidement beaucoup trop grande au vu du nombre de paramètres
inconnus du modèle (voir la table 3.1 du paragraphe 3.4.5). L’utilisation de
tels plans d’expérience est envisageable pour un petit nombre de facteurs mais
devient quasiment impossible lorsque ce nombre est grand (il faudrait, par ex-
emple, réaliser au moins 1024 expériences pour 10 facteurs alors que le modèle
considéré n’a que 11 paramètres inconnus).

Pour tout plan factoriel complet on a le résultat principal suivant :

Proposition 3.7. [�] Tout plan d’expérience factoriel complet est un plan
d’expérience usuel pour un modèle linéaire d’ordre un. Il vérifie de plus :

s2 = 2m.

Il en découle que toutes les propriétés des propositions 3.4 et 3.5 sont bien
vérifiées par tout plan factoriel complet. La forme de la matrice D entrâıne
de plus que les estimateurs des effets linéaires sont très facilement calculables.
On obtient en effet chacun d’eux en réalisant une somme pondérée des obser-
vations, les poids étant ceux de la colonne de D associée au facteur considéré.

Exemple

Reprenons le plan factoriel FD
(
23, 0

)
vu précédemment et désignons

les 8 réponses observées par Y1, ..., Y8 (Y1 correspondant à l’expérience
de la ligne 1 de D,... Y8 à celle de la ligne 8). La formule β̂L =
(1/s2) tDY se traduit alors ici simplement par :

β̂0 =
1
8

(Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8)

et les estimateurs des effets linéaires sont donnés par :
⎧
⎨

⎩

β̂1 = (−Y1 + Y2 − Y3 + Y4 − Y5 + Y6 − Y7 + Y8) /8
β̂2 = (−Y1 − Y2 + Y3 + Y4 − Y5 − Y6 + Y7 + Y8) /8
β̂3 = (−Y1 − Y2 − Y3 − Y4 + Y5 + Y6 + Y7 + Y8) /8

.
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3.3.3 Intérêt des réplications centrales

Il a été montré, au début de cette section, qu’un plan factoriel complet peut
éventuellement inclure n0 réplications du centre du domaine expérimental.
Cette option gène souvent les expérimentateurs qui n’en voient pas l’intérêt
ou qui ne savent pas quelle valeur donner à n0. Voici quelques conseils.

Avantages liés à l’utilisation de réplications centrales :

1) la qualité de l’estimation du paramètre β0 augmente en fonction du nom-
bre d’expériences au centre puisque Var β̂0 est décroissante en n0 (voir la
proposition 3.4),

2) la qualité des prédictions dans le domaine expérimental augmente en fonc-
tion du nombre d’expériences au centre puisque Var Ŷ (x) est décroissante en
n0 (voir la proposition 3.5),

3) réaliser vraiment des réplications au centre du domaine (i.e. n0 ≥ 2) permet
d’affiner l’analyse du modèle en déterminant les sommes des carrés dues au
manque d’ajustement et à l’erreur pure (voir 2.5.4).

Inconvénients liés à l’utilisation de réplications centrales :

1) utiliser n0 réplications du centre du domaine augmente la taille du plan
d’expérience. Ceci peut être un obstacle lorsque le plan considéré est déjà de
grande taille et que les expériences sont coûteuses,

2) réaliser des réplications centrales entrâıne que tous les facteurs vont devoir
prendre un troisième niveau (intermédiaire). Ceci peut s’avérer parfois difficile
à mettre en oeuvre de manière économique (cf. l’exemple précédent du four
industriel dont les variations de température sont très longues à obtenir). Il
résulte de tout ceci que si l’on décide d’utiliser des réplications centrales alors
il est conseillé d’en introduire un petit nombre (n0 = 2, 3 ou 4 par exemple).

Remarquons enfin que lorsque les répétitions ont lieu uniquement au centre
du domaine expérimental alors la quantité SSPE peut être déterminée de
manière explicite à l’aide du résultat suivant :

Proposition 3.8. [�] Soit un plan d’expérience dont les seules réplications
ont lieu au centre du domaine expérimental et sont répétées n0 ≥ 2 fois. Si
Y0 est le vecteur de ces n0 réponses et Y ∗

0 est ce même vecteur centré alors :

SSPE = tY ∗
0 Y ∗

0 = ‖Y ∗
0 ‖2 .

L’intérêt de ce résultat réside dans la simplicité des calculs à effectuer.
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Exemple

Supposons que les expériences ont été répétées n0 = 3 fois au centre
du domaine expérimental et que les réponses mesurées sont : 10, 14 et

Y0 =

⎡

⎣
10
14
9

⎤

⎦ d’où Y ∗
0 =

⎡

⎣
−1

3
−2

⎤

⎦ et donc SSPE = tY ∗
0 Y ∗

0 = 14.

Remarque. La démonstration de cette proposition ne fait pas intervenir le
type de modèle choisi. Le résultat énoncé ici sera donc toujours valable dans
les prochains chapitres où des modèles plus complexes seront étudiés.

3.4 Fractions régulières de plans factoriels

3.4.1 Exemple

L’utilisation d’un plan d’expérience factoriel complet peut être problématique
à cause de la taille parfois beaucoup trop grande de ce type de dispositif
expérimental. Une des solutions afin de résoudre ce problème consiste à ne
pas considérer le plan complet dans sa totalité (i.e. les 2m expériences) mais
seulement une fraction de celui-ci (par exemple 2m−1 expériences obtenues
en ne gardant que la moitié du plan, 2m−2 en n’en gardant que le quart, etc...).
La difficulté réside dans le choix des expériences constituant cette fraction du
plan initial afin de conserver des propriétés intéressantes (orthogonalité, plan
usuel, etc...).

Ce type de problématique a été abordée pour la première fois dans un
article dû à Tipett [101] puis développé et généralisé par de multiples autres
chercheurs. Citons les articles de Box et Hunter [13] et [14] posant les bases
relatives au cas traité ici, c’est-à-dire les fractions de plan factoriels à 2 niveaux
ainsi que l’ouvrage de Raktoe et al. [77].

Considérons le plan factoriel complet FD
(
24, 0

)
et supposons que les

16 expériences (données par la matrice D ci-dessous) sont trop coûteuses à
réaliser. Déterminons au préalable les vecteurs P1 et P2 qui sont respective-
ment égaux aux produits terme à terme des 4 colonnes de D puis des trois
premières. Une procédure utilisée afin de construire une fraction régulière
du plan complet consiste (par exemple) à ne conserver que les expériences
(i.e. les lignes de D) associées aux valeurs +1 des composantes du vecteur P1.

9. La réponse moyenne au centre est alors 11 et il vient :
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1
1 −1 −1 −1

−1 1 −1 −1
1 1 −1 −1

−1 −1 1 −1
1 −1 1 −1

−1 1 1 −1
1 1 1 −1

−1 −1 −1 1
1 −1 −1 1

−1 1 −1 1
1 1 −1 1

−1 −1 1 1
1 −1 1 1

−1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et P1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1
−1

1
−1

1
1

−1
−1

1
1

−1
1

−1
−1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, P2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1
1
1

−1
1

−1
−1

1
−1

1
1

−1
1

−1
−1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On retient ainsi les 8 expériences données par la matrice D1 :

D1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1

−1 1 1 −1
1 −1 −1 1

−1 1 −1 1
−1 −1 1 1

1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

De même il est possible de réduire encore la taille de la fraction régulière
en considérant à la fois les vecteurs P1 et P2. En gardant uniquement les
expériences associées aux composantes égales à +1 simultanément dans les
deux vecteurs on obtient ainsi la configuration de matrice D2 :

D2 =

⎡

⎢
⎢
⎣

1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

1 1 1 1

⎤

⎥
⎥
⎦ .

Les sections suivantes ont pour objectif de présenter les éléments théoriques
nécessaires à ce type de constructions.

3.4.2 Contrastes et produit d’Hadamard

Les constructions réalisées au paragraphe 3.4.1 ont utilisé le produit ”terme à
terme” des vecteurs colonne de la matrice D. Ceci se formalise algébriquement
à l’aide du produit d’Hadamard. On appelle produit d’Hadamard (noté �)
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l’opérateur qui à deux vecteurs u et v de R
q associe le vecteur u� v de R

q tel
que (si u = (ui)i=1,..,q et v = (vi)i=1,..,q) :

u� v = (uivi)i=1,..,q .

Le produit d’Hadamard définit donc une loi de composition interne sur R
q et

les propriétés suivantes sont immédiates (∀ u, v, w ∈ R
q) :

1) le produit d’Hadamard est associatif ((u� v)� w = u� (v � w)),

2) le produit d’Hadamard est commutatif (u� v = v � u),

3) Iq est élément neutre pour le produit d’Hadamard (u� Iq = Iq �u = u).

Considérons maintenant un vecteur quelconque u ∈ R
q. On vérifie facile-

ment qu’un tel vecteur se décompose de manière unique comme la somme
d’un vecteur à composantes égales avec un second vecteur à somme des com-
posantes nulle. Plus précisément si u ∈ R est la moyenne des composantes de
u, on a explicitement :

u = uIq + (u− uIq) .

On dit que l’on a ainsi décomposé u comme somme de deux contrastes de R
q.

De manière plus générale, nous proposons la définition suivante :

Définition 3.9. Soit u un vecteur élément d’un espace Eq. On dit que u est
un contraste de Eq (i.e. un élément de l’ensemble des contrastes C (Eq))
si et seulement si toutes ses composantes sont égales ou bien la somme de
ses composantes est nulle. Lorsque la somme des composantes est nulle le
contraste est dit non-unitaire.

Ce chapitre va nécessiter l’utilisation de contrastes de {−1, 1}q
. Un contraste

sur cet espace est soit un vecteur à composantes égales (il s’agit donc de Iq ou
−Iq) soit un vecteur dont la somme des composantes est nulle, c’est-à-dire un
vecteur ayant autant de composantes égales à +1 que de composantes égales
à −1 (q est donc forcément pair). Remarquons l’importante relation vérifiée
par les contrastes de {−1, 1}q :

∀ u ∈ C ({−1, 1}q) , u� u = Iq.

Par rapport à la matrice D du plan d’expérience, il vient :

Proposition 3.10. [�] Soit un plan d’expérience factoriel complet à m fac-
teurs, de matrice D, n’ayant pas de réplications centrales. Les colonnes de D

sont alors (par construction) des contrastes non-unitaires de {−1, 1}2m

.
De plus, le produit d’Hadamard de k colonnes distinctes de D (2 ≤ k ≤ m)
est aussi un contraste non-unitaire de {−1, 1}2m

.

Ce résultat assure, par exemple, que les vecteurs P1 et P2 du paragraphe 3.4.1
obtenus en réalisant le produit d’Hadamard de 4 et 3 colonnes de D sont bien
des contrastes non-unitaires de {−1, 1}16 .
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3.4.3 Générateurs d’une fraction régulière

Considérons dans la suite uniquement des plans factoriels complets sans
réplications centrales (n0 = 0) et identifions chacun des m facteurs au
contraste correspondant dans la matrice D. En d’autres termes, 1 désigne
dorénavant le contraste de D associée au facteur 1 (c’est-à-dire à la première
colonne de D), ... m le contraste de D associée au facteur m. Afin de simplifier
l’écriture des résultats à venir l’opérateur produit d’Hadamard va être noté
multiplicativement. On notera donc 12 au lieu de 1 � 2 ou encore 12 au lieu
de 1� 1. Remarquons que si l’on a plus de 9 facteurs on distinguera alors la
notation 12 (contraste associé au facteur 12) de 12 (produit d’Hadamard des
contrastes 1 et 2). Etant donné un contraste obtenu par produit d’Hadamard
de k colonnes distinctes de la matrice du plan factoriel complet D on dit
que ce contraste est de longueur (ou encore de poids) k. Avec les conven-
tions d’écriture utilisées ici les contrastes sont aussi parfois qualifiés dans la
littérature de mots composés de k lettres. Définissons tout d’abord la notion
de famille de contrastes indépendants :

Définition 3.11. Soit l’ensemble {C1, C2, ..., Cq} de q contrastes, chacun
d’eux étant soit une colonne de la matrice D d’un plan factoriel complet à
m facteurs soit le produit d’Hadamard de plusieurs colonnes. Cette famille de
contrastes est dite liée si et seulement si :

∃ i ∈ {1, ..., q} / Ci = �
j∈J

Cj avec J ⊂ {1, ..., q} − {i} .

Une famille qui n’est pas liée est une famille indépendante.

Illustrons ceci à l’aide d’un exemple :

Exemple

La famille {1, 2, 34} est clairement une famille de contrastes indépendants.
Par contre, la famille {12, 3, 34, 4} est liée car :

3 (34) = 324 = 4 puisque 32 = I.

Il a été montré au paragraphe 3.4.1 qu’une fraction régulière est définie par
la donnée d’un ou plusieurs contrastes. Par exemple, une fraction régulière a
été obtenue alors à partir des contrastes P1 et P2 (i.e. 1234 et 123 avec les
notations utilisées ici) en ne gardant que les expériences associées aux valeurs
+1 de ces deux contrastes. Il en résulte que les produits d’Hadamard 1234 et
123 sont égaux à l’indicatrice I dans la matrice D2 associée à cette fraction.
On résume ceci en écrivant :

I =1234 = 123.
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De manière plus générale, une fraction régulière de plan factoriel com-
plet est déterminée par la donnée d’une famille de q contrastes indépendants
{C1, C2, ..., Cq}, appelés générateurs. On note alors :

I =C1 = C2 = ... = Cq.

Remarque. Une fraction régulière a été définie ici en ne conservant que les
expériences associées aux valeurs +1 des générateurs. Ceci correspond à la
fraction régulière qualifiée de fraction principale. Il est cependant évident
que la même démarche peut être suivie en ne conservant que les expériences
associées aux coordonnées −1. Pour le premier exemple du paragraphe 3.4.1
on aurait donc pu considérer non pas la fraction régulière telle que I =1234
mais la fraction complémentaire définie par −I =1234. De même, le second
exemple aurait pu être traité en considérant l’une des 4 fractions régulières
définie par :

I =1234 = 123 ou I =1234 , − I =123,
−I =1234 = 123 ou −I =1234 , I =123.

Reprenons maintenant l’exemple de la fraction régulière engendrée par la
relation I =1234 = 123. Puisqu’on ne conserve que les expériences telles que
ces deux contrastes soient égaux à l’indicatrice, il vient :

(1234) (123) = 1222324 = 4 et de même (1234) (123) = I
2 = I.

En d’autres termes, les deux générateurs utilisés entrâınent que I =4 (i.e.
cette fraction régulière est aussi définie par I =4 = 123 ou bien I =4 = 1234).
Ce résultat avait déjà été constaté au paragraphe 3.4.1 puisque la quatrième
colonne de D2 est constituée uniquement par les valeurs +1. Algébriquement
l’ensemble des toutes les liaisons induites par les générateurs utilisés a une
structure de groupe, ce qui amène à la définition suivante :

Définition 3.12. On appelle groupe des contrastes de définition d’une
fraction régulière, noté G, le groupe engendré par ses q générateurs.

Connaissant l’ensemble des générateurs d’une fraction régulière comment
déterminer son groupe des contrastes de définition ?

Proposition 3.13. [�] Le groupe G engendré par les q contrastes de définition
d’une fraction régulière est un groupe fini constitué de 2q éléments.

Illustrons ceci à l’aide d’un exemple.

Exemple

Soit la fraction régulière du plan factoriel complet à m = 6 facteurs
définie par :

I =123456 = 12 = 56.
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On obtient alors les 23 éléments du groupe G en considérant l’élément
neutre I , les 3 constrastes de définition, tous leurs produits deux à
deux puis trois à trois (cf. démonstration de la proposition 3.13) :

G = {I, 123456, 12, 56, 3456, 1234, 1256, 34} .

Le groupe G donne la totalité des contrastes égaux à I. Si l’on multiplie chacun
des éléments de G par 1 on obtient ainsi tous les contrastes égaux à 1I =1.
Tous ces constrastes sont dits confondus avec (l’effet linéaire) 1. La liste
de tous les éléments confondus avec les effets linéaires constitue la table des
confusions d’effets. Attention au vocabulaire car si 1 = 23 alors l’effet
linéaire 1 est confondu avec (l’interaction) 23; dans bon nombre d’ouvrages
ces deux contrastes sont dits aliasés. Nous déconseillons l’usage de ce terme
provenant directement de l’expression anglaise alias structure.

Exemple

Pour l’exemple précédent, la table des confusions d’effets est :

1 = 23456 = 2 = 156 = 13456 = 234 = 256 = 134
2 = 13456 = 1 = 256 = 23456 = 134 = 156 = 234
3 = 12456 = 123 = 356 = 456 = 124 = 12356 = 4
4 = 12356 = 124 = 456 = 356 = 123 = 12456 = 3
5 = 12346 = 125 = 6 = 346 = 12345 = 126 = 345
6 = 12345 = 126 = 5 = 345 = 12346 = 125 = 346

En considérant l’exemple précédent, la lecture de la table des confusions
d’effets montre que (par exemple) les effets linéaires 1 et 2 sont confondus. En
d’autres termes les colonnes de la matrice X associées à ces deux effets sont
ici égales. Ceci va poser problème au niveau de l’analyse du modèle puisque
X n’est pas de plein rang. Afin de prévenir ce genre de situation on utilise
par la suite la notion de résolution d’une fraction régulière :

Définition 3.14. On appelle résolution d’une fraction régulière l’entier R
égal à la plus petite longueur des éléments de G (I exclu).

Il sera montré plus tard, lors de l’analyse statistique du modèle, que l’on a tout
intérêt à utiliser des fractions régulières ayant une résolution la plus grande
possible. Par convention, on écrit l’entier R en chiffres romains.

Exemple

La fraction régulière définie par I =123456 = 12 = 56 est de résolution
II. La fraction régulière définie par I =1234 = 123 est de résolution I
(car G = {I, 1234, 123, 4}).
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Terminons par l’énoncé d’un résultat primordial. La démonstration de ce
résultat n’est pas triviale et découle de l’interprétation algébrique d’une frac-
tion régulière ainsi que de la théorie de représentation linéaire des groupes
finis (voir l’annexe A à la fin de l’ouvrage).

Proposition 3.15. [� (Annexe A) ] Soit une fraction régulière de matrice D
d’un plan factoriel complet à m facteurs n’ayant pas de réplications centrales,
obtenue à l’aide de q générateurs. Alors :

1) elle est constituée de 2m−q expériences,
2) les colonnes de D sont des contrastes de {−1, 1}2m−q

et le produit
d’Hadamard de k colonnes distinctes de D (2 ≤ k ≤ m) est aussi un
contraste de {−1, 1}2m−q

.

Remarque. Ce résultat est similaire de celui énoncé à la proposition 3.10
pour les plans factoriels complets. La différence est que l’on peut obtenir des
contrastes et non uniquement des contrastes non-unitaires. La matrice d’une
fraction régulière peut contenir des colonnes égales à I ou −I (cf. matrice D2

du paragraphe 3.4.1).

Concernant les notations, on précisera dans la suite le nombre d’expériences
de la fraction régulière en notant I2m−q au lieu de I dans la définition des
générateurs. De même, il est courant de noter 2m−q

R lorsqu’on utilise une
fraction régulière d’un plan complet à m facteurs, obtenue à l’aide de q
générateurs, de résolution R.

Exemple

Pour m = 6 facteurs, la fraction régulière définie par I16=123 = 456
est donc une fraction régulière de type 24III.

3.4.4 Fractions régulières de résolution III

Revenons à l’analyse statistique des plans d’expérience étudiés. Dorénavant
une fraction régulière d’un plan factoriel complet désigne une fraction régulière
des sommets de {−1, 1}m plus n0 éventuelles réplications du centre du do-
maine. Lorsque la fraction régulière est définie par q générateurs, le nombre
d’expériences est :

n = 2m−q + n0.

Un tel plan d’expérience sera maintenant désigné par :

FD
(
2m−q

R , n0

)
ou bien FD

(
2m−q

R , n0, I =C1 = C2 = ... = Cq

)

si l’on souhaite préciser explicitement les générateurs. Dans le but d’estimer
tous les paramètres inconnus du modèle d’ordre un, le résultat suivant impose
l’utilisation de fractions régulières de résolution au moins III. Remarquons que
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ce résultat est intuitivement évident. En effet, utiliser une fraction régulière
de résolution I entrâıne qu’au moins une colonne de D va être égale à I ou −I.
De même, une fraction régulière de résolution II est telle qu’au moins deux
colonnes de D sont égales ou opposées. Ces deux situations entrâınent que
la matrice du modèle X n’est pas de plein rang et donc le modèle n’est pas
estimable dans sa totalité.

Proposition 3.16. [�] Toute fraction régulière de plan factoriel complet,
de résolution égale à III (ou plus), est un plan d’expérience usuel pour un
modèle linéaire d’ordre un. Il vérifie de plus :

s2 = 2m−q.

Ce résultat entrâıne que toutes les propriétés des plans d’expérience usuels
(voir le paragraphe 3.2.4) sont directement applicables aux fractions régulières
de résolution III (ou plus).

3.4.5 Taille des plans factoriels

Terminons cette étude des plans factoriels en proposant une comparaison
du nombre d’expériences à réaliser pour les plans complets et les fraction
régulières. Le tableau suivant présente pour m facteurs (avec 2 ≤ m ≤ 12)
le nombre de paramètres inconnus p du modèle d’ordre un, la taille du plan
factoriel complet dans la colonne FD, la taille minimale possible pour une frac-
tion régulière de résolution III dans la colonne Frac et enfin les générateurs
utilisés afin de construire une telle fraction (ce choix n’étant pas, bien en-
tendu, unique). Le symbole × est utilisé dans les cas où la construction est
impossible.

Table 3.1. Taille de différents plans factoriels.

p FD Frac Générateurs
2 facteurs 3 4 × ×
3 facteurs 4 8 4 123
4 facteurs 5 16 8 1234
5 facteurs 6 32 8 124,135
6 facteurs 7 64 8 124,135,236
7 facteurs 8 128 8 124,135,236,1237
8 facteurs 9 256 16 125,136,147,238
9 facteurs 10 512 16 125,136,147,238,249

10 facteurs 11 1024 16 125,136,147,238,249,3410
11 facteurs 12 2048 16 1235,137,1248,12349,1210,1311,2346
12 facteurs 13 4096 16 145,179,1310,1611,256,2411,2712,367

Lorsque le nombre d’expériences est égal au nombre de paramètres inconnus
(n = p) le plan d’expérience est qualifié de saturé (ou encore de minimal). Il
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n’est pas possible d’utiliser de configurations plus petites que celles-ci. C’est le
cas ici pour les fractions régulières à 3 et 7 facteurs. Les techniques permettant
d’arriver aux choix proposés pour les générateurs des différentes fractions
régulières seront présentées dans le chapitre suivant (paragraphe 4.5.4).

3.5 Plans simplexes

3.5.1 Définition

La section 3.4 a montré que l’utilisation de fractions régulières de résolution
III peut s’avérer très profitable afin d’analyser un modèle d’ordre un. En
effet, les tailles des plans d’expérience obtenus alors sont raisonnables (voir la
table 3.1). Il existe cependant des situations où les expériences sont tellement
coûteuses ou longues à réaliser que l’on cherche systématiquement à obtenir
des configurations saturées. Un tel cas se présentant, par exemple, pour 8
facteurs peut être problématique si l’on utilise un plan factoriel puisqu’il faut
réaliser un minimum de 16 expériences alors qu’il n’y a que 9 paramètres
inconnus dans le modèle postulé.

Le but de cette section est la présentation et l’analyse d’une classe de plans
d’expérience, appelés plans simplexes, ayant pour principale propriété d’être
toujours saturés pour l’analyse du modèle d’ordre un. La dénomination de ces
plans d’expérience provient du fait que, géométriquement, ils correspondent
aux sommets d’un simplexe de R

m, c’est-à-dire d’une figure ayant m + 1
sommets, régulière dans le sens où l’angle entre deux sommets (par rapport
à l’origine du domaine) est constant avec un cosinus égal à −1/m (voir Box
[9]). Pour m = 2 facteurs il s’agit des sommets d’un triangle équilatéral, pour
m = 3 facteurs des sommets d’un tétraèdre régulier, etc... Voici une définition
très générale :

Définition 3.17. Un plan d’expérience est un plan simplexe pour m fac-
teurs si et seulement si n = m + 1 et :

1√
m + 1

X est une matrice orthogonale.

En d’autres termes, la matrice
(
1/
√

m + 1
)
X est une matrice carrée d’ordre

n telle que sa transposée est égale à son inverse. On vérifie aisément que si xs

et xt sont deux points distincts d’un plan simplexe pour m facteurs, alors :

‖xs‖2 = ‖xt‖2 = m et (xs | xt) = −1.

Ces résultats sont bien en accord avec la définition des plans simplexes donnée
par Box [9] en terme d’angle entre deux sommets puisque (avec θ cet angle) :
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cos θ =
(xs | xt)
‖xs‖ ‖xs‖ =

−1
m

.

Géométriquement, les plans simplexes sont donc constitués d’expériences à
la surface de la sphère centrée S (

√
m) de rayon

√
m. Notons que les plans

factoriels sont, eux aussi, constitués d’expériences à la surface de cette même
sphère.

Concernant la construction de ce type de plans on trouve principalement
dans la littérature les trois grandes classes suivantes.

1) Plans simplexes classiques. On désigne par classique ce type de con-
struction qui est la plus courante. La matrice D vérifie alors la propriété
suivante (voir Khuri et Cornell [56]) : lorsque sa première ligne est supprimée
on obtient une matrice carrée triangulaire supérieure. Afin que la configura-
tion obtenue soit un plan simplexe, on vérifie aisément que D est définie par
le terme général Dij suivant :

Dij =

⎧
⎪⎨

⎪⎩

√
(m + 1) /(j (j + 1)) si i ≤ j,

−j
√

(m + 1) /(j (j + 1)) si i = j + 1,

0 sinon.

L’exemple suivant correspond à m = 4 facteurs :

D =

⎡

⎢
⎢
⎢
⎢
⎣

√
5/2

√
5/6

√
5/12

√
5/20

−√5/2
√

5/6
√

5/12
√

5/20
0 −2

√
5/6

√
5/12

√
5/20

0 0 −3
√

5/12
√

5/20
0 0 0 −4

√
5/20

⎤

⎥
⎥
⎥
⎥
⎦

.

2) Plans simplexes cycliques. Il est aussi possible de construire des plans
simplexe en considérant une matrice D de la forme :

D =
[

αt
Im

Circ (e1, e2, ..., em)

]

où Circ (e1, e2, ..., em) désigne une matrice circulante c’est-à-dire ici une ma-
trice carrée d’ordre m dont les lignes sont obtenues par permutations circu-
laires de la première ligne précisée entre parenthèses (voir Davis [28]). Le
problème principal lié à ce type de construction est qu’il n’existe pas de
méthode systématique afin de déterminer une telle matrice circulante. On
pourra se référer à Crosier [26] qui a proposé des constructions pour un nom-
bre de facteurs compris entre 3 et 13 (en prenant chaque fois α = −1). Voici
celle proposée pour m = 4 facteurs :



96 3 Plans d’expérience pour modèles d’ordre un

D =

⎡

⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1
0.309 0.691 1.309 −1.309
0.691 1.309 −1.309 0.309
1.309 −1.309 0.309 0.691

−1.309 0.309 0.691 1.309

⎤

⎥
⎥
⎥
⎥
⎦

.

3) Plans simplexes à trois niveaux. Considérons maintenant l’approche
proposée par Mee [64] concernant la construction de plans simplexes à trois
niveaux. Comme le nom l’indique l’objectif est de proposer des plans simplexes
simples dans le sens où ils ne font appel qu’à trois niveaux distincts pour la
totalité des facteurs considérés. Pour cela, considérons une matrice D telle
que :

D =
[

αt
Im

βIm + γJm

]

.

En d’autres termes D est constituée d’une première ligne constante (appelée
parfois ligne de base) et d’une matrice carrée complètement symétrique βIm +
γJm (i.e. d’une matrice constituée d’une seule valeur diagonale β +γ et d’une
seule valeur extra-diagonale γ). On vérifie sans grande diffculté qu’un plan
d’expérience de de cette forme est bien un plan simplexe si et seulement si :

⎧
⎨

⎩

α = 1
β =

√
m + 1

γ =
(−1−√

m + 1
)
/m

ou

⎧
⎨

⎩

α = −1
β =

√
m + 1

γ =
(
1−√

m + 1
)
/m

.

Voici la configuration proposée pour m = 4 facteurs (associée à la valeur
α = −1) :

D =
1
4

⎡

⎢
⎢
⎢
⎢
⎣

−4 −4 −4 −4
1 + 3

√
5 1−√

5 1−√
5 1−√

5
1−√

5 1 + 3
√

5 1−√
5 1−√

5
1−√

5 1−√
5 1 + 3

√
5 1−√

5
1−√

5 1−√
5 1−√

5 1 + 3
√

5

⎤

⎥
⎥
⎥
⎥
⎦

.

3.5.2 Propriétés

Concernant l’analyse d’un plan simplexe, il peut s’avérer parfois intéressant de
rajouter un petit nombre de réplications du centre du domaine expérimental.
Un plan simplexe désigne donc ici un des plans vu précédemment plus n0

éventuelles réplications du centre du domaine. Le nombre total d’expériences
est donc :

n = m + 1 + n0.

Un tel plan d’expérience sera désormais désigné par la notation SD (m, n0)
pour Simplex Design. D’après la définition 3.17, pour tout plan simplexe la
matrice

(
1/
√

m + 1
)
X est orthogonale (rajouter des réplications centrales ne

change en rien cette propriété). Il en découle que :
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tXX = (m + 1) In.

Le résultat suivant est donc immédiat :

Proposition 3.18. Tout plan simplexe est un plan d’expérience usuel pour
un modèle linéaire d’ordre un. Il vérifie de plus :

s2 = m + 1.

Ce résultat entrâıne que les propriétés des plans d’expérience usuels (voir le
paragraphe 3.2.4) sont directement applicables aux plans simplexes.

3.6 Plans de Plackett et Burman

3.6.1 Définition

Les fractions régulières de plans factoriels complets présentent l’avantage de
n’utiliser que deux niveaux distincts par facteurs (hors éventuelles expériences
centrales) mais l’inconvénient de ne pas toujours être des configurations
saturées. Réciproquement les plans simplexes sont systématiquement saturés
mais nécessitent généralement l’utilisation de plus de deux niveaux par fac-
teur. L’objectif de Plackett et Burman [73] a été alors de proposer des plans
d’expérience ”optimaux” dans le sens où ces deux propriétés sont vérifiées si-
multanément. Plus précisemment ces configurations sont définies ci-dessous.

Définition 3.19. Un plan d’expérience est dit de Plackett et Burman
pour m facteurs si et seulement si il s’agit d’une configuration saturée pour le
modèle d’ordre un (i.e. n = m+1) telle que la matrice du modèle X ne contient
que les niveaux −1 et +1 avec ses colonnes deux-à-deux orthogonales.

Ce type de plan d’expérience est d’un grand intérêt pratique puisqu’il
combine à la fois nombre minimal d’expériences (donc coût optimal) et nom-
bre minimal de niveaux (donc facilité dans les changements de niveaux des
différents facteurs).

D’un point de vue théorique Plackett et Burman [73] ont adapté la
théorie des matrices d’Hadamard (matrices à colonnes orthogonales composées
uniquement des valeurs ±1) afin de construire ce type de plans d’expérience. Il
en découle tout d’abord que ce type de construction n’est possible que lorsque
le nombre de facteurs vérifie :

m = 3 mod4

(le nombre de facteurs doit donc être égal à 3, 7, 11, ...). Afin de construire, de
manière générale, la matrice d’un plan de Plackett et Burman il est possible
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d’utiliser la technique suivante. La première ligne de la matrice du plan est
constituée (arbitrairement) par uniquement les valeurs −1. Les autres lignes
sont ensuite obtenues à partir des permutations circulaires d’une ”ligne de
base” (e1, e2, ..., em) telle que : (m + 1) /2 valeurs des ei sont égales à 1 et
(m− 1) /2 valeurs des ei sont égales à −1. Voici la matrice D1 d’un Plan de
Plackett et Burman ainsi construit pour m = 3 facteurs :

D1 =

⎡

⎢
⎢
⎣

−1 −1 −1
1 1 −1

−1 1 1
1 −1 1

⎤

⎥
⎥
⎦

Matrice D2 d’un plan de Plackett et Burman pour m = 7 facteurs :

D2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1 −1 −1 −1
1 1 1 −1 1 −1 −1

−1 1 1 1 −1 1 −1
−1 −1 1 1 1 −1 1

1 −1 −1 1 1 1 −1
−1 1 −1 −1 1 1 1

1 −1 1 −1 −1 1 1
1 1 −1 1 −1 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Matrice D3 d’un plan de Plackett et Burman pour m = 11 facteurs :

D3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 −1 −1 1 1 1 −1 1
1 1 −1 1 −1 −1 −1 1 1 1 −1

−1 1 1 −1 1 −1 −1 −1 1 1 1
1 −1 1 1 −1 1 −1 −1 −1 1 1
1 1 −1 1 1 −1 1 −1 −1 −1 1
1 1 1 −1 1 1 −1 1 −1 −1 −1

−1 1 1 1 −1 1 1 −1 1 −1 −1
−1 −1 1 1 1 −1 1 1 −1 1 −1
−1 −1 −1 1 1 1 −1 1 1 −1 1

1 −1 −1 −1 1 1 1 −1 1 1 −1
−1 1 −1 −1 −1 1 1 1 −1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Remarquons que par rapport aux plans d’expérience vu précedemment un plan
de Plackett et Burman n’est autre qu’un plan d’expérience simplexe cyclique
(voir le paragraphe 3.5.1) obtenu dans le cas particulier où les permutations
circulaires se font à partir d’une ligne constituée uniquement des valeurs ±1.
Remarquons enfin que les configurations de matrices D1 et D2 définissent aussi
des fractions régulières de plans factoriels. En effet, D1 est aussi la matrice
du plan :

FD
(
23−1
III , 0,−I4=123

)
.
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De même, la matrice D2 est aussi la matrice du plan :

FD
(
27−4
III , 0,−I8=126=134=237=245

)
.

On montre que lorsque le nombre d’expériences utilisées (n = m + 1) est égal
à une puissance de 2 alors le plan de Plackett et Burman est simultanément
un plan simplexe et une fraction régulière de plan factoriel (voir Khuri et
Cornell [56]). Cette identification à une fraction régulière est bien entendu
impossible dans tous les autres cas de figure. Ce sont surtout ces cas là qui
présentent un intérêt en pratique, c’est-à-dire les situations où le nombre de
facteurs m = 3 mod4 est tel que m + 1 n’est pas une puissance de 2 (m = 11,
19, 23, etc...). Par rapports aux exemples présentés ci-dessus le cas où m = 11
facteurs interviennent permet bien d’obtenir une configuration de plus petite
taille (en n = 12 expériences) que l’alternative d’une fraction régulière de
résolution III de plan factoriel complet (en n = 16 expériences).

3.6.2 Propriétés

Concernant l’analyse, il peut s’avérer parfois intéressant de rajouter un pe-
tit nombre de réplications du centre du domaine expérimental. Un plan de
Plackett et Burman désigne donc ici un des plans vu précédemment plus n0

éventuelles réplications du centre du domaine. Le nombre total d’expériences
est donc :

n = m + 1 + n0.

Un tel plan sera désormais désigné par la notation PB (m, n0) . D’après la
définition 3.19 pour tout plan de Plackett et Burman le produit scalaire de
deux colonnes distinctes de la matrice X est toujours nul (orthogonalité) et
la norme au carré d’une des colonnes de X est égale à m + 1 (puisque les
élements de X sont ±1). Il en découle que :

tXX = (m + 1) In.

(en d’autres termes la matrice
(
1/
√

m + 1
)
X est orthogonale comme c’était

le cas pour les plans simplexes). Le résultat suivant est donc immédiat :

Proposition 3.20. Tout plan de Plackett et Burman est un plan
d’expérience usuel pour un modèle linéaire d’ordre un. Il vérifie de plus :

s2 = m + 1.

3.7 Exemple d’application

Terminons ce chapitre par un exemple d’application pratique. Considérons une
expérience agronomique dont l’objectif est d’obtenir une variété de légumes
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la plus fertile possible. Une expérience est donc ici la culture de plants de ces
légumes sous serre et la réponse est la masse moyenne des légumes récoltés
par unité de surface. Les agronomes pensent que 8 facteurs sont sucepti-
bles d’intervenir dans ce phénomène et ils souhaitent vérifier ce qu’il en est
réellement à l’aide d’une démarche expérimentale. Ces facteurs peuvent facile-
ment être fixés en pratique, ils sont donnés dans le tableau suivant avec les
valeurs minimales et maximales qu’il est possible d’utiliser.

Minimum Maximum
Hygrométrie (en %) 55 85
Eclairement artificiel (en h) 1.5 4.5
Température (en ◦C) 17.5 32.5
Taux de CO2 (en %) 1.5 4.5
Fertilisant 1 (en g/m2) 150 450
Fertilisant 2 (en g/m2) 75 225
Fertilisant 3 (en g/m2) 55 85
Fertilisant 4 (en g/m2) 175 325

Les expériences étant ici longues à réaliser un plan d’expérience de petite taille,
en l’occurence un plan simplexe, va être utilisé. Supposons de plus qu’il est
possible de réaliser 3 réplications du centre du domaine expérimental. La mise
en oeuvre d’un plan simplexe cyclique entrâıne la réalisation de 12 expériences
selon la matrice D donnée ci-après (voir Crosier [26]).

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1 −1 −1 −1 −1
−0.5 1. 5 0.5 1. 5 −1. 5 −0.5 0.5 −0.5
−0.5 −0.5 1. 5 0.5 1. 5 −1. 5 −0.5 0.5

0.5 −0.5 −0.5 1. 5 0.5 1. 5 −1. 5 −0.5
−0.5 0.5 −0.5 −0.5 1. 5 0.5 1. 5 −1. 5
−1. 5 −0.5 0.5 −0.5 −0.5 1. 5 0.5 1. 5

1. 5 −1. 5 −0.5 0.5 −0.5 −0.5 1. 5 0.5
0.5 1. 5 −1. 5 −0.5 0.5 −0.5 −0.5 1. 5
1. 5 0.5 1. 5 −1. 5 −0.5 0.5 −0.5 −0.5

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Remarquons que ce plan d’expérience est tel que chacun des facteurs est à
valeurs dans l’intervalle [−1.5, 1.5] . Le lien entre variable codée et variable
initiale à valeurs dans [a, b] est donc donné par (voir le paragraphe 3.2.1) :

x∗ = 1.5
[
2x− (a + b)

(b− a)

]

.

Voici alors le protocole expérimental (i.e. la liste des expériences à ef-
fectuer par le technicien, exprimées avec leurs unités initiales). Le vecteur Y ,
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c’est-à-dire les différentes valeurs des réponses (en grammes) mesurées, est
aussi donné.

Hyg Ecl Tem CO2 Fe 1 Fe 2 Fe 3 Fe 4
Exp 1 60 2 20 2 200 100 60 200
Exp 2 65 4.5 27.5 4.5 150 125 75 225
Exp 3 65 2.5 32.5 3.5 450 75 65 275
Exp 4 75 2.5 22.5 4.5 350 225 55 225
Exp 5 65 3.5 22.5 2.5 450 175 85 175
Exp 6 55 2.5 27.5 2.5 250 225 75 325
Exp 7 85 1.5 22.5 3.5 250 125 85 275
Exp 8 75 4.5 17.5 2.5 350 125 65 325
Exp 9 85 3.5 32.5 1.5 250 175 65 225
Exp 10 70 3 25 3 300 150 70 250
Exp 11 70 3 25 3 300 150 70 250
Exp 12 70 3 25 3 300 150 70 250

Y
172
162
139
201
150
297
209
382
87
196
188
206

Un exemple de programme SAS permettant d’entrer ce plan d’expérience
(dans la table SAS dénommée ”Donnees”) ainsi que le vecteur des réponses
est :

Data Donnees;
Input hyg ecl tem co2 fe1 fe2 fe3 fe4 y;
Cards;
-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 172
-0.5 1.5 0.5 1.5 -1.5 -0.5 0.5 -0.5 162

...
expérience i et réponse i

...
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 188
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 206

Run;

Le tableau d’analyse de la variance pour le modèle considéré est alors :

Source ddl S. carrés M. Carrés St. Test Proba.
Régression 8 63833 7979.1 128.7 0.0010 ••◦

Erreur 3 186.0 62.0 0.287 0.6458 ◦◦◦

Pure. 2 162 .7 81 .3
Ajus. 1 23 .3 23 .3

Total 11 64019

Ces résultats peuvent être obtenus à l’aide de la procédure de SAS :
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Proc Reg data=Donnees;
Model y = hyg ecl tem co2 fe1 fe2 fe3 fe4;

Run;

Cette procédure effectue la régresssion linéaire la plus simple proposée par
SAS. Le tableau d’analyse de la variance est obtenu en sortie dans la
première partie des résultats (”Analyse de la variance”). Attention au fait
que cette procédure ne permet pas de décomposer la quantité SSE à l’aide
des réplications réalisées. Ceci peut être cependant rajouté à l’aide d’un calcul
très simple puisque les répétitions n’ont lieu qu’au centre du domaine (voir la
proposition 3.8).

Concernant les résultats de ce tableau, on constate que le modèle utilisé
ici est licite puisqu’il est possible de rejeter raisonnablement l’hypothèse ”tous
les paramètres du modèle (sauf β0) sont nuls”. Ce modèle semble de plus bien
ajusté puisqu’on obtient (valeur ”R-Square” de la sortie SAS) :

R2 = 1− SSE

SST
� 0.997.

Prenons cependant garde au fait que l’on utilise ici un plan d’expérience de
petite taille (12 expériences, dont 3 répétées) ce qui favorise l’obtention d’un
coefficient R2 élevé. En effet, dans le cas limite où l’on aurait utilisé un plan
d’expérience saturé (par exemple en supprimant les expériences au centre) le
problème aurait alors été de faire passer au mieux un modèle à 9 paramètres
inconnus par 9 points expérimentaux. Ceci est bien entendu toujours possible
(sauf cas particulier amenant à une singularité) car l’ajustement conduit à
un système linéaire de 9 équations à 9 inconnues. Le modèle ajusté au sens
des moindres carrés passe alors exactement par tous les points expérimentaux
donc R2 = 1 (et ceci quelles que soient les valeurs des réponses observées).
Un estimateur sans biais de la variance des résidus σ2 est maintenant donné
par (valeur ”Root MSE” de la sortie SAS):

σ̂2 = MSE = 62 (donc σ̂ � 7.87).

Pour la décomposition de la somme des carrés due à l’erreur on constate
que le modèle utilisé est bien ajusté en moyenne puisqu’il n’est pas possible
de rejeter cette hypothèse à un niveau significatif. Réalisons maintenant une
analyse plus fine en estimant chacun des paramètres du modèle et en testant
leur significativité. Ceci donne le tableau ci-après (voir le paragraphe 3.2.4
pour les formules explicites) :
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Param. Estimat. Ec. type St. Test Proba.
β0 199.1 2.273 87.58 0.0001 •••

β1 −11.94 2.625 −4.55 0.0199 •◦◦

β2 14.50 2.625 5.52 0.0117 •◦◦

β3 −50.72 2.625 −19.32 0.0003 •••

β4 0.167 2.625 0.06 0.9534 ◦◦◦

β5 1.500 2.625 0.57 0.6077 ◦◦◦

β6 12.06 2.625 4.59 0.0194 •◦◦

β7 −1.056 2.625 −0.40 0.7145 ◦◦◦

β8 63.39 2.625 24.15 0.0002 •••

Ces résultats figurent en deuxième partie de la sortie SAS de la procédure
REG présentée précédemment (”Résultats estimés des paramètres”). Ces
résultats sont parfois représentés graphiquement sous forme d’un histogramme
appelé graphe des effets linéaires (voir la figure 3.1) ou encore diagramme
de Pareto.

Fig. 3.1. Graphe des effets linéaires.

Un tel graphe présente autant de barres horizontales qu’il y a d’effets
linéaires étudiés et la barre associée au i-ème effet linéaire a pour longueur
|β̂i|. Les effets linéaires des facteurs sont ici représentés en les classant des plus
importants vers les moins importants (i.e. de β8 vers β4). La droite verticale
ayant pour abscisse 8.4 correspond à la valeur que doit dépasser |β̂i| pour
que le i-ème effet linéaire soit jugé significatif avec un niveau égal au moins à
5% (voir le paragraphe 2.6.4). Remarquons que l’utilisation de cette référence
commune est ici possible car le plan est usuel donc tous les estimateurs β̂i

ont même dispersion (égale à σ2/s2 d’après la proposition 3.4) et obéissent
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donc à la même règle concernant l’acceptation ou non de leur significativité.
Remarquons enfin que, d’après le modèle utilisé, la longueur de chacune des
barres s’interprète en pratique comme la variation de la réponse prédite (en
valeur absolue) obtenue lorsque le facteur correspondant varie d’une unité
(sous forme codée). En effet, la réponse moyenne prédite au point x est donnée
par :

Ŷ (x) = β̂0 +
m∑

i=1

β̂ixi.

Supposons que seul le facteur j varie d’une unité (i.e. il passe du niveau
xj au niveau xj ± 1). En notant symboliquement x±j le point ainsi obtenu il
vient :

Ŷ (x±j) = β̂0 +
∑

i�=j

β̂ixi + β̂j (xj ± 1) donc
∣
∣
∣Ŷ (x±j)− Ŷ (xj)

∣
∣
∣ =

∣
∣
∣β̂j

∣
∣
∣ .

Comparons maintenant les valeurs des réponses observées (Y ) avec les réponses
moyennes prédites par le modèle (Ŷ = Xβ̂). Ces résultats sont résumés dans le
tableau ci-dessous avec l’erreur associée à ces différentes prédictions (l’écart-
type).

Y obs. Y pred. Ec. type
Exp 1 172 171.2 7.764
Exp 2 162 161.2 7.764
Exp 3 139 138.2 7.764
Exp 4 201 200.2 7.764
Exp 5 150 149.2 7.764
Exp 6 297 296.2 7.764
Exp 7 209 208.2 7.764
Exp 8 382 381.2 7.764
Exp 9 87 86.2 7.764
Exp 10 196 199.1 2.273
Exp 11 188 199.1 2.273
Exp 12 206 199.1 2.273

Ces valeurs peuvent être directement obtenues à l’aide du programme SAS
suivant (l’option ”clm” permet d’obtenir les valeurs Ŷi, leurs dispersions ainsi
qu’un intervalle de confiance) :

Proc Reg data=Donnees;
Model y = hyg ecl tem co2 fe1 fe2 fe3 fe4 / clm;

Run;

On constate que les réponses observées et prédites par le modèle sont
toujours très proches, ceci est en accord avec la valeur élevée de R2 trouvée
précédemment. Rappelons que les dispersions associées aux prédictions
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découlent de la formule suivante (puisque le plan d’expérience utilisé est iso-
variant par transformations orthogonales, voir la proposition 3.5) :

Var Ŷ (x) = σ2

(
1
n

+
1
s2
‖x‖2

)

� 31
6

+
62
9
‖x‖2 .

Cette formule montre bien que les trois réplications centrales sont associées
à trois variances identiques, obtenues en posant ‖x‖ = 0. De même, il a été
montré au paragraphe 3.5.1 que toutes les expériences d’un plan simplexe sont
situées à la surface de la sphère centrée de rayon

√
m. C’est pourquoi les 9

premières expériences sont toutes associées à une dispersion identique, donnée
par :

Var Ŷ (x) � 31
6

+
496
9

� 60.278 puisque ‖x‖2 = 8.

Conclusion

Les résultats précédents ont montré que le modèle ajusté ici est de bonne
qualité et donne les informations suivantes concernant les effets linéaires de
chacun des facteurs considérés :

1) l’effet moyen général ainsi que les effets linéaires de la température et du
fertilisant 4 sont très hautement significatifs,

2) les effets linéaires de l’éclairement, de l’hygrométrie ainsi que du fertilisant
2 ont un effet significatif sur le phénomène étudié (moins important que
pour le cas précédent mais non-négligeable),

3) les effets linéaires associés au taux de CO2, au fertilisant 1 ainsi qu’au
fertilisant 3 ne sont pas significatifs dans le modèle postulé.

En tenant compte maintenant du signe de chacun des estimateurs des effets
linéaires obtenus il est possible de résumer tout ceci dans le tableau suivant
traduisant l’effet de chaque facteur sur la réponse. Plus précisément, ce tableau
rend compte de l’effet sur la réponse moyenne prédite lorsque chacun des
facteurs passe du niveau bas −1 au niveau haut +1. La conséquence peut alors
être négligeable (� 0), une augmentation (+), une très forte augmentation
(++), une diminution (−) ou encore une très forte diminution (−−).

Hyg. Ecl. Tem. CO2 Fe 1 Fe 2 Fe 3 Fe 4
Effet sur Y − + −− � 0 � 0 + � 0 ++

Ce tableau indique donc que, d’après le modèle ajusté, il est nécessaire de
réaliser les opérations suivantes si l’on souhaite augmenter la masse moyenne
de légumes récoltés : fixer la température à un niveau bas et le fertilsant 4 à
un niveau haut (conditions primordiales), puis fixer l’hygrométrie à un niveau
bas puis l’éclairement ainsi que le fertilisant 2 à un niveau haut. Les trois
derniers facteurs étant sans effet notable sur la réponse peuvent être fixés de
n’importe quelle manière (voire non-contrôlés).
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3.8 Résumé

Voici un résumé des principales configurations étudiées dans ce chapitre. Pour
un nombre de facteurs variant entre 2 et 12 (associés à un nombre p de
paramètres inconnus à estimer) le tableau suivant présente le nombre min-
imal d’expériences à réaliser pour différents plans d’expérience. On considère
plus précisemment :

1) les plans factoriels complets (de type FD (2m, 0)),

2) les plans factoriels fractionnaires de résolution III (de type FD
(
2m−q
III , 0

)
),

3) les plans simplexes (de type SD (m, 0)).

3) les plans de Plackett et Burman (de type PB (m, 0)).

La taille relative δ pour chaque plan d’expérience figure aussi entre par-
enthèses, il s’agit de sa taille ramenée au nombre d’inconnues du modèle :

δ =
n

p
=

n

m + 1
.

Par construction tous les plans simplexes ainsi que tous les plans de Plackett
et Burman sont saturés (δ = 1) dès lors qu’ils n’intègrent aucune expérience
centrale.

p Fact. Comp. Fact. Frac. Simplexe Plac. Bur.
2 facteurs 3 4 (1.33) × 3 (1.00) ×
3 facteurs 4 8 (2.00) 4 (1.00) 4 (1.00) 4 (1.00)

4 facteurs 5 16 (3.20) 8 (1.60) 5 (1.00) ×
5 facteurs 6 32 (5.33) 8 (1.33) 6 (1.00) ×
6 facteurs 7 64 (9.14) 8 (1.14) 7 (1.00) ×
7 facteurs 8 128 (16.0) 8 (1.00) 8 (1.00) 8 (1.00)

8 facteurs 9 256 (28.4) 16 (1.78) 9 (1.00) ×
9 facteurs 10 512 (51.2) 16 (1.60) 10 (1.00) ×

10 facteurs 11 1024 (93.1) 16 (1.45) 11 (1.00) ×
11 facteurs 12 2048 (171.) 16 (1.33) 12 (1.00) 12 (1.00)

12 facteurs 13 4096 (315.) 16 (1.23) 13 (1.00) ×
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3.9 (Compléments) Démonstrations

Proposition 3.4. Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre un.
1) L’estimateur des moindres carrés de β est donné par :

β̂0 = Y et β̂L =
1
s2

tDY.

2) Concernant la dispersion de cet estimateur, il vient :

Var β̂0 =
σ2

n
et ∀ i = 1, ..., m , Var β̂i =

σ2

s2
.

3) Les composantes de β̂ sont de plus non-corrélées entre elles.

Démonstration. Pour tout plan d’expérience usuel, par hypothèse, tXX est
une matrice diagonale donnée explicitement par :

tXX = diag (n, s2, ..., s2) .

En notant tβ = (β0 | tβL) et X =
[
In D

]
on obtient alors pour β̂ :

β̂ =
(
tXX

)−1 tXY = diag
(

1
n

,
1
s2

, ...,
1
s2

)[
t
In

tD

]

Y =
(

(1/n)t
InY

(1/s2) tDY

)

.

On en déduit le résultat énoncé en 1. Concernant la dispersion de β̂, il vient :

V

(
β̂
)

= σ2
(
tXX

)−1 = σ2 diag
(

1
n

,
1
s2

, ...,
1
s2

)

.

Les résultats du point 2 sont obtenus par lecture des termes diagonaux. Le
point 3 découle enfin du fait que V

(
β̂
)

est une matrice diagonale �

Proposition 3.5. Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre un. En désignant par ‖.‖ la norme usuelle de R

m, la dispersion de la
réponse prédite en x = t (x1, ..., xm) ∈ E est donnée par :

Var Ŷ (x) = σ2

(
1
n

+
1
s2
‖x‖2

)

.

Cette dispersion ne dépend que de la distance entre x et le centre du domaine,
c’est pourquoi tout plan d’expérience usuel pour un modèle d’ordre un est
qualifié d’ isovariant par transformations orthogonales.

Démonstration. D’après la proposition 2.7 il vient :
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Var Ŷ (x) = σ2 tg (x)
(
tXX

)−1
g (x)

avec g (x) vecteur de régression construit de manière identique aux lignes de
X. Donc ici :

∀ x = t (x1, ..., xm) ∈ E , g (x) = (1, x1, ..., xm) .

Il vient ensuite :

Var Ŷ (x) = σ2 tg (x) diag
(

1
n

,
1
s2

, ...,
1
s2

)

g (x) = σ2

(
1
n

+
1
s2

m∑

i=1

x2
i

)

D’où le résultat énoncé �

Lemme 3.A. (utilisé pour démontrer la proposition 3.7) Soit un plan
d’expérience D à m facteurs quantitatifs et les applications Δj (j = 1, ..., m)
de R

m dans R
m telles que :

Δj : (x1, x2, ..., xj , ..., xm) �−→ (x1, x2, ...,−xj , ..., xm) .

Si D est globalement invariant relativement aux applications Δj (i.e. ∀
j = 1, ..., m , D =ImΔj D) alors tous les moments impairs des points de
ce plan sont nuls.

Démonstration. Considérons un plan d’expérience D globalement invariant
relativement à l’application Δj . Ceci veut donc dire qu’à tout point du plan
zu on peut associer un autre point zu′ tel que :

Δj (zu) = zu′ .

En d’autres termes, on a donc :

zuj = −zu′j et ∀ i 	= j , zui = zu′i.

Evaluons maintenant tout moment des points de ce plan ayant la forme[
1δ12δ2 ...mδm

]
avec δj entier impair. Il vient alors :

n∑

u=1

z
δj

uj

⎛

⎝
∏

i�=j

zδi

ui

⎞

⎠ = −
n∑

u′=1

z
δj

u′j

⎛

⎝
∏

i�=j

zδi

u′i

⎞

⎠⇒ [
1δ12δ2 ...mδm

]
= 0.

Lorsque le plan d’expérience est globalement invariant par rapport à toutes
les applications Δj (j = 1, ..., m) tous ses moments impairs sont donc bien
nuls �
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Proposition 3.7. Tout plan d’expérience factoriel complet est un plan
d’expérience usuel pour un modèle linéaire d’ordre un. Il vérifie de plus :

s2 = 2m.

Démonstration. Montrons que tout plan factoriel complet vérifie bien les
contraintes associées à un plan d’expérience usuel.

1) Concernant les moments pairs, il est évident que pour tout i = 1, ..., m,
n
[
i2
]

= 2m puisque chaque colonne de D est constituée par 2m valeurs égales
à 1 ou −1.

2) Justifions que tous les moments impairs de tXX (i.e. de la forme [i]
pour i = 1, ..., m et [ij] pour i, j = 1, ..., m avec i < j) sont nuls. Ceci est
une conséquence immédiate du lemme 3.A. En effet, la configuration utilisée
ici contient tous les sommets du cube [−1, 1]m , il en découle que tout plan
d’expérience factoriel complet est bien globalement invariant par rapport à
chacune des applications Δj . Remarquons enfin que rajouter n0 réplications
centrales (i.e. n0 lignes nulles à la matrice D) permet de conserver les mêmes
moments nuls ainsi que la même valeur de s2 �

Proposition 3.8. Soit un plan d’expérience dont les seules réplications ont
lieu au centre du domaine expérimental et sont répétées n0 ≥ 2 fois. Si Y0

est le vecteur de ces n0 réponses et Y ∗
0 est ce même vecteur centré alors :

SSPE = tY ∗
0 Y ∗

0 = ‖Y ∗
0 ‖2 .

Démonstration. Il a été montré à la proposition 2.12 que SSPE vérifie :

SSPE = tY (In − P ∗)Y

avec P ∗ projecteur orthogonal de R
n sur l’image de la matrice indicatrice

des répétitions (donc P ∗ = diag
(
r−1
1 J1, r

−1
2 J2, ... ,r−1

n∗ Jn∗
)
). Comme ici les

répétitions sont effectuées uniquement au centre du domaine et sont au nombre
de n0, on a donc :

P ∗ = diag
(
1, 1, ... ,1, n−1

0 Jn0

)
.

Il en découle que :

SSPE = tY0

(

In − 1
n0

Jn0

)

Y0 = t

[(

In − 1
n0

Jn0

)

Y0

] [(

In − 1
n0

Jn0

)

Y0

]

car (In − 1/n0Jn0)
2 = In − 1/n0Jn0 . On a le résultat annoncé car :

Y ∗
0 = Y0 −

(
1
n0

t
In0Y0

)

︸ ︷︷ ︸
∈R

In0 = Y0 − 1
n0

In0
t
In0Y0 =

(

In − 1
n0

Jn0

)

Y0 �
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Proposition 3.10. Soit un plan d’expérience factoriel complet à m facteurs,
de matrice D, n’ayant pas de réplications centrales. Les colonnes de D sont
alors (par construction) des contrastes non-unitaires de {−1, 1}2m

. De
plus, le produit d’Hadamard de k colonnes distinctes de D (2 ≤ k ≤ m)
est aussi un contraste non-unitaire de {−1, 1}2m

.

Démonstration. Il est évident que les colonnes de D sont bien des contrastes
non-unitaires de {−1, 1}2m

puisque, par construction, elles sont formées
d’autant de valeurs +1 que de valeurs −1. Montrons maintenant que le pro-
duit d’Hadamard des deux premières colonnes de D est encore un contraste
de {−1, 1}2m

. Il est évident que le produit d’Hadamard de ces colonnes est
un vecteur de l’espace {−1, 1}2m

. De plus, d’après le lemme 3.A tous les mo-
ments impairs du plan complet sont nuls. On a donc en particulier [12] = 0
et le produit d’Hadamard des deux premières colonnes de D est bien un
contraste non-unitaire de {−1, 1}2m

. Ce raisonnement se généralise pour le
produit d’Hadamard de k colonnes distinctes de D �

Proposition 3.13. Le groupe G engendré par les q contrastes de définition
d’une fraction régulière est un groupe fini constitué de 2q éléments.

Démonstration. Soit une fraction régulière engendrée par la famille de con-
trastes indépendants F = {C1, C2, ..., Cq} et I = {1, 2, ..., q} . Le groupe G
engendré par les éléments de F est (voir par exemple Calais [17]) :

G =
{
C1C2...Cn , n ∈ N

∗ , Ci ∈ F ou C−1
i ∈ F} .

Remarquons cependant que pour tout contraste Ci de F il vient :

C2
i = Ci � Ci = I ⇐⇒ C−1

i = Ci.

De même il est ici inutile de répéter plusieurs fois un même élément de F
puisque :

∀ k ∈ N , C2k
i = I et C2k+1

i = Ci.

On a donc avec n indices distincts {i1, ..., in} ⊂ I :

G = {Ci1Ci2 ...Cin , 1 ≤ n ≤ q , Ci1 , ..., Cin ∈ F} .

On en déduit que les éléments de G sont : I (l’élément neutre du groupe), les
élements de la forme Ci (au nombre de q), les éléments de la forme CiCj (il
y en a autant que de choix possibles non-ordonnés de deux éléments parmi q,
c’est-à-dire C2

q = q!/(2! (q − 2)!)), les éléments de la forme CiCjCk (au nombre
de C3

q ), ..., l’élément C1C2...Cq. D’après la formule du binôme de Newton, le
nombre total d’élements est donc :
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card (G) =
q∑

i=0

Ci
q = 2q.

Justifions pour terminer que l’on n’a pas dénombré ainsi plusieurs fois le
même élément, c’est-à-dire que les 2q éléments construits ci-dessus sont bien
distincts. Supposons que deux éléments soient égaux. En d’autres termes,
supposons qu’il existe I ′ = {i1, i2, ..., in′} ⊂ I et I ′′ = {j1, j2, ..., jn′′} ⊂ I
avec I ′ 	= I ′′ tels que :

Ci1Ci2 ...Cin′ = Cj1Cj2 ...Cjn′′ .

Comme I ′ et I ′′ sont par hypothèse distincts on peut donc affirmer que (par
exemple)

∃ in∗ ∈ I ′ tel que in∗ /∈ I ′′.

En multipliant les deux membres de l’égalité par
∏

i∈I′−{in∗}
Ci il vient alors :

Cin∗ = Cj1Cj2 ...Cjl′′

∏

i∈I′−{in∗}
Ci.

Cette égalité est impossible à obtenir car elle contredit le fait que F est une
famille de contrastes indépendants. On en déduit que les 2q éléments de G
sont donc deux à deux distincts �

Proposition 3.16. Toute fraction régulière de plan factoriel complet, de
résolution égale à III (ou plus), est un plan d’expérience usuel pour un modèle
linéaire d’ordre un. Il vérifie de plus :

s2 = 2m−q.

Démonstration. Montrons au préalable qu’une fraction régulière de résolu-
tion I ou II rend impossible l’analyse du modèle d’ordre un complet.

1) Soit une fraction régulière de résolution I. Il existe donc au moins un
élément de longueur égale à 1 dans le groupe G (supposons qu’il s’agisse de
l’effet linéaire 1). Ceci entraine que I = 1 et donc la matrice du modèle X est
singulière puisqu’elle contient deux colonnes égales à I.

2) Soit une fraction régulière de résolution II. Il existe donc au moins un
élément de longueur égale à 2 dans le groupe G (supposons qu’il s’agisse de
l’effet d’interaction 12). Ceci entrâıne que :

I = 12⇐⇒ 1=2.

La matrice du modèle X est donc singulière puisque les colonnes associées
aux effets linéaires 1 et 2 sont identiques. Montrons maintenant que le plan
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d’expérience est usuel dès lors que la résolution de la fraction est au moins
égale à III. D’après la proposition 3.15, les colonnes de D sont des contrastes.
Il s’agit bien ici de contrastes non-unitaires sinon nous serions dans le cas
abordé en 1. Donc :

∀ i = 1, ..., m , [i] = 0.

De même, la proposition 3.15 assure que le produit d’Hadamard de deux
colonnes distinctes de D est un contraste. Une nouvelle fois il s’agit bien d’un
contraste non-unitaire sinon nous serions dans le cas abordé en 2. Donc :

∀ i, j = 1, ..., m , [ij] = 0.

Enfin, une fraction régulière engendrée par q générateurs est constituée par
2m−q expériences, donc :

∀ i = 1, ..., m , n
[
i2
]

= s2 = 2m−q �



4

Plans d’expérience pour modèles à effets
d’interactions

4.1 Introduction

Considérons, par exemple, une réaction chimique dont on mesure le rende-
ment. Supposons que ce rendement dépend, entre autre, des deux facteurs
que sont la température et la pression. Modéliser cette expérience à l’aide d’un
modèle polynomial du premier degré entrâıne que l’effet de la température sur
la réponse est toujours le même quelle que soit la valeur prise par la pression.
Il est évident que cette hypothèse n’est pas toujours vérifiée dans la réalité
car on peut envisager que l’effet de la température sur la réponse change en
fonction de la pression utilisée. Dans ce cas de figure il existe donc un effet
d’interaction entre ces deux facteurs.

L’objet de ce chapitre est de proposer des modélisations adaptées à ces
situations d’interaction. Ceci est possible en restant dans un cadre polynomial,
il suffit de rajouter des termes croisés rendant compte de ces nouveaux effets.
L’analyse de tels modèles est facilement réalisable dès lors que l’on utilise,
une nouvelle fois, des plans d’expérience factoriels ou des fractions régulières
adéquates de ceux-ci.

Ce chapitre est structuré de la manière suivante. Une première partie
aborde le problème le plus classique des interactions d’ordre 2 (i.e. entre deux
facteurs). Les conditions à vérifier pour qu’un plan d’expérience soit d’analyse
aisée (on le qualifiera encore plan usuel) sont détaillées. On montre ensuite
que tout plan d’expérience factoriel ou toute fraction régulière judicieusement
choisie vérifient bien ces conditions. Une seconde partie propose plusieurs
types de généralisations : modèles à effets d’interactions d’ordre 3, modèles
à effets d’interactions d’ordre quelconque et enfin modèles contenant tous les
effets d’interactions. Le problème de l’utilisation de modèles incomplets est
ensuite abordé puis un exemple d’application, illustré à l’aide de codes SAS,
est proposé à la fin du chapitre.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 4,
c© Springer-Verlag Berlin Heidelberg 2010
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4.2 Généralités

4.2.1 Modèle utilisé

Considérons ici un plan d’expérience D = {zu, u = 1, ..., n} à m facteurs quan-
titatifs mis en oeuvre sur le domaine expérimental E ⊂ R

m. Un modèle poly-
nomial est alors dit à effets d’interactions d’ordre 2 dès lors que l’on considère
le modèle statistique Y (x) = f (x) + ε (x) avec la loi de réponse donnée par :

∀ x ∈ E , f (x) = β0 +
m∑

i=1

βixi +
∑∑

i<j

βijxixj .

Pour un tel modèle, on dit que :
⎧
⎨

⎩

β0 (i.e. la constante polynomiale) est l’effet moyen général,
βi (i = 1, ..., m) est l’effet linéaire du i-ème facteur,
βij (i, j = 1, ..., m, i < j) est l’effet d’interaction entre les facteurs i et j.

Le modèle considéré ici est donc un modèle d’ordre 1 auquel sont rajoutés
tous les effets d’interactions entre couples de facteurs (d’où la terminologie
d’interactions d’ordre 2). D’un point de vue algébrique on utilise donc ici un
polynôme affine, c’est-à-dire un polynôme P (x1, x2, ..., xm) tel que :

∀ i = 1, ..., m ,
∂2P (x1, x2, ..., xm)

∂x2
i

= 0.

L’ajout des termes en βij permet de quantifier les éventuelles interactions en-
tre les couples de facteurs considérés puisqu’ils rendent compte des variations
simultanées de ces deux facteurs par le biais du produit xixj de leurs niveaux.
Deux facteurs ne présentant aucune interaction entre eux doivent conduire à
un coefficient βij nul ou tout au moins non-significativement différent de zéro.

Il existe autant d’interactions entre couples de facteurs que de choix non-
ordonnés de deux élément dans un ensemble en contenant m (c’est-à-dire
C2

m = m (m− 1) /2), le nombre de paramètres inconnus du modèle considéré
est donc égal à :

p = 1 + m + C2
m =

m2 + m + 2
2

.

On décomposera souvent dans la suite le vecteur β ∈ R
p des paramètres du

modèle en tβ = (β0 | tβL | tβI) avec βL ∈ R
m vecteur des effets linéaires

et βI ∈ R
m(m−1)/2 vecteur des effets d’interactions. De manière similaire, la

matrice du modèle X ∈M (n, p) est alors décomposée en :

X =
[

In D DI

]

avec D matrice du plan d’expérience et DI ∈ M (n, m (m− 1) /2) matrice
associée aux effets d’interactions donnée par (où zu1, ..., zum sont les m coor-
données du point zu) :
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DI =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

z11z12 z11z13 . . . z1(m−1)z1m

z21z22 z21z23 . . . z2(m−1)z2m

...
...

...
z(n−1)1z(n−1)2 z(n−1)1z(n−1)3 . . . z(n−1)(m−1)z(n−1)m

zn1zn2 zn1zn3 . . . zn(m−1)znm

⎤

⎥
⎥
⎥
⎥
⎥
⎦

On classera toujours par la suite les colonnes des effets d’interactions selon
l’ordre lexicographique. Pour 4 facteurs, notés 1, 2, 3 et 4, il s’agit de
l’ordre suivant : 12, 13, 14, 23, 24, 34.

4.2.2 Plans d’expérience usuels

Pour un modèle à effets d’interactions d’ordre 2, la matrice des moments est
alors donnée par :

M =
1
n

⎡

⎣

t
InIn

t
InD t

InDI
tDIn

tDD tDDI
tDIIn

tDID
tDIDI

⎤

⎦ .

La forme générale des blocs t
InIn, t

InD et tDD a déjà été explicité dans le
chapitre précédent (paragraphe 3.2.3). On a de plus :

1
n

t
InDI =

[
[12] [13] . . . [(m− 1)m]

]
,

1
n

tDDI =

⎡

⎢
⎢
⎢
⎣

[
122

] [
123

]
. . . [1 (m− 1)m]

[
122

]
[123] . . . [2 (m− 1)m]

...
...

...
[12m] [13m] . . .

[
(m− 1)m2

]

⎤

⎥
⎥
⎥
⎦

,

1
n

tDIDI =

⎡

⎢
⎢
⎢
⎢
⎣

[
1222

] [
1223

]
. . . [12 (m− 1)m]

[123]
[
1232

]
. . . [13 (m− 1)m]

...
...

...
[12 (m− 1)m] [13 (m− 1)m] . . .

[
(m− 1)2 m2

]

⎤

⎥
⎥
⎥
⎥
⎦
.

L’objectif est encore de proposer une classe de plans d’expérience vérifiant
les deux objectifs suivants : inclure la plupart des configurations classiques et
être constituée de plans d’expérience très facilement analysables à l’aide d’un
modèle polynomial à effets d’interactions d’ordre 2. Ceci conduit à la définition
suivante pour obtenir une matrice des moments la plus simple possible :

Définition 4.1. Un plan d’expérience est qualifié d’usuel pour un modèle
linéaire à effets d’interactions d’ordre deux si et seulement si :
1) tous ses moments impairs jusqu’à l’ordre 4 sont nuls,
2) tous ses moments purs d’ordre deux sont égaux (

[
12
]

= ... =
[
m2

]
),
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3) tous ses moments pairs croisés d’ordre quatre sont égaux,
(∀ i, j = 1, ..., m avec i 	= j ,

[
i2j2

]
= Cte),

Pour tout plan usuel D = {zu, u = 1, ..., n} il est donc possible de définir les
constantes s2 et s22 par (∀ i, j = 1, ..., m avec i 	= j ) :

s2 = n
[
i2
]

=
n∑

u=1

z2ui et s22 = n
[
i2j2

]
=

n∑

u=1

z2uiz
2
uj .

Remarquons qu’un plan d’expérience usuel est un plan orthogonal particulier
puisque les conditions de la proposition 4.1 entrâınent que la matrice des
moments est diagonale. Il découle de plus de cette définition que :

Proposition 4.2. [�] Soit un plan d’expérience usuel pour un modèle linéaire
à effets d’interactions d’ordre deux. Alors :
1) L’estimateur des moindres carrés de β est donné par :

β̂0 = Y , β̂L =
1
s2

tDY et β̂I =
1

s22
tDIY.

2) Concernant la dispersion de cet estimateur, il vient (∀ i, j = 1, ..., m avec
i 	= j):

Var β̂0 =
σ2

n
, Var β̂i =

σ2

s2
et Var β̂ij =

σ2

s22
.

3) Les composantes de β̂ sont de plus non-corrélées entre elles.

Concernant la qualité des prédictions réalisées par tout plan usuel il vient :

Proposition 4.3. [�] Soit un plan d’expérience usuel pour un modèle linéaire
à effets d’interactions d’ordre deux. En désignant par ‖.‖ la norme usuelle de
R

m, la dispersion de la réponse prédite en x = t (x1, ..., xm) ∈ E est donnée
par :

Var Ŷ (x) = σ2

(
1
n

+
1
s2
‖x‖2 +

1
2s22

‖x‖4 − 1
2s22

m∑

i=1

x4
i

)

.

Une conséquence directe de la proposition 4.3 est qu’un plan d’expérience
usuel n’est jamais isovariant par transformations orthogonales pour
un modèle linéaire à effets d’interactions d’ordre deux (i.e. la dispersion de la
réponse prédite n’est jamais une fonction de ‖x‖ à cause du terme en

∑
x4

i ).

4.3 Plans factoriels complets

Il est prouvé ici qu’il est possible d’utiliser un plan d’expérience factoriel
complet afin d’ajuster de manière simple un modèle à effets d’interactions
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d’ordre deux. On désigne toujours par plan d’expérience factoriel complet
pour m facteurs (voir la définition 3.6) tout plan, désigné par la notation
FD (2m, n0), contenant :

1) tous les sommets du cube [−1, 1]m ,
2) n0 réplications éventuelles du centre du domaine expérimental.

Le résultat fondamental est donné par la proposition ci-dessous :

Proposition 4.4. [�] Tout plan d’expérience factoriel complet est un plan
d’expérience usuel pour un modèle linéaire à effets d’interactions d’ordre
deux. Il vérifie :

s2 = 2m et s22 = 2m.

Tout plan d’expérience factoriel complet vérifie donc les propriétés énoncées
aux propositions 4.2 et 4.3.

Exemple

Soit le plan factoriel FD
(
22, 2

)
et Y1, ..., Y6 les 6 réponses observées

(Y1 correspondant à l’expérience de la ligne 1 de D, ..., Y6 à celle de
la ligne 6). Le modèle considéré est donné par :

∀ x = (x1, x2) ∈ E , f (x) = β0 + β1x1 + β2x2 + β12x1x2.

La matrice de ce modèle est alors :

X =
[
In D DI

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1
1 0 0 0
1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

avec :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1
1 −1

−1 1
1 1
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

et DI =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
−1
−1

1
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

L’estimateur des moindres carrés de l’effet moyen général est donc :

β̂0 =
1
8

(Y1 + Y2 + Y3 + Y4 + Y5 + Y6) .

Les estimateurs des effets linéaires sont :

β̂1 =
1
8

(−Y1 + Y2 − Y3 + Y4) et β̂2 =
1
8

(−Y1 − Y2 + Y3 + Y4) .
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Enfin, l’estimateur des moindres carrés de l’effet d’interaction β12 est
donné par :

β̂12 =
1
8

(Y1 − Y2 − Y3 + Y4) .

En conclusion, l’utilisation d’un plan factoriel complet peut donc être dictée,
tout comme dans le cas du modèle linéaire d’ordre un, à la fois par des
impératifs de simplicité de la construction et de facilité de l’analyse. Le
principal inconvénient de ces plans d’expérience est une nouvelle fois leur
taille qui devient rapidement très grande. Le lecteur pourra se référer à la ta-
ble 4.1 de la section 4.4 donnant les tailles de ces plans. Les résultats de cette
table montrent que la taille d’un plan factoriel complet reste correcte lorsque
le nombre de facteurs à étudier n’excède pas 4. Pour un nombre plus grand
de facteurs il va être nécessaire de s’orienter une nouvelle fois vers l’utilisation
d’une fraction régulière adéquate du plan complet.

4.4 Fractions régulières de plans factoriels

4.4.1 Fractions régulières de résolution V

L’objectif est ici d’utiliser non pas les 2m sommets du cube [−1, 1]m du plan
factoriel complet mais seulement une fraction de ces sommets. Une frac-
tion permettant de plus d’estimer tous les paramètres du modèle à effets
d’interactions de la manière la plus simple possible est recherchée (i.e. avec
tXX matrice diagonale). Cette problématique a déjà été abordée dans le
chapitre 3 (section 3.4) pour le modèle linéaire d’ordre un. Elle avait conduit
à la notion de fraction régulière qui va être réutilisée ici.

Tout comme à la section 3.4 considérons une fraction régulière d’un plan
factoriel complet à m facteurs obtenue à l’aide de q générateurs. Si n0

réplications du centre du domaine expérimental sont réalisées, le nombre total
d’expériences est donc :

n = 2m−q + n0.

Il a été prouvé dans le chapitre précédent (paragraphe 3.4.4) que toute frac-
tion régulière de résolution au moins III est un plan d’expérience usuel pour
le modèle linéaire d’ordre un. Déterminons maintenant une condition simi-
laire pour un modèle linéaire à effets d’interactions d’ordre deux. La condi-
tion à imposer est, une nouvelle fois, facile à déterminer intuitivement (voir
les compléments de fin de chapitre pour une démonstration complète). Il est
clair qu’une fraction régulière de résolution inférieure à III n’est toujours pas
adaptée ici puisque le modèle à effets d’interactions est plus riche que celui
d’ordre un. Utiliser une fraction régulière de résolution III entrâıne qu’au
moins une colonne de D va être égale ou opposée à une colonne de DI .
De même une fraction régulière de résolution IV est telle qu’au moins deux
colonnes de DI sont égales ou opposées. Il en découle le résultat suivant :
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Proposition 4.5. [�] Toute fraction régulière de plan factoriel complet,
de résolution égale à V (ou plus), est un plan d’expérience usuel pour un
modèle linéaire à effets d’interactions d’ordre deux. Il vérifie de plus :

s2 = 2m−q et s22 = 2m−q.

Les exemples ci-dessous découlent directement de cette proposition.

Exemple

La fraction régulière FD
(
25−1
III , 0,−I16=123

)
ne constitue pas un

plan usuel pour un modèle à effets d’interactions d’ordre deux (car
−I16=123 entrâıne que 1 = −23 donc il y a une confusion entre l’effet
linéaire du facteur 1 et l’interaction entre les facteurs 2 et 3).
La fraction régulière FD

(
25−1
IV , 0, I16=1234

)
ne constitue pas un

plan usuel pour un modèle à effets d’interactions d’ordre deux (car
I16=1234 entrâıne que 12 = 34 donc il y a une confusion entre l’effet
d’interaction des facteurs 1 et 2 et l’effet d’interaction des facteurs 3
et 4).
La fraction régulière FD

(
25−1
V , 0, I16=12345

)
constitue bien un plan

usuel pour un modèle à effets d’interactions d’ordre deux puisqu’elle
est de résolution V (on a de plus s2 = s22 = 24).

Il découle que toute fraction régulière de plan factoriel, de résolution au moins
V, vérifie les propositions 4.2 et 4.3.

4.4.2 Taille des plans factoriels

Comparons ici les tailles respectives des deux types de plans d’expérience
proposés pour l’ajustement d’un modèle linéaire à effets d’interactions d’ordre
deux. Le tableau suivant donne pour m facteurs (2 ≤ m ≤ 10) le nombre
de paramètres inconnus p du modèle à effets d’interactions d’ordre deux, la
taille du plan factoriel complet (i.e. 2m), la taille minimale possible pour
une fraction régulière de résolution V et enfin les générateurs utilisés afin de
construire une telle fraction (ce choix n’étant pas, bien entendu, unique).

Table 4.1. Taille de différents plans factoriels.

p FD (2m, 0) FD
(
2m−q
V , 0

)
Générateurs

2 facteurs 4 4 × ×
3 facteurs 7 8 × ×
4 facteurs 11 16 × ×
5 facteurs 16 32 16 12345
6 facteurs 22 64 32 123456
7 facteurs 29 128 64 1234567
8 facteurs 37 256 64 12345, 45678
9 facteurs 46 512 128 12345, 56789

10 facteurs 56 1024 128 12378, 23459, 134610
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Pour un nombre de facteurs strictement inférieur à 5, l’utilisation (obliga-
toire) d’un plan factoriel complet n’est pas génante car leur taille est très cor-
recte. L’utilisation d’une fraction régulière de résolution V s’avère ensuite très
intéressante pour 5 facteurs puisque le plan est saturé. Remarquons qu’il est
très facile de déterminer intuitivement un ou deux générateurs afin d’obtenir
une fraction régulière de résolution V (cf. situations pour 5 ≤ m ≤ 9). Le choix
des trois générateurs pour m = 10 s’avère plus complexe. Le lecteur pourra
se référer, par exemple, à Box et Hunter [14] afin de comprendre comment ce
choix a été effectué.

4.5 Généralisation à des interactions quelconques

4.5.1 Modèle à effets d’interactions d’ordre 3

Les premières parties de ce chapitre ont été consacrées au modèle le plus
courant, c’est-à-dire contenant toutes les interactions entre couples de fac-
teurs. Un tel modèle est d’usage fréquent car il est classique de supposer que
toutes les interactions d’ordre supérieur à deux sont négligeables dans le
phénomène étudié. Il existe cependant des situations où une telle hypothèse
peut s’avèrer fausse. Il est donc nécessaire d’ajuster des modèles contenant
plus d’effets d’interactions que ceux du modèle classique. Détaillons dans cette
partie le cas du modèle contenant tous les effets d’interactions jusqu’à l’ordre
trois, appelé plus simplement modèle à effets d’interactions d’ordre 3. La
suite présente le fil conducteur des différents raisonnements proposés, sans
entrer dans le détail des démonstrations qui sont en tout point similaires à
celles des sections 4.3 et 4.4.

Considérons un plan d’expérienceD = {zu, u = 1, ..., n} à m facteurs quan-
titatifs mis en oeuvre sur le domaine expérimental E ⊂ R

m. Un modèle poly-
nomial est alors dit à effets d’interactions d’ordre 3 dès lors que l’on considère
le modèle statistique Y (x) = f (x) + ε (x) avec la loi de réponse donnée par :

∀ x ∈ E , f (x) = β0 +
m∑

i=1

βixi +
∑∑

i<j

βijxixj +
∑∑∑

i<j<k

βijkxixjxk.

On dit que βijk (i, j, k = 1, ..., m avec i < j < k) est l’effet d’interaction
(d’ordre 3) entre les facteurs i, j et k.

Il existe autant d’interactions entre trois facteurs que de choix non-ordonnés
de trois éléments parmi m (c’est-à-dire C3

m). Le nombre total de paramètres
inconnus du modèle considéré est donc égal à (pour m ≥ 3 facteurs) :

p = 1 + m + C2
m + C3

m =
m3 + 5m + 6

6
.
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Considérons maintenant un plan d’expérience factoriel complet. La matrice
des moments d’un tel plan contient tous les moments du plan d’expérience
jusqu’à l’ordre 6. Plus précisement :

1) les éléments extra-diagonaux de M sont des moments impairs. Ils sont
donc tous nuls d’après le lemme 3.A. La matrice des moments M est donc
diagonale.

2) les éléments diagonaux de M sont 1,
[
i2
]
(i = 1, ..., m),

[
i2j2

]
(i, j = 1, ..., m

avec i < j) et
[
i2j2k2

]
(i, j, k = 1, ..., m avec i < j < k). Les coordonnées de

chaque point (non-central) du plan factoriel complet étant de la forme ±1 il
vient :

n
[
i2
]

= 2m , n
[
i2j2

]
= 2m , n

[
i2j2k2

]
= 2m.

Les plans factoriels complets sont donc bien orthogonaux au sens de la
définition 3.2.

Proposition 4.6. Tout plan d’expérience factoriel complet est un plan
d’expérience orthogonal pour un modèle linéaire à effets d’interactions
d’ordre trois. Il vérifie de plus (avec n = 2m +n0 nombre total d’expériences):

tXX =
[

n 0
0 2mIp−1

]

.

Une nouvelle fois la taille du plan factoriel complet peut s’avérer être un
handicap. Le nombre d’expériences de celui-ci peut cependant être réduit à
l’aide d’une fraction régulière. D’après les résultats des sections précédentes il
est nécessaire d’utiliser une fraction régulière qui soit au moins de résolution V
(afin d’éviter toute confusion entre les effets linéaires et les effets d’interaction
d’ordre deux). Une fraction régulière de résolution V va cependant poser
problème ici (car il va y avoir au moins une confusion entre un effet d’interact-
ion d’ordre 2 et un effet d’interaction d’ordre 3) tout comme une fraction
régulière de résolution VI (car il va y avoir au moins une confusion entre
deux effets d’interactions d’ordre 3). D’où le résultat (la démonstration est
identique à celle de la proposition 4.5) :

Proposition 4.7. Toute fraction régulière de plan factoriel complet, de
résolution égale à VII (ou plus), est un plan d’expérience orthogonal pour
un modèle linéaire à effets d’interaction d’ordre trois. Il vérifie de plus (avec
n = 2m−q + n0 nombre total d’expériences et q nombre de générateurs) :

tXX =
[

n 0
0 2m−qIp−1

]

.

Utilisons maintenant la décomposition classique suivante :

tβ =
(
β0 | tβL | tβI

)
et X =

[
In D DI

]
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DI ∈ M (
n, C2

m + C3
m

)
étant la matrice associée aux effets d’interactions

d’ordre 2 et 3. Il découle des propositions 4.6 et 4.7 que pour tout plan facto-
riel complet ou pour toute fraction régulière de résolution au moins VII, les
propriétés suivantes sont vérifiées (prendre q = 0 pour un plan complet) :

1) Les estimateurs des moindres carrés des paramètres du modèle sont donnés
par :

β̂0 = Y , β̂L =
1

2m−q
tDY et β̂I =

1
2m−q

tDIY.

2) Les dispersions des différents estimateurs sont données par (∀ i, j, k =
1, ..., m avec i < j < k) :

Var β̂0 =
σ2

2m−q + n0
et Var β̂i = Var β̂ij = Var β̂ijk =

σ2

2m−q
.

Tous ces estimateurs sont de plus non-corrélés entre eux (i.e. la covariance
entre deux éléments distincts de β̂ est toujours nulle).

3) La dispersion de la réponse moyenne prédite est donnée par (∀ x ∈ E) :

Var Ŷ (x) =
σ2

2m−q + n0
+

σ2

2m−q

⎡

⎣
m∑

i=1

x2
i +

∑∑

i<j

x2
i x

2
j +

∑∑∑

i<j<k

x2
i x

2
jx

2
k

⎤

⎦

Pour terminer, la table 4.2 donne les tailles des plans factoriels complets ainsi
que des fractions régulières de résolution VII.

Table 4.2. Taille de différents plans factoriels.

p FD (2m, 0) FD
(
2m−q
VII , 0

)
Générateurs

2 facteurs × × × ×
3 facteurs 8 8 × ×
4 facteurs 15 16 × ×
5 facteurs 26 32 × ×
6 facteurs 42 64 × ×
7 facteurs 64 128 64 1234567
8 facteurs 93 256 128 12345678
9 facteurs 130 512 256 123456789

10 facteurs 176 1024 256 1234567, 45678910

Pour un nombre de facteurs inférieur à 6 il n’y a (par définition) pas d’autre
alternative possible que le plan factoriel complet. A partir de 7 facteurs on
a, par contre, tout intérêt à réduire le nombre d’expériences à l’aide d’une
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fraction régulière. Pour 7 facteurs on peut ainsi obtenir un plan d’expérience
saturé. L’usage en pratique d’un tel modèle reste cependant rare pour un
nombre élevé de facteurs car le nombre de paramètres inconnus devient rapi-
dement ingérable.

Remarque. Nous n’entrons pas ici dans des détails répétitifs mais notons
qu’il est tout à fait possible de généraliser les résultats de cette section aux
modèles linéaires à effets d’interactions d’ordre λ (i.e. contenant tous
les effets d’interactions jusqu’à l’ordre λ ≥ 4). On montre alors que tout plan
factoriel complet est bien un plan d’expérience orthogonal pour un tel modèle.
On vérifie ensuite que toute fraction régulière de résolution égale à (2λ + 1)
(ou plus) permet encore d’obtenir un plan orthogonal.

4.5.2 Modèle contenant tous les effets d’interactions

Il est parfois souhaitable d’utiliser le modèle à effets d’interactions le plus
riche possible. Il s’agit donc, pour m facteurs, de considérer le modèle à ef-
fets d’interactions d’ordre m (i.e. contenant tous les effets d’interactions
jusqu’à l’ordre m). Pour tout point x du domaine expérimental E ⊂ R

m un
tel modèle est donc donné par :

f (x) = β0 +
m∑

i1=1

βi1xi1 +
∑∑

i1<i2

βi1i2xi1xi2 +
∑∑∑

i1<i2<i3

βi1i2i3xi1xi2xi3

+... +
∑∑

...
∑

i1<i2<...<im

βi1i2...im−1xi1xi2 ...xim−1+βi1i2...imxi1xi2 ...xim .

Par rapport aux notions vues précédemment on utilise donc un modèle à effets
d’interactions d’ordre 2 dans le cas de deux facteurs, d’ordre 3 dans le cas de
trois facteurs, etc... Les tables 4.1 et 4.2 montrent que l’utilisation d’un plan
factoriel complet est optimale pour deux et trois facteurs dans le sens où ces
plans d’expériences sont saturés. Généralisons ce résultat pour m facteurs. Le
nombre de paramètres inconnus d’un tel modèle est :

p =
m∑

i=0

Ci
m = 2m (binôme de Newton).

Un tel modèle a donc bien un nombre de paramètres inconnus égal au nombre
d’expériences d’un plan factoriel complet (sans réplications centrales) et ceci
quel que soit le nombre de facteurs considérés.

Exemple

Considérons le modèle linéaire contenant tous les effets d’interactions
pour m = 4 facteurs. Il est donné par (pour tout x = (x1, x2, x3, x4)
dans le domaine expérimental E) :
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f (x) = β0 + β1x1 + β2x2 + β3x3 + β4x4

+β12x1x2 + β13x1x3 + β14x1x4 + β23x2x3 + β24x2x4 + β34x3x4

+β123x1x2x3 + β124x1x2x4 + β134x1x3x4 + β234x2x3x4

+β1234x1x2x3x4.

Ce modèle est bien constitué de 24 = 16 paramètres inconnus.

L’utilisation combinée de ce résultat et du lemme 3.A permet d’affirmer que :

Proposition 4.8. Tout plan d’expérience factoriel complet est un plan
d’expérience orthogonal pour un modèle linéaire contenant tous les effets
d’interactions. Il vérifie de plus (avec n = 2m + n0 nombre d’expériences) :

tXX =
[

n 0
0 2mIp−1

]

.

Ce plan d’expérience est saturé lorsqu’il n’y a pas de réplications centrales
(n0 = 0).

Un plan d’expérience factoriel complet ayant le nombre minimal d’expériences
nécessaires à l’estimation des paramètres du modèle contenant tous les effets
d’interactions, il est alors évident que l’utilisation d’une fraction régulière des
sommets de [−1, 1]m est impossible pour réaliser l’estimation des paramètres
inconnus du modèle.

Considérons maintenant la décomposition classique suivante :

tβ =
(
β0 | tβL | tβI

)
et X =

[
In D DI

]

DI ∈ M (
n,
∑m

i=2 Ci
m

)
étant la matrice associée aux effets d’interactions

d’ordre compris entre 2 et m. Il découle de la proposition 4.8 que pour tout
plan factoriel complet les propriétés suivantes sont vérifiées :

1) Les estimateurs des moindres carrés des paramètres du modèle sont donnés
par :

β̂0 = Y , β̂L =
1

2m
tDY et β̂I =

1
2m

tDIY.

2) Les dispersions des différents estimateurs sont données par (∀ i1, i2, ..., im =
1, ..., m avec i1 < i2 < ... < im) :

Var β̂0 =
σ2

2m + n0
et Var β̂i1 = Var β̂i1i2 = ... = Var β̂i1i2...im =

σ2

2m
.

Tous ces estimateurs sont de plus non-corrélés entre eux (i.e. la covariance
entre deux éléments distincts de β̂ est toujours nulle).

3) La dispersion de la réponse moyenne prédite est donnée par (∀ x ∈ E) :
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Var Ŷ (x) =
σ2

2m + n0
+

σ2

2m

[
m∑

i1=1

x2
i1 +

∑∑

i1<i2

x2
i1x

2
i2 + ...

... +
∑∑

...
∑

i1<i2<...<im−1

x2
i1

x2
i2

...x2
im−1

+ x2
i1

x2
i2

...x2
im

⎤

⎦

La dispersion de la réponse moyenne prédite en chacun des points (non cen-
traux) du plan factoriel est donc obtenue par (poser xi = ±1) :

Var Ŷ (x) =
σ2

2m + n0
+

σ2

2m
(2m − 1) � σ2

(
1

2m + n0
+ 1

)

.

4.5.3 Application aux fractions de résolution III

Revenons à la notion de fraction régulière de résolution III vue lors du chapitre
précédent. Il a été prouvé que l’utilisation de telles fractions régulières est
suffisante afin d’estimer tous les paramètres inconnus d’un modèle polynomial
du premier degré. Des exemples de telles constructions ont été donnés dans
la table 3.1. Explicitons ici la méthode d’obtention des générateurs de ces
fractions régulières (voir Draper et Lin [33]). Supposons que l’on cherche à
construire une fraction régulière de résolution III pour mettre en oeuvre un
modèle linéaire d’ordre un à m facteurs. Il convient alors de considérer, dans
un premier temps, la matrice X̃ d’un modèle à m̃ facteurs contenant tous les
effets d’interactions possibles et telle que X̃ ait au moins autant de colonnes
qu’il y a de paramètres inconnus dans le modèle d’ordre un (en d’autres termes
il faut donc que 2m̃ ≥ m + 1). On sait (proposition 4.8) que la matrice X̃
contient le nombre maximal de colonnes orthogonales entre elles (i.e. il s’agit
de la matrice associée à un plan d’expérience saturé). Afin d’utiliser une telle
matrice pour générer des fractions régulières de résolution III on peut
donc procéder de la manière suivante :

1) on garde les m̃ colonnes de X̃ déjà affectées aux effets linéaires du modèle
à effets d’interactions et on les affecte (par exemple) aux m premiers effets
linéaires du modèle d’ordre un,

2) pour les (m− m̃) autres effets linéaires du modèle d’ordre un, on sélectionne
(m− m̃) colonnes de X̃ associées à des effets d’interactions et on affecte ces
colonnes aux effets linéaires supplémentaires du modèle d’ordre un.

La matrice ainsi construite est toujours une matrice à colonnes orthogo-
nales donc il n’existe aucune colonne égale à ±I (hormis la première asociée
à β0) et de même il n’existe pas de couple de colonnes égales ou opposées.
Ceci permet d’affirmer que l’on a bien une fraction régulière de résolution III,
adaptée à l’analyse d’un modèle polynomial d’ordre un.



128 4 Plans d’expérience pour modèles à effets d’interactions

Exemple

Déterminons ici la plus petite fraction régulière de résolution III pos-
sible pour m = 6 facteurs. Construisons , au préalable, la matrice du
modèle contenant tous les effets d’interactions dans le cas de m̃ = 3
facteurs (on a bien 23 ≥ 7). Il s’agit donc de la matrice X̃ donnée
ci-dessous, les colonnes étant respectivement affectées à l’effet moyen
général, aux effets linéaires 1, 2 et 3 puis aux effets d’interactions 12,
13, 23 et 123.

D’après la méthode proposée on procède ensuite en deux étapes :
1) on garde les trois colonnes de X̃ associées aux trois effets linéaires
et on les affecte aux mêmes effets linéaires dans le modèle d’ordre un,

4 5 6
= = =

1 2 3 12 13 23 123

X̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 −1 1 1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 −1 1 −1 1
1 1 1 −1 1 −1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 1 −1 1 −1 −1
1 −1 1 1 −1 −1 1 −1
1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2) on choisit trois autres colonnes associées à des effets d’interactions
et on les identifie cette fois aux trois effets linéaires restant dans le
modèle d’ordre un (le choix effectué ici est 4 = 12, 5 = 13 et 6 = 23).

La matrice du plan d’expérience considéré est alors obtenue en ne
conservant que les colonnes selectionnées (c’est-à-dire repérées par des
numéros encadrés), il s’agit de :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 1 1 1
1 −1 −1 −1 −1 1

−1 1 −1 −1 1 −1
1 1 −1 1 −1 −1

−1 −1 1 1 −1 −1
1 −1 1 −1 1 −1

−1 1 1 −1 −1 1
1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Concernant maintenant les générateurs d’une telle fraction régulière,
on a posé ici :
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⎧
⎨

⎩

4 = 12
5 = 13
6 = 23

⇔ I = 124 = 135 = 236.

Le groupe des contrastes de définition de cette fraction régulière est :

G = {I, 124, 135, 236, 2345, 1346, 1256, 456} .

L’ensemble G obtenu ne contient aucun élément de longueur inférieure
à 3, ceci confirme bien que la fraction construite est résolution III (il
s’agit plus précisemment d’une fraction régulière de type 26−3

III ).
Remarquons enfin que le choix effectué ici n’est pas unique. En effet,
les colonnes 12, 13 et 23 ont été affectées aux effets linéaires 4, 5 et
6 du modèle d’ordre un mais il est tout à fait possible de procéder
autrement. Voici, par exemple, une autre alternative :

⎧
⎨

⎩

4 = 12
5 = 13
6 = 123

⇔ I = 124 = 135 = 1236.

4.6 Utilisation de modèles incomplets

Jusqu’à présent les modèles linéaires considérés sont complets, c’est-à-dire
qu’ils contiennent tous les effets d’interactions possibles (pour l’ordre choisi).
On peut cependant envisager des situations où une connaissance préalable
du phénomène étudié peut conduire à un modèle incomplet. Il convient
d’être très prudent avec une telle démarche car, en cas de doute, il est
préférable d’utiliser un modèle complet (si, bien sûr, le nombre de facteurs
n’est pas trop élevé) quitte à avoir la confirmation a posteriori que cer-
tains effets d’interactions sont non-significatifs. Négliger un certain nombre
d’interactions peut cependant être envisageable si, par exemple, les spécialistes
du phénomène étudié sont en mesure d’assurer que de telles interactions ne
peuvent pas avoir lieu (un chimiste affirmant clairement que les composants
1 et 2 n’ont aucun effet l’un sur l’autre peut entrâıner la suppression de
l’interaction 12).

Considérons maintenant un modèle incomplet contenant un petit nombre
d’effets d’interactions et restons dans le cas d’interactions d’ordre deux. Si
l’expérimentation est coûteuse il peut être intéressant de réduire encore le
nombre d’expériences par rapport au cas d’une fraction régulière de résolution
V. D’après les résultats du chapitre précédent il faut utiliser cependant une
fraction régulière de résolution au moins III (sinon tous les paramètres du
modèle d’ordre un ne seront pas estimables). Il est donc possible de rechercher
une des deux configurations suivantes :
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1) soit une fraction régulière de résolution III s’il n’existe aucune con-
fusion entre effets linéaires et effets d’interactions et aucune confusion entre
deux des effets d’interactions,

2) soit une fraction régulière de résolution IV s’il n’existe aucune con-
fusion entre deux des effets d’interactions considérés.

Exemple

Considérons ici un phénomène dépendant de 4 facteurs (désignés par
1, 2, 3 et 4) et supposons qu’il a été établi au préalable qu’il ne peut
exister d’interaction qu’entre les facteurs 1 et 2. Le modèle statistique
considéré fait donc intervenir la loi de réponse suivante (pour tout
x = (x1, x2, x3, x4) ∈ E) :

f (x) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β12x1x2.

La théorie générale impose l’utilisation d’un plan factoriel complet à
24 = 16 expériences (puisqu’il n’y a pas assez de facteurs pour utiliser
une fraction régulière de résolution V). Ceci peut être problématique
si les expériences sont coûteuses car seulement 6 paramètres inconnus
sont à estimer. Considérons alors une fraction régulière de résolution
IV définie par la relation suivante :

I =1234.

Une telle relation ne devrait pas poser de problème par la suite
car elle entrâıne que 12 = 34 mais, vu le modèle postulé, il n’y a
pas de confusion possible entre les effets d’interactions 12 et 34 car
cette dernière interaction n’est pas utilisée. Considérons maintenant
la matrice X̃, donnée ci-après, associée à une telle fraction régulière
écrite pour le modèle à effets d’interactions d’ordre deux complet.
D’après le générateur utilisé il existe donc les confusions entre effets
d’interactions suivants :

12 = 34 , 13 = 24 et 14 = 23.

Les trois dernières colonnes de la matrice X̃ sont donc inutilisables
car alors X̃ n’est pas de plein rang (colonnes en italique).

1 2 3 4 12 13 14 23 24 34

X̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 −1 −1 1 1 1 1 1 1
1 −1 −1 1 1 1 −1 −1 −1 −1 1
1 −1 1 −1 1 −1 1 −1 −1 1 −1
1 −1 1 1 −1 −1 −1 1 1 −1 −1
1 1 −1 −1 1 −1 −1 1 1 −1 −1
1 1 −1 1 −1 −1 1 −1 −1 1 −1
1 1 1 −1 −1 1 −1 −1 −1 −1 1
1 1 1 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Il est donc possible de ne garder que les colonnes en rapport avec
le modèle à analyser (colonnes dont les effets sont encadrés). Ceci
conduit à la matrice du modèle X donnée ci-dessous.

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 −1 −1 1
1 −1 −1 1 1 1
1 −1 1 −1 1 −1
1 −1 1 1 −1 −1
1 1 −1 −1 1 −1
1 1 −1 1 −1 −1
1 1 1 −1 −1 1
1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Remarquons enfin que l’analyse des résultats découlant d’un tel plan
d’expérience est aisée puisque le plan obtenu est orthogonal, vérifiant
plus précisemment : tXX = 8I6.

Exemple

Considérons ici un phénomène aléatoire dépendant cette fois de 5 fac-
teurs (désignés pas 1, 2, 3, 4 et 5) et supposons qu’il a été établi au
préalable qu’il ne peut exister d’interaction qu’entre les couples de
facteurs 14 et 24. Le modèle statistique considéré fait donc intervenir
la loi de réponse suivante (pour tout x = (x1, x2, x3, x4, x5) ∈ E) :

f (x) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β14x1x4 + β24x2x4.

La théorie générale impose l’utilisation d’une fraction régulière de
résolution V qui est donc constituée par 25−1 = 16 expériences.
Ceci peut être un obstacle si les expériences sont très coûteuses car
le modèle considéré n’a que 8 paramètres inconnus à estimer. Con-
sidérons alors la fraction régulière de résolution III définie par la re-
lation :

I =123 = 345.

Remarquons que le choix des deux générateurs proposés ici n’est pas
dû au hasard. En effet, on a pris garde à ne pas faire intervenir dans
chacun d’eux la séquence 14 ainsi que la séquence 24 car ceci aurait
immédiatement entrâıné une confusion avec un effet linéaire (par ex-
emple, poser I =134 entrâıne que 3 = 14 d’où la confusion entre l’effet
linéaire 3 et l’interaction 14). Considérons maintenant la matrice :

X̃ = [ In | D | DI ]

correspondant à l’utilisation de cette fraction régulière pour un modèle
à interactions d’ordre deux complet. Cette matrice est donnée par :
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1 2 3 4 5

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 1 −1 −1
−1 −1 1 1 1
−1 1 −1 −1 1
−1 1 −1 1 −1

1 −1 −1 −1 1
1 −1 −1 1 −1
1 1 1 −1 −1
1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

12 13 14 15 23 24 25 34 35 45

DI =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 1 1 −1 1 1 −1 −1 1
1 −1 −1 −1 −1 −1 −1 1 1 1

−1 1 1 −1 −1 −1 1 1 −1 −1
−1 1 −1 1 −1 1 −1 −1 1 −1
−1 −1 −1 1 1 1 −1 1 −1 −1
−1 −1 1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 −1 −1 −1 −1 1
1 1 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Le groupe des contrastes de définition de cette fraction est :

G = {I, 123, 345, 1245} .

Les confusions entre effets linéaires et effets d’interactions sont donc :

1 = 23 , 2 = 13 , 3 = 12 , 3 = 45 , 4 = 35 , 5 = 34.

Il est alors possible de supprimer les 6 colonnes de la matrice X̃
(représentées en italique) confondues avec diverses colonnes associées
aux effets linéaires. La relation I =1245 entrâıne de plus les confusions
d’effets suivantes entre les 4 colonnes de DI restantes :

14 = 25 et 15 = 24.

Ceci entrâıne, cette fois, la suppression des colonnes associées aux
effets d’interactions 25 et 15. Il est enfin possible de ne garder que les
colonnes en rapport avec le modèle à analyser (colonnes dont les effets
sont encadrés). On obtient ainsi la matrice du modèle X :

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 1 −1 −1 1 1
1 −1 −1 1 1 1 −1 −1
1 −1 1 −1 −1 1 1 −1
1 −1 1 −1 1 −1 −1 1
1 1 −1 −1 −1 1 −1 1
1 1 −1 −1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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L’analyse des résultats découlant d’un tel plan d’expérience est aisée
puisque ce plan est orthogonal, vérifiant : tXX = 8I6. Remarquons
aussi que le plan d’expérience proposé ici est saturé puisqu’il a au-
tant d’expériences que de paramètres inconnus à estimer dans le
modèle. Pour avoir des informations concernant l’analyse de la vari-
ance il est alors nécessaire d’effectuer un petit nombre d’expériences
supplémentaires (par exemple au centre du domaine expérimental).

Le lecteur souhaitant aller plus loin dans le domaine de la construction
de plans d’expérience orthogonaux pour modèles incomplets pourra se référer
aux ouvrages de Pillet [72] et Benoist et al. [3] afin d’approfondir la ”méthode
Taguchi”. Cette méthode a pour but de proposer des plans d’expérience or-
thogonaux tels que ceux déjà présentés en les associant à une représentation
sous forme de graphe linéaire afin de visualiser immédiatement quels sont les
effets linéaires ou les interactions qu’il est possible d’estimer. Des tables de
plans d’expérience ainsi construits sont disponibles (voir Benoist et al. [3])
afin qu’un utilisateur puisse trouver rapidement un protocole expérimental
adapté au type de problème étudié (avec les notations de Taguchi, les deux
plans d’expérience proposés précedemment sont respectivement de type L824

et L825).

4.7 Exemple d’application

Supposons qu’une entreprise veuille mettre en oeuvre un nouveau procédé
consistant à coller deux pièces métalliques entre elles. Il est possible de juger de
la qualité du collage effectué à l’aide d’un coefficient mesurant la résistance au
cisaillement (plus ce coefficient est élevé meilleur est le collage), ceci constitue
la réponse étudiée.

Après étude des diverses étapes à suivre dans le processus de collage il
apparâıt que 4 facteurs semblent avoir une influence sur la qualité du collage.
Il s’agit de la durée de l’opération, de la température utilisée, de la pression
utilisée ainsi que de la concentration dans la colle d’un composant chimique.
Le tableau suivant précise les valeurs minimales et maximales possibles :

Minimum Maximum
Durée (en mn) 30 60
Température (en ◦C) 80 120
Pression (en atm) 4 6
Concentration (en g/l) 10 30

Supposons de plus que les spécialistes du phénomène étudié estiment
qu’il est possible que des effets d’interactions entre facteurs existent (ou
bien qu’un ajustement à l’aide d’un modèle polynomial d’ordre un a été
réalisé au préalable mais s’est avéré être de mauvaise qualité). N’ayant pas
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d’informations supplémentaires sur les facteurs susceptibles d’interagir entre
eux il est normal d’ajuster un modèle à effets d’interactions d’ordre deux
complet.

Le nombre de facteurs étant relativement faible (et l’utilisation d’une
fraction régulière de résolution V étant impossible) considérons un plan
d’expérience factoriel complet pour m = 4 facteurs. Un tel plan d’expérience
est alors constitué par 16 unités expérimentales et le modèle considéré com-
porte 11 paramètres inconnus. Rajoutons 3 réplications centrales afin de pou-
voir affiner l’analyse de la variance. Par construction, un tel plan d’expérience
utilise des facteurs à valeurs dans l’intervalle [−1, 1]. Le lien entre variable
codée et variable initiale à valeurs dans [a, b] est donc donné par (voir la
paragraphe 3.2.1) :

x∗ =
2x− (a + b)

(b− a)
.

La matrice D du plan d’expérience considéré est alors la suivante.

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1
1 −1 −1 −1

−1 1 −1 −1
1 1 −1 −1

−1 −1 1 −1
1 −1 1 −1

−1 1 1 −1
1 1 1 −1

−1 −1 −1 1
1 −1 −1 1

−1 1 −1 1
1 1 −1 1

−1 −1 1 1
1 −1 1 1

−1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Le protocole expérimental (c’est-à-dire la liste des expériences à effectuer par
le technicien, exprimées avec leurs unités initiales) est donné à la suite. Le
vecteurs Y des réponses mesurées pour chacune des 19 expériences est aussi
présenté parallèlement.
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Dur. Tem. Pre. Con.
Exp 1 30 80 4 10
Exp 2 60 80 4 10
Exp 3 30 120 4 10
Exp 4 60 120 4 10
Exp 5 30 80 6 10
Exp 6 60 80 6 10
Exp 7 30 120 6 10
Exp 8 60 120 6 10
Exp 9 30 80 4 30
Exp 10 60 80 4 30
Exp 11 30 120 4 30
Exp 12 60 120 4 30
Exp 13 30 80 6 30
Exp 14 60 80 6 30
Exp 15 30 120 6 30
Exp 16 60 120 6 30
Exp 17 45 100 5 20
Exp 18 45 100 5 20
Exp 19 45 100 5 20

Y
12.4
7.2

16.5
11.2
14.1
28.9
17.1
28.8
23.8
18.9
16.4
12.1
24.0
39.4
18.5
30.2
24.8
21.2
16.4

Voici un programme SAS permettant de rentrer ces données.

Data Donnees;
Input dur tem pre con y;
durtem = dur*tem; durpre = dur*pre; durcon = dur*con;
tempre = tem*pre; temcon = tem*con;
precon = pre*con;
Cards;
-1.0 -1.0 -1.0 -1.0 12.4
1.0 -1.0 -1.0 -1.0 7.2

...
expérience i et réponse i

...
0.0 0.0 0.0 0.0 21.2
0.0 0.0 0.0 0.0 16.4

Run;

La table ”donnees” ainsi construite contient toutes les colonnes de la matrice
X relatives aux effets linéaires (entrées manuellement), toutes les colonnes rel-
atives aux effets d’interactions (créées automatiquement à l’aide des différents
produits d’Hadamard qui sont une simple multiplication de colonnes pour
SAS) et enfin le vecteur Y des réponses. La notation ”dur” est utilisée pour
désigner l’effet linéaire du facteur durée. La notation ”durtem” désigne par
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contre l’effet d’interaction entre les facteurs durée et température, etc... Le
tableau d’analyse de la variance est donné ci-dessous.

Source ddl S. carrés M. Carrés St. Test Proba.
Régression 10 1095.97 109.60 20.82 0.0001 •••

Erreur 8 42.11 5.26 0.062 0.9961 ◦◦◦

Pure. 2 35 .52 17 .76
Ajus. 6 6 .59 1 .10

Total 18 1138.08

Il découle directement de la procédure de régression (REG) suivante :

Proc Reg data=Donnees;
Model y = dur tem pre con

durtem durpre durcon tempre temcon precon;
Run;

Ce tableau montre que le modèle est valide puisqu’il est possible de rejeter
clairement l’hypothèse ”tous les paramètres du modèle (sauf β0) sont nuls”.
Ce modèle est de plus globalement bien ajusté puisque (valeur ”R-Square” de
la sortie SAS) :

R2 = 1− SSE

SST
� 0.963.

Remarquons aussi qu’un estimateur sans biais de la variance des résidus σ2

est donné par (valeur ”Root MSE” de la sortie SAS) :

σ̂2 = MSE = 5.26 (donc σ̂ � 2.294).

Il est possible d’affiner la somme des carrés due à l’erreur à l’aide des trois
réplications centrales effectuées. La détermination des quantités SSLOF et
SSPE montre alors que le modèle utilisé est bien ajusté en moyenne car il est
impossible de rejeter raisonnablement l’hypothèse d’un bon ajustement (para-
graphe 2.6.5). Déterminons ensuite les estimateurs de chacun des paramètres
du modèle. Ceci conduit au tableau donné ci-après (voir la section 4.3 pour
les formules explicites). Ces résultats figurent en deuxième partie de la sortie
SAS de la procédure REG (”Résultats estimés des paramètres”).
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Param. Estimat. Ec. type St. Test Proba.
β0 20.10 0.526 38.19 0.0001 •••

β1 2.119 0.574 3.69 0.0061 ••◦

β2 −1.119 0.574 −1.95 0.0869 ◦◦◦

β3 5.156 0.574 8.99 0.0001 •••

β4 2.944 0.574 5.13 0.0009 •••

β12 −0.394 0.574 −0.69 0.5118 ◦◦◦

β13 4.581 0.574 7.99 0.0001 •••

β14 0.119 0.574 0.21 0.8412 ◦◦◦

β23 −0.356 0.574 −0.62 0.5518 ◦◦◦

β24 −2.494 0.574 −4.35 0.0025 ••◦

β34 −0.044 0.574 −0.08 0.9411 ◦◦◦

Remarquons que ces résultats sont parfois représentés de manière plus in-
tuitive à l’aide de diverses représentations graphiques données et expliquées
dans la suite. Le premier type de schéma consiste en une représentation
graphique des effets linéaires. On obtient ainsi 4 segments de droites
(figure 4.1), chacun d’eux étant associé à l’un des 4 effets linéaires considérés.
Détaillons le principe de construction pour le graphique relatif à l’effet linéaire
du facteur durée. Ce facteur ne prenant ici que deux niveaux (±1 en coor-
données codées) il faut tout d’abord placer ces niveaux en abscisse. L’axe des
ordonnées correspond alors à la réponse moyenne observée lorsque le facteur
durée est fixé à chacun de ces deux niveaux.

En désignant par Y (−1) et Y (+1) les deux ordonnées ainsi obtenues on
a donc ici (d’après le plan d’expérience utilisé) :

{
Y (−1) = 1/8 (Y1 + Y3 + Y5 + Y7 + Y9 + Y11 + Y13 + Y15) ,

Y (+1) = 1/8 (Y2 + Y4 + Y6 + Y8 + Y10 + Y12 + Y14 + Y16).

Il est alors possible de relier ces deux points par une droite de pente :

p =
Y (+1)− Y (−1)

2
= 1/16(−Y1 + Y2 − Y3 + Y4 − Y5 + Y6 − Y7 + Y8

−Y9 + Y10 − Y11 + Y12 − Y13 + Y14 − Y15 + Y16).

Or, on sait de plus que :

β̂L =
1
16

tDY donc β̂1 = p.

En conclusion, les représentations graphiques des effets linéaires s’interprètent
donc en remarquant que la pente des droite obtenues est égale à l’estimateur
des moindres carrés de l’effet linéaire considéré. Plus cette pente est forte,
plus l’effet linéaire associé est important. Inversement, un effet linéaire peu
ou pas significatif va se traduire par une droite quasiment parallèle à l’axe
des abscisses. Afin de pouvoir mieux appréhender visuellement cette dernière
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situation une droite parallèle à l’axe des abscisses (en pointillés) a été ra-
joutée. Elle a pour ordonnée la moyenne des 16 réponses considérées (i.e. hors
expériences centrales) c’est-à-dire 19.97.
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10–1 PRESSION
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10–1 COMPOSANT

Fig. 4.1. Représentation graphique des effets linéaires.

Le second type de schéma consiste à en une représentation graphique
des effets d’interactions. On obtient ainsi les 6 graphiques ci-dessous
associés à chacun des 6 effets d’interactions du modèle considéré. Chaque
graphique est cette fois constitué par deux segments de droite distincts.
Détaillons la construction du graphique relatif à l’effet d’interaction entre les
facteurs durée et température. Une nouvelle fois les valeurs ±1 en abscisses
correspondent aux deux niveaux utilisés par l’un des facteurs (ici la durée).
Les segments représentés sont alors définis comme pour les graphiques des
effets linéaires (c’est-à-dire à partir des réponses moyennes observées) mais
cette fois un premier segment correspond au cas où le facteur température est
fixé au niveau −1 et un second au cas où ce même facteur est fixé au niveau
+1. Plus précisemment on a les résultats suivants.

Lorsque la température est au niveau −1 le segment obtenu relie alors les
deux point de coordonnées suivantes :

{
abscisse : − 1, ordonnée : 1/4 (Y1 + Y5 + Y9 + Y13) ,
abscisse : + 1, ordonnée : 1/4 (Y2 + Y6 + Y10 + Y14) .
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(en effet, 1/4 (Y1 + Y5 + Y9 + Y13) est bien la réponse moyenne observée
lorsque la température est au niveau −1 et la durée au niveau −1). Lorsque
la température est au niveau +1 le segment obtenu relie les deux points de
coordonnées suivantes :

{
abscisse : − 1, ordonnée : 1/4 (Y3 + Y7 + Y11 + Y15) ,
abscisse : + 1, ordonnée : 1/4 (Y4 + Y8 + Y12 + Y16) .
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Fig. 4.2. Représentation graphique des effets d’interactions.

Il résulte de tout ceci que l’on obtient donc un graphique avec deux segments
de droites ayant pour pentes :

p1 = 1/8 (−Y1 + Y2 − Y5 + Y6 − Y9 + Y10 − Y13 − Y14) ,
p2 = 1/8 (−Y3 + Y4 − Y7 + Y8 − Y11 + Y12 − Y15 + Y16) .
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Remarquons alors que les deux segments sont parallèles si et seulement si :

p1 = p2 ⇔ Y1 − Y2 + Y3 − Y4 + Y5 − Y6 + Y7 − Y8 + Y9−
Y10 + Y11 − Y12 + Y13 − Y14 + Y15 − Y16 = 0

⇔ β̂12 = 0.

En d’autres termes le parallélisme des deux segments traduit l’absence
d’effet d’interaction entre les deux facteurs considérés. A l’opposé, plus on
s’éloigne de la situation de parallélisme et plus l’effet d’interaction entre les
deux facteurs va être significatif. Remarquons que le résultat démontré ici était
intuitivement évident. En effet, s’il n’existe pas d’effet d’interaction entre la
température et la durée, ceci veut donc dire concrètement que l’effet de la
durée sur la réponse ne dépend pas du niveau de la température. En d’autres
termes, faire varier la durée du niveau −1 au niveau +1 doit donc avoir le
même effet sur la réponse moyenne quelle que soit la température. La pente
du segment correspondant à la température fixée au niveau −1 doit donc être
identique à celle du segment associé à une température au niveau +1, d’où
le parallélisme. Il est aussi possible de comparer maintenant les valeurs des
réponses observées (Y ) avec les réponses moyennes prédites par le modèle
(Ŷ = Xβ̂). Ceci conduit au tableau donné ci-dessous :

Y obs. Ŷ pred. Y − Ŷ Ec. type
Exp 1 12.4 12.41 −0.01 1.889
Exp 2 7.2 8.04 −0.84 1.889
Exp 3 16.5 16.66 −0.16 1.889
Exp 4 11.2 10.71 0.49 1.889
Exp 5 14.1 14.36 −0.26 1.889
Exp 6 28.9 28.31 0.59 1.889
Exp 7 17.1 17.19 −0.09 1.889
Exp 8 28.8 29.56 −0.76 1.889
Exp 9 23.8 23.14 0.66 1.889
Exp 10 18.9 19.24 −0.34 1.889
Exp 11 16.4 17.41 −1.01 1.889
Exp 12 12.1 11.94 0.16 1.889
Exp 13 24.0 24.91 −0.91 1.889
Exp 14 39.4 39.34 0.06 1.889
Exp 15 18.5 17.76 0.74 1.889
Exp 16 30.2 30.61 −0.41 1.889
Exp 17 24.8 20.10 4.70 0.526
Exp 18 21.2 20.10 1.10 0.526
Exp 19 16.4 20.10 −3.70 0.526

Ces valeurs peuvent être directement obtenues à l’aide du programme SAS
suivant (l’option ”clm” permet de visualiser les valeurs Ŷi, leurs dispersions
ainsi qu’un intervalle de confiance) :
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Proc Reg data=Donnees;
Model y = dur tem pre con

durtem durpre durcon tempre temcon precon
/ clm;

Run;

On constate que les réponses observées et prédites par le modèle sont
toujours relativement proches, ceci est en accord avec la valeur élevée du co-
efficient R2 trouvée précédemment (ce tableau présente aussi le résidu estimé,
c’est-à-dire l’erreur commise Y −Ŷ entre réponse réelle et réponse prédite). La
dernière colonne donne la dispersion associée aux diverses prédictions (sous
forme d’écart-type). Puisque le plan d’expérience utilisé est usuel, ces disper-
sions sont obtenues explicitement de manière très simple à l’aide de la formule
suivante (voir la section 4.3) :

Var Ŷ (x) = σ2

(
1
19

+
1
16

‖x‖2 +
1
32

[

‖x‖4 −
m∑

i=1

x4
i

])

.

Ceci donne pour les expériences au centre du domaine expérimental :

‖x‖ = 0 =⇒ Var Ŷ (x) =
σ2

19
� 0.277.

De même, toute expérience factorielle est réalisée en un point ayant pour
coordonnées (±1,±1,±1,±1) donc ‖x‖ = 2 et il vient :

Var Ŷ (x) = σ2

[
1
19

+
1
4

+
1
32

(16− 4)
]

� 3.564.

Conclusion

Il est possible de déduire de tous les résultats obtenus précédemment que :

1) l’effet moyen général est très significatif dans le modèle utilisé. Il traduit
ici une réponse moyenne de l’ordre de 20.10 sur la totalité des expériences,

2) un effet linéaire a été détecté de manière très significative concernant les
facteurs durée, pression et concentration. L’effet linéaire de la température sur
le phénomène étudié est par contre moins clair (sans être non plus à rejeter
systématiquement car il reste, par exemple, significatif au niveau 10%),

3) concernant maintenant les effets d’interactions, deux d’entre eux s’avèrent
être très significatifs. Il s’agit plus précisemment de l’effet d’interaction
entre la durée et la pression ainsi que de l’effet d’interaction entre la
température et la concentration. Tous les autres effets d’interactions semblent
être négligeables.
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En supprimant les effets non-significatifs, le meilleur modèle obtenu au sens
des moindres carrés peut donc être réduit à (avec x = (x1, x2, x3, x4)) :

Ŷ (x) = 20.10 + 2.119x1 − 1.119x2 + 5.156x3 + 2.944x4

+4.581x1x3 − 2.494x2x4

Le fait de négliger ces effets non-significatifs est (logiquement) sans grande
conséquence sur la perte de qualité du modèle ajusté puisqu’on obtient alors
SSE = 46.88 donc R2 � 0.959 (à comparer à R2 � 0.963 lorsque le modèle
est complet).

En tenant compte maintenant du signe de chacun des estimateurs des effets
linéaires obtenus on peut résumer leurs actions respectives sur la réponse dans
le tableau suivant. Plus précisemment, ce tableau rend compte de la variation
de la réponse moyenne prédite lorsque chacun des facteurs passe du niveau
bas −1 au niveau haut +1. La conséquence sur la réponse peut alors être une
augmentation (+) , une très forte augmentation (++) , une diminution (−) ,
une très forte diminution (−−) ou bien encore l’effet peut être négligeable
(� 0) .

Dur. Tem. Pre. Con.
Effet sur Y ++ − ++ ++

Le second tableau, ci-dessous, rend compte des effets d’interactions sur la
réponse. Plus précisemment, il traduit les variations de la réponse moyenne
prédite lorsque le produit des deux facteurs passe du niveau bas −1 au niveau
haut +1 (en d’autres termes on passe donc d’une situation où les niveaux des
deux facteurs sont opposés à une situation où ils sont de même signe).

Dur/Tem Dur/Pre Dur/Con
Effet sur Y � 0 ++ � 0

Tem/Pre Tem/Con Pre/Con
� 0 −− � 0

Ces deux tableaux indiquent donc que, d’après le modèle ajusté, il est
nécessaire de réaliser les opérations données ci-après si l’on souhaite améliorer
la qualité du collage effectué (i.e. maximiser la réponse). Pour les effets
linéaires on a tout intérêt à fixer la durée, la pression ainsi que la concen-
tration à un niveau élevé. L’effet de la température est moins important que
les autres mais il vaut mieux néanmoins le fixer à un niveau bas. Parallèlement,
il est aussi possible de fixer les niveaux des facteurs de manière à ce que les
effets d’interactions permettent à la réponse d’être élevée : il faut alors fixer
la durée et la pression à un niveau semblable (faible ou élevé) alors que la
température et la concentration doivent, par contre, être fixées à des niveaux
opposés. Il est donc possible d’atteindre tous ces objectifs à l’aide du réglage
suivant :
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Facteur Niveau
Durée 60 mn
Température 80 ◦C
Pression 6 atm
Concentration 30 g/l

Ce résultat est tout à fait logique vis-à-vis des résultats expérimentaux obtenus
car il correspond à l’expérience 14 qui est associée à une réponse élevée (39.4).
Remarquons enfin que l’étude menée ici n’est pas triviale mais n’a cependant
pas amené de grosses difficultés concernant les effets d’interactions (seulement
deux sont à retenir). La situation peut s’avérer être plus complexe pour un plus
grand nombre d’effets d’interactions. En effet, ceux-ci peuvent alors nécessiter
des réglages en vue d’optimiser la réponse qui, en première analyse, sont
parfois incompatibles avec les réglages optimaux pour les effets linéaires. Il
est alors nécessaire d’utiliser des techniques plus fines afin de déterminer la
réponse optimale telles que les analyses canoniques R ou RT présentées dans
l’ouvrage de Goupy [45] ou bien les techniques générales d’optimisation sous
contraintes (la contrainte ici étant de rester dans le domaine expérimental)
comme les multiplicateurs de Lagrange.

4.8 Résumé

Voici un résumé des principales configurations étudiées dans ce chapitre. Pour
un nombre de facteurs variant entre 2 et 10 (associés à un nombre p de
paramètres inconnus à estimer) le tableau suivant présente le nombre minimal
d’expériences à réaliser pour différents plans d’expérience adaptés au modèle
(classique) à effets d’interactions d’ordre 2. On considère plus précisemment :

1) les plans factoriels complets (de type FD (2m, 0)),

2) les plans factoriels fractionnaires de résolution V (de type FD
(
2m−q
V , 0

)
).

Figurent aussi (entre parenthèses) la taille relative δ pour chaque configura-
tion, c’est-à-dire sa taille ramenée au nombre d’inconnues du modèle :

δ =
n

p
=

2n

m2 + m + 2
.

Remarquons que le plan d’expérience obtenu pour 5 facteurs est saturé.
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p FD (2m, 0) FD
(
2m−q
V , 0

)

2 facteurs 4 4 (1.00) ×
3 facteurs 7 8 (1.14) ×
4 facteurs 11 16 (1.45) ×
5 facteurs 16 32 (2.00) 16 (1.00)

6 facteurs 22 64 (2.91) 32 (1.45)

7 facteurs 29 128 (4.41) 64 (2.21)

8 facteurs 37 256 (6.92) 64 (1.73)

9 facteurs 46 512 (11.13) 128 (2.78)

10 facteurs 56 1024 (18.29) 128 (2.29)

Voici maintenant les configurations proposées pour le modèle à effets
d’interactions d’ordre 3. On considère plus précisemment :

1) les plans factoriels complets (de type FD (2m, 0)),

2) les plans factoriels fractionnaires de résolution VII (de type FD
(
2m−q
VII , 0

)
).

La taille relative δ pour chaque plan d’expérience est maintenant :

δ =
n

p
=

6n

m3 + 5m + 6
.

Remarquons que le plan d’expérience obtenu pour 7 facteurs est saturé.

p FD (2m, 0) FD
(
2m−q
VII , 0

)

2 facteurs × × ×
3 facteurs 8 8 (1.00) ×
4 facteurs 15 16 (1.07) ×
5 facteurs 26 32 (1.23) ×
6 facteurs 42 64 (1.52) ×
7 facteurs 64 128 (2.00) 64 (1.00)

8 facteurs 93 256 (2.75) 128 (1.38)

9 facteurs 130 512 (3.94) 256 (1.97)

10 facteurs 176 1024 (5.82) 256 (1.45)
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4.9 (Compléments) Démonstrations

Proposition 4.2. Soit un plan d’expérience usuel pour un modèle linéaire à
effets d’interactions d’ordre deux. Alors :
1) L’estimateur des moindres carrés de β est donné par :

β̂0 = Y , β̂L =
1
s2

tDY et β̂I =
1

s22
tDIY.

2) Concernant la dispersion de cet estimateur, il vient (∀ i, j = 1, ..., m avec
i 	= j):

Var β̂0 =
σ2

n
, Var β̂i =

σ2

s2
et Var β̂ij =

σ2

s22
.

3) Les composantes de β̂ sont de plus non-corrélées entre elles.

Démonstration. Pour tout plan d’expérience usuel, on sait (par hypothèse)
que tXX est une matrice diagonale, donnée explicitement par :

tXX = diag (n, s2, ..., s2, s22, ..., s22) .

En notant tβ = (β0 | tβL | tβI) et X =
[

In D DI

]
on obtient alors pour

l’estimateur des moindres carrés β̂ :

β̂ = diag
(

1
n

,
1
s2

, ...,
1
s2

,
1

s22
, ...,

1
s22

)
⎡

⎣

t
In

tD
tDI

⎤

⎦Y =

⎛

⎝
(1/n)t InY

(1/s2)
t DY

(1/s22)
t
DIY

⎞

⎠ .

On en déduit bien le résultat énoncé en 1. Concernant la dispersion de β̂, il
vient :

V

(
β̂
)

= σ2
(
tXX

)−1 = σ2 diag
(

1
n

,
1
s2

, ...,
1
s2

,
1

s22
, ...,

1
s22

)

.

Les résultats du point 2 sont alors obtenus par lecture des termes diagonaux.
Le point 3 découle enfin du fait que V

(
β̂
)

est une matrice diagonale �

Proposition 4.3. Soit un plan d’expérience usuel pour un modèle linéaire
à effets d’interactions d’ordre deux. En désignant par ‖.‖ la norme usuelle de
R

m, la dispersion de la réponse prédite en x = t (x1, ..., xm) ∈ E est donnée
par :

Var Ŷ (x) = σ2

(
1
n

+
1
s2
‖x‖2 +

1
2s22

‖x‖4 − 1
2s22

m∑

i=1

x4
i

)

.

Démonstration. D’après la proposition 2.7, il vient :
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Var Ŷ (x) = σ2 tg (x)
(
tXX

)−1
g (x)

avec g (x) vecteur de régression construit de manière identique aux lignes de
X :

∀ x = t (x1, ..., xm) ∈ E , g (x) = (1, x1, ..., xm, x1x2, ..., xm−1xm) .

et donc :

Var Ŷ (x) = σ2

⎛

⎝
1
n

+
1
s2

m∑

i=1

x2
i +

1
s22

∑∑

i<j

x2
i x

2
j

⎞

⎠ .

Il est possible de supprimer la double somme à l’aide de la relation suivante :

‖x‖4 =

(
m∑

i=1

x2
i

)2

=
m∑

i=1

x4
i + 2

∑∑

i<j

x2
i x

2
j

d’où le résultat énoncé �

Proposition 4.4. Tout plan d’expérience factoriel complet est un plan usuel
pour un modèle linéaire à effets d’interactions d’ordre deux. Il vérifie :

s2 = 2m et s22 = 2m.

Démonstration. Le lemme 3.A permet d’affirmer que tous les moments im-
pairs d’un plan d’expérience factoriel complet sont nuls. Ceci implique en
particulier que tous les moments impairs sont nuls juqu’à l’ordre 4 (condition
1 des plans usuels). Concernant maintenant les moments pairs de la forme[
i2
]

ou
[
i2j2

]
, toutes les coordonnées des 2m points non-centraux d’un plan

d’expérience factoriel sont égales à −1 ou 1 donc (i, j = 1, ..., m avec i 	= j) :

s2 =
n∑

i=1

z2ui = 2m et s22 =
n∑

i=1

z2uiz
2
uj = 2m �

Proposition 4.5. Toute fraction régulière de plan factoriel complet, de
résolution égale à V (ou plus), est un plan d’expérience usuel pour un modèle
linéaire à effets d’interactions d’ordre deux. Il vérifie de plus :

s2 = 2m−q et s22 = 2m−q.

Démonstration. Montrons au préalable qu’une fraction régulière de résolut-
ion inférieure à V rend impossible l’analyse du modèle à effets d’interactions
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d’ordre deux. Il a déjà été prouvé (proposition 3.16) qu’avec une fraction
régulière de résolution I ou II on ne peut pas analyser un modèle linéaire
d’ordre un. Il est donc impossible d’ajuster un modèle plus complexe contenant
des effets d’interactions. Montrons que l’utilisation de fractions régulières de
résolution III ou IV est impossible.

1) Soit une fraction régulière de résolution III. Il existe donc au moins un
mot de longueur égale à 3 dans le groupe G (supposons qu’il s’agisse de 123).
Donc :

I = 123⇐⇒ 1=23.

La matrice du modèle X est donc singulière puisque les colonnes associées à
l’effet linéaire 1 et à l’interaction 23 sont identiques.

2) Soit une fraction régulière de résolution IV. Il existe donc au moins un mot
de longueur égale à 4 dans le groupe G (supposons qu’il s’agisse de 1234). Donc
il vient :

I = 1234⇐⇒ 12=34.

La matrice du modèle X est donc singulière puisque les colonnes associées
aux effets d’interactions 12 et 34 sont identiques.

Montrons maintenant que le plan d’expérience est bien usuel dès lors que la
résolution de la fraction est au moins égale à V. La proposition 3.15 assure que
le produit d’Hadamard de 2, 3 ou 4 colonnes distinctes de la matrice du plan
D est toujours un contraste. La fraction régulière utilisée n’est ni de résolution
I ni de résolution II donc (proposition 3.16) les colonnes de D ainsi que les
produits d’Hadamard de deux colonnes distinctes de D sont des contrastes
non-unitaires, i.e. :

∀ i, j = 1, ..., m avec i 	= j , [i] = 0 et [ij] = 0.

La fraction régulière utilisée n’étant pas de résolution III on peut donc en
déduire que le produit d’Hadamard de 3 colonnes distinctes de D est un
contraste non-unitaire (sinon nous serions dans le cas abordé en 1). Donc :

∀ i, j, k = 1, ..., m avec i < j < k , [ijk] = 0.

La fraction régulière utilisée n’étant pas de résolution IV on peut donc en
déduire que le produit d’Hadamard de 4 colonnes distinctes de D est un
contraste non-unitaire (sinon nous serions dans le cas abordé en 2). Donc :

∀ i, j, k, l = 1, ..., m avec i < j < k < l , [ijkl] = 0.

Remarquons que, par construction, les colonnes de la matrice du plan D
(ou même du modèle X) ne contiennent que les valeurs −1 et 1 (plus
éventuellement certaines valeurs 0 associées à des réplications centrales). Il
en résulte que (avec i, j, k = 1, ..., m où i < j < k) :
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{[
i3
]

= [i] = 0,
[
i2j

]
= [j] = 0,

[
i3j

]
= [ij] = 0,

[
i2jk

]
= [jk] = 0.

En conclusion, la propriété 1 des plans usuels est bien vérifiée (définition 4.1)
puisque tous les moments impairs jusqu’à l’ordre 4 sont bien nuls. Concernant
maintenant les moments pairs de la forme

[
i2
]

et
[
i2j2

]
, une fraction régulière

engendrée par q générateurs est constituée de 2m−q expériences. Comme les
coordonnées de chacun des points du plan sont −1 ou +1 il en découle que :

∀ i = 1, ..., m , n
[
i2
]

= s2 = 2m−q et n
[
i2j2

]
= s22 = 2m−q �
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Plans d’expérience pour surfaces de réponse

5.1 Introduction

Les modèles étudiés dans les chapitres précédents, d’ordre un ou bien avec
effets d’interactions, ne permettent pas toujours de rendre compte correcte-
ment du phénomène étudié. Il existe en effet des situations où de tels modèles
vont s’avérer trop pauvres, principalement parce qu’ils ne comportent pas de
termes quadratiques aptes à traduire une ”courbure” dans la réponse étudiée.
Afin de pallier ce type de problème il est possible d’ajuster cette fois un modèle
polynomial complet de degré deux (i.e. contenant un effet moyen général, des
effets linéaires, des effets d’interactions mais aussi des effets quadratiques).
On dit alors que l’on ajuste une surface de réponse.

L’objet de ce chapitre est de proposer des configurations adaptées au
modèle proposé ici. Tout comme dans les chapitres précédents la classe des
plans d’expérience usuels, faciles à analyser et contenant bon nombre des
dispositifs expérimentaux classiques, va être définie tout d’abord. La situa-
tion devient cependant plus complexe ici car un tel modèle rend impossible
l’obtention d’un plan d’expérience orthogonal. On montre que l’on peut cepen-
dant obtenir encore des résultats explicites et relativement simples aussi bien
pour les problèmes d’estimations que pour certaines propriétés classiques telles
que l’isovariance par transformations orthogonales. Une fois ces fondements
théoriques posés la deuxième partie de ce chapitre est dédiée à l’étude d’un cer-
tain nombre de plans d’expérience classiques pour surfaces de réponse : plans
composites centrés complets ou fractionnaires, plans de Box et Behnken, plans
simplexes augmentés, plans hybrides de Roquemore, etc...

La dernière partie du chapitre est, une nouvelle fois, consacrée à l’étude
d’un exemple d’application mis en oeuvre à l’aide du logiciel SAS.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 5,
c© Springer-Verlag Berlin Heidelberg 2010
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5.2 Généralités

5.2.1 Modèle utilisé

Considérons un plan d’expérience D = {zu, u = 1, ..., n} à m facteurs quanti-
tatifs mis en oeuvre sur le domaine expérimental E ⊂ R

m. Un modèle poly-
nomial est dit d’ordre deux complet dès lors que l’on considère le modèle
statistique Y (x) = f (x) + ε (x) avec la loi de réponse donnée par :

∀ x ∈ E , f (x) = β0 +
m∑

i=1

βixi +
m∑

i=1

βiix
2
i +

∑∑

i<j

βijxixj .

Pour un tel modèle, on dit que :
⎧
⎪⎪⎨

⎪⎪⎩

β0 (i.e. la constante polynomiale) est l’effet moyen général,
βi (i = 1, ..., m) est l’effet linéaire du i-ème facteur,
βii (i = 1, ..., m) est l’effet quadratique du i-ème facteur,
βij (i, j =1, ..., m, i < j) est l’effet d’interaction entre les facteurs i et j.

Le modèle considéré ici est donc un modèle à effets d’interactions d’ordre deux
auquel sont rajoutés m effets quadratiques. Il en découle que le nombre de
paramètres inconnus est donc égal à (voir le paragraphe 4.2.1 pour le nombre
de paramètres du modèle à effets d’interactions d’ordre deux) :

p =
m2 + m + 2

2
+ m =

(m + 2) (m + 1)
2

.

On décomposera souvent dans la suite le vecteur β ∈ R
p des paramètres

en tβ = (β0 | tβL | tβQ | tβI) avec βL ∈ R
m vecteur des effets linéaires,

βQ ∈ R
m vecteur des effets quadratiques et βI ∈ R

m(m−1)/2 vecteur des effets
d’interactions. De manière similaire, la matrice du modèle X ∈ M (n, p) est
alors :

X =
[

In D DQ DI

]

avec D ∈ M (n, m) matrice du plan d’expérience (voir le paragraphe 3.2.2),
DI ∈ M (n, m (m− 1) /2) matrice associée aux effets d’interactions (voir le
paragraphe 4.2.1) et enfin DQ ∈ M (n, m) matrice associée aux effets quadra-
tiques telle que (avec zu1, ..., zum les m coordonnées du point zu) :

DQ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

z211 z212 . . . z21m

z221 z222 . . . z22m
...

...
...

z2(n−1)1 z2(n−1)2 . . . z2(n−1)m

z2n1 z2n2 . . . z2nm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

La matrice DQ présente la particularité d’être exclusivement constituée
d’éléments positifs.
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5.2.2 Plans d’expérience usuels

Pour un modèle d’ordre 2 la matrice des moments est alors :

M =
1
n

⎡

⎢
⎢
⎣

t
InIn

t
InD tInDQ

t
InDI

tDIn
tDD tDDQ

tDDI
tDQIn tDQD tDQDQ

tDQDI
tDIIn

tDID
tDIDQ

tDIDI

⎤

⎥
⎥
⎦ .

La forme générale des blocs t
InIn, t

InD et tDD a été explicitée dans le chapitre
3 (paragraphe 3.2.3) et la forme générale de t

InDI ,
tDDI et tDIDI a été

donnée, de même, dans le chapitre 4 (paragraphe 4.2.2). Il reste donc unique-
ment à détailler la forme des blocs en gras ci-dessus. Par définition :

1
n

t
InDQ =

[ [
12
] [

22
]

. . .
[
m2

] ]
,

1
n

tDDQ =

⎡

⎢
⎢
⎢
⎣

[
13
] [

122
]

. . .
[
1m2

]

[
122

] [
23
]

. . .
[
2m2

]

...
...

...[
12m

] [
22m

]
. . .

[
m3

]

⎤

⎥
⎥
⎥
⎦
,

1
n

tDQDQ =

⎡

⎢
⎢
⎢
⎣

[
14
] [

1222
]

. . .
[
12m2

]

[
1222

] [
24
]

. . .
[
22m2

]

...
...

...[
12m2

] [
22m2

]
. . .

[
m4

]

⎤

⎥
⎥
⎥
⎦
,

1
n

tDIDQ =

⎡

⎢
⎢
⎢
⎣

[
132

] [
1223

]
. . .

[
12m2

]

[
133

] [
1223

]
. . .

[
13m2

]

...
...

...[
12 (m− 1)m

] [
22 (m− 1)m

]
. . .

[
(m− 1)m3

]

⎤

⎥
⎥
⎥
⎦
.

Une nouvelle fois l’objectif est ici de proposer une classe de plans d’expérience
pour lesquels la matrice des moments M soit la plus simple possible. La pro-
priété d’orthogonalité est cependant impossible à obtenir pour le modèle
considéré. En effet, la matrice M ne peut être diagonale à cause des blocs
t
InDQ et tDQDQ dont tous les éléments sont forcéments positifs (le cas où

ils sont tous nuls étant sans intérêt). Afin d’annuler le maximum de moments
possibles et de rendre égaux la plupart des autres on aboutit à la définition
suivante :

Définition 5.1. Un plan d’expérience est qualifié d’usuel pour un modèle
linéaire d’ordre deux si et seulement si :

1) tous ses moments impairs jusqu’à l’ordre 4 sont nuls,
2) tous ses moments purs d’ordre deux sont égaux (

[
12
]

= ... =
[
m2

]
),

3) tous ses moments pairs croisés d’ordre quatre sont égaux,
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(∀ i, j = 1, ..., m avec i 	= j ,
[
i2j2

]
= Cte),

4) tous ses moments purs d’ordre quatre sont égaux (
[
14
]

= ... =
[
m4

]
).

Pour tout plan usuel D = {zu, u = 1, ..., n} il est donc possible de définir les
constantes s2, s22 et s4 par (∀ i, j = 1, ..., m avec i 	= j ) :

s2 = n
[
i2
]

=
n∑

u=1

z2ui , s22 = n
[
i2j2

]
=

n∑

u=1

z2uiz
2
uj , s4 = n

[
i4
]

=
n∑

u=1

n∑

u=1

z4ui.

En désignant par In le vecteur de R
n constitué des valeurs 1 et par Jn la

matrice de M (n, n) constituée uniquement par ces mêmes valeurs, la matrice
des moments d’un plan d’expérience usuel est donc de la forme suivante (0
désigne ici la matrice nulle ayant une taille adaptée au bloc considéré) :

M =
1
n

⎡

⎢
⎢
⎣

n 0 s2
t
Im 0

0 s2Im 0 0
s2Im 0 (s4 − s22) Im + s22Jm 0

0 0 0 s22Im(m−1)/2

⎤

⎥
⎥
⎦ .

Remarque. Il est courant dans la littérature, lorsqu’un plan d’expérience est
de type usuel, de voir les moments pairs jusqu’à l’ordre 4 exprimés sous la
forme suivante (∀ i, j = 1, ..., m avec i 	= j) :

[
i2
]

= λ2,
[
i2j2

]
= λ4 et

[
i4
]

= cλ4.

Ce type de notations n’est pas utilisé ici car elles présentent le défaut d’être
parfois illogiques. En effet, considérons un plan d’expérience dont la distribu-
tion des points est exclusivement concentrée sur les axes du repère utilisé. On
a alors :

∀ i, j = 1, ..., m avec i 	= j ,
[
i2j2

]
= 0 et

[
i4
] 	= 0.

Il est donc impossible de décrire correctement une telle situation à l’aide des
notations présentées ci-dessus.

5.2.3 Inversion de la matrice des moments d’un plan usuel

Comme il est impossible d’obtenir un plan d’expérience orthogonal pour un
modèle linéaire d’ordre 2 la question de l’inversibilité de la matrice des mo-
ments des plans d’expériences usuels se pose alors naturellement. On montre
tout d’abord que pour tout plan d’expérience usuel, sa matrice des moments
est inversible si et seulement si (la démonstration est effectuée avec celle de
la proposition 5.2) :

s2 > 0, s4 > s22 > 0 et n [s4 + (m− 1) s22]−ms22 > 0.

Il est maintenant possible de traduire géométriquement ces conditions. On
obtient ainsi le résultat suivant :
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Proposition 5.2. [�] Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre deux. Sa matrice des moments est inversible si et seulement si au-
cune des trois conditions suivantes n’est vérifiée :
1) la distribution des points du plan est concentrée sur les axes,
2) tout point du plan a ses coordonnées égales en valeur absolue,
3) tous les points du plan sont équidistants de l’origine.

5.2.4 Estimations et prédictions

Considérons à partir de maintenant un plan d’expérience usuel pour un modèle
linéaire d’ordre deux dont la matrice des moments est inversible. Un tel plan
permet d’estimer au sens des moindres carrés tous les paramètres inconnus
du modèle postulé et ces estimateurs vérifient de plus :

Proposition 5.3. [�] Soit un plan d’expérience usuel D = {zu, u = 1, ..., n}
pour un modèle linéaire d’ordre deux. Les différents estimateurs des moin-
dres carrés des paramètres du modèle ainsi que leurs caractéristiques de dis-
persion sont alors obtenus explicitement par les relations suivantes en notant
φ = ns4 + n (m− 1) s22 −ms22 :

1) β̂0 = Y +
s2
φ

(

ms2Y −
n∑

u=1

‖zu‖2 Yu

)

avec Var
(
β̂0

)
=

σ2

n

(

1 +
ms22
φ

)

.

2) β̂L =
1
s2

tDLY avec V

(
β̂L

)
=

σ2

s2
Im.

3) β̂Q =
1

s4 − s22
tDQY − 1

φ

[

ns2Y +
ns22 − s22
s4 − s22

n∑

u=1

‖zu‖2 Yu

]

Im.

avec V

(
β̂Q

)
=

σ2

s4 − s22

(

Im +
s22 − ns22

φ
Jm

)

.

4) β̂I =
1

s22
tDIY avec V

(
β̂I

)
=

σ2

s22
Im(m−1)/2.

Remarquons que pour tout plan d’expérience usuel les dispersions de tous les
effets linéaires sont identiques et il en va de même pour les effets quadratiques
ainsi que les effets d’interaction avec (∀ i, j = 1, ..., m où i 	= j) :

Var
(
β̂i

)
=

σ2

s2
, Var

(
β̂ij

)
=

σ2

s22
et Var

(
β̂ii

)
=

σ2

s4 − s22

(

1 +
s22 − ns22

φ

)

.

Remarquons aussi qu’il n’est plus possible d’affirmer maintenant que toutes
les composantes du vecteurs β̂ sont non-corrélées entre elles (puisque la ma-
trice des covariances n’est pas diagonale). On peut cependant remarquer que
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seulement deux couples de composantes de β̂ sont corrélées. Il s’agit de β̂ii

avec β̂jj et de β̂ii avec β̂0 (i, j = 1, ..., m avec i 	= j) et l’on a explicitement :

Cov
(
β̂ii, β̂jj

)
= σ2

(
ns22 − s22

)

φ (s22 − s4)
et Cov

(
β̂ii, β̂0

)
= −σ2 s2

φ

Considérons maintenant les prédictions réalisables à l’aide d’un tel modèle.
La réponse moyenne prédite au point x ∈ R

m est obtenue par :

Ŷ (x) = tg (x) β̂

avec g (x) ∈ R
p vecteur de régression donné pour le modèle étudié par :

tg (x) =
(
1, x1,..., xm, x2

1, ..., x
2
m, x1x2, ..., xm−1xm

)
.

Les résultats obtenus précédemment permettent alors de déterminer la forme
explicite de la dispersion de toute prédiction réalisée en un point quelconque
du domaine expérimental puisque :

Proposition 5.4. [�] Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre deux. En désignant par ‖.‖ la norme usuelle de R

m, la dispersion de
la réponse prédite en x = t (x1, ..., xm) ∈ E est donnée par :

Var Ŷ (x) = σ2

[

f (r) +
(

1
s4 − s22

− 1
2s22

) m∑

i=1

x4
i

]

avec :

f (r) =
(

1
n

+
ms22
nφ

)

+
(

1
s2

− 2
s2
φ

)

r2 +
(

1
2s22

+
s22 − ns22

φ (s4 − s22)

)

r4,

r = ‖x‖ et φ = ns4 + n (m− 1) s22 −ms22.

Une telle formulation explicite généralise celle obtenue par Borkowski [5] dans
le cas particulier des plans composites centrés ou bien des plans de Box et
Behnken.

5.2.5 Isovariance par transformations orthogonales

Rappelons (paragraphe 3.2.4) qu’un plan est dit isovariant par transforma-
tions orthogonales (ou simplement isovariant pour simplifier) si pour tout
point x du domaine expérimental et pour toute transformation orthogonale
T de R

m (i.e. conservant les distances) :

Var Ŷ (Tx) = Var Ŷ (x) .

En d’autres termes la variance de la réponse prédite en un point x ne dépend
alors que de la distance r entre le point et le centre du domaine. Il est évident,
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au vu des résultats de la proposition 5.4, qu’un tel objectif est atteint si et
seulement si :

1
s4 − s22

− 1
2s22

= 0 ⇔ s4 = 3s22.

On en déduit la proposition suivante :

Proposition 5.5. Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre deux. Un tel plan est isovariant par transformations orthogo-
nales si et seulement si :

s4 = 3s22.

La dispersion de la réponse prédite en x = t (x1, ..., xm) ∈ E est alors donnée
explicitement par :

Var Ŷ (r) = σ2

[(
1
n

+
ms22
nφ

)

+
(

1
s2

− 2
s2
φ

)

r2 +
1

2s22

(

1 +
s22 − ns22

φ

)

r4
]

avec r = ‖x‖ et φ = n (m + 2) s22 −ms22.

Tout plan d’expérience usuel tel que s4 = 3s22 est donc isovariant par
transformations orthogonales. On démontre aussi (voir Tinsson [99]) que la
proposition réciproque est vraie, c’est-à-dire que si un plan d’expérience pour
modèle d’ordre deux est isovariant par transformations orthogonales alors il
est forcément un plan usuel tel que s4 = 3s22. La démonstration de cette
propriété s’appuie sur les résultats de Draper et al. [32] montrant qu’il y a
équivalence entre les notions de plan d’expérience isovariant par transforma-
tions orthogonales et plan d’expérience dit à ”matrice des moments invariante
par transformations orthogonales”.

Exemple

Illustrons les résultats obtenus ici à l’aide d’un plan d’expérience com-
posite centré à deux facteurs (ce type de plans d’expérience sera étudié
en détail dans la section suivante). Considérons un tel plan constitué
de la partie factorielle complète (4 points), de la partie axiale (4
points) située à la distance de

√
2 unités du centre du domaine et

d’une seule expérience centrale. Il est classique d’utiliser un logiciel
spécialisé afin d’obtenir une représentation graphique de la qualité
des prédictions réalisées au sein du domaine expérimental. Un exem-
ple est donné ici avec la figure 5.1 représentant les lignes de niveau de
la fonction Var Ŷ (source : logiciel Nemrod).
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Fig. 5.1.
Lignes de niveau de Var Ŷ .
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Fig. 5.2.
Graphe de Var Ŷ en fonction de r.

Ces lignes de niveau sont des cercles concentriques donc le plan utilisé
semble être isovariant par transformations orthogonales. Le recours à
un logiciel spécialisé n’est cependant pas obligatoire car on peut ici
obtenir très facilement toutes ces informations de manière explicite
(ceci permet d’éviter les erreurs de calcul inhérentes à tout algorithme
numérique, permet d’améliorer la rapidité de tout programme infor-
matique devant réaliser un tel traitement et enfin permet de mieux
comprendre et mâıtriser le comportement du phénomène étudié). En
effet, le plan d’expérience considéré ici vérifie :

n = 9 avec s2 = 8 , s4 = 12 , s22 = 4 et donc φ = 16.

Il est donc isovariant puisque s4 = 3s22. Il en découle que (en prenant
σ2 = 1) :

Var Ŷ (r) = 1− 7
8
r2 +

11
32

r4.

Cette relation permet de construire rapidement et de manière exacte la
courbe de la figure 5.2. Remarquons que cette courbe contient autant
d’informations à elle seule que le graphique 5.1 et présente l’avantage
supplémentaire de pouvoir être représentée quel que soit le nombre de
facteurs (ce qui n’est pas le cas des courbes de niveaux qui nécessitent
forcément la sélection d’une coupe par rapport à deux facteurs).

5.2.6 Graphes des variances extrêmes

Il a été montré au paragraphe précédent que l’utilisation d’un plan d’expérience
usuel tel que s4 = 3s22 entrâıne la propriété d’isovariance permettant d’obtenir
de manière très simple les différentes valeurs des dispersions des réponses
prédites au sein du domaine expérimental (il suffit de représenter la variance
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de Ŷ comme fonction de r). Etendons ce type de construction au cas général
où l’isovariance n’est pas forcément vérifiée. Il est alors classique d’utiliser des
graphes des variances extrêmes (Variance Dispersion Graph ou simple-
ment VDG en anglais) tels qu’ils sont présentés, par exemple, par Giovannitti-
Jensen et Myers [44].

On considère tout d’abord la variance sphérique moyenne de prédiction
définie par (avec Ur =

{
x ∈ R

m / t
xx = r2

}
la sphère centrée de rayon r) :

V (r) = Ψ

∫

Ur

Var Ŷ (x) dx avec Ψ =
1

∫

Ur
dx

On rajoute ensuite les variances sphériques extrémale :

Vmin (r) = min
x∈Ur

[
Var Ŷ (x)

]
et Vmax (r) = max

x∈Ur

[
Var Ŷ (x)

]
.

Pour tout plan d’expérience isovariant par transformations orthogonales les
trois courbes du graphe des variances extrêmes sont confondues. Dans tous
les autres cas elles vont par contre donner des informations sur l’amplitude
des variations de la variance de prédiction sur toute sphère centrée de rayon r.
En pratique les graphes des variances extrêmes sont généralement obtenus de
manière numérique à l’aide d’algorithmes d’optimisation de formes quadra-
tiques à la surface de sphères (voir par exemple l’algorithme proposé par
Vining [103]). Le recours à de telles méthodes numériques est, une fois de
plus, inutile dans le cadre des plans d’expérience usuels puisqu’on a alors les
résultats explicites suivants :

Proposition 5.6. [�] Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre deux. La variance sphérique moyenne ainsi que les variances
sphériques extrémales sont données par (la fonction f étant toujours celle
de la proposition 5.4) :

1) V (r) = σ2

[

f (r) +
3

m + 2

(
1

s4 − s22
− 1

2s22

)

r4
]

,

2)

⎧
⎪⎪⎨

⎪⎪⎩

Vmin (r) = σ2

[

f (r) +
1
m

(
1

s4 − s22
− 1

2s22

)

r4
]

,

Vmax (r) = σ2

[

f (r) +
(

1
s4 − s22

− 1
2s22

)

r4
]

.

Les résultats présentés en 2 sont valables uniquement si s4 < 3s22. Dans le
cas contraire il convient de permuter les rôles de Vmin et Vmax.

Détaillons de manière concrête l’application de ce résultat.
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Exemple

Considérons ici un plan d’expérience composite centré à deux facteurs
constitué de la partie factorielle complète (4 points), de la partie axiale
(4 points) située à la distance de une unité du centre du domaine et
enfin d’une seule expérience centrale (voir la section suivante pour
plus de détails sur ce type de plan). La figure 5.3 représente alors les
lignes de niveaux de la fonction Var Ŷ (source : logiciel Nemrod). Ce
graphique montre que le plan d’expérience utilisé ici ne semble pas
être isovariant.

Fig. 5.3.
Lignes de niveau de Var Ŷ .
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Fig. 5.4.
Graphe des variances extrêmes.

Utilisons maintenant les résultats obtenus précédemment. Le plan
d’expérience considéré ici est un plan usuel tel que :

n = 9 avec s2 = 6 , s4 = 6 , s22 = 4 et donc φ = 18.

Ceci prouve bien que le plan d’expérience utilisé n’est pas isovariant
puisque s4 	= 3s22. Le graphe des variances extrêmes est obtenu ex-
plicitement par les relations suivantes (en prenant σ2 = 1) :

V (r) =
5
9
− 1

2
r2 +

13
32

r4 et

⎧
⎪⎨

⎪⎩

Vmin (r) =
5
9
− 1

2
r2 +

5
16

r4

Vmax (r) =
5
9
− 1

2
r2 +

1
2
r4

On peut alors immédiatement construire la figure 5.4 qui présente,
une nouvelle fois, le double avantage d’être à la fois exacte et facile à
obtenir quel que soit le nombre de facteurs considérés. Le graphe des
variances extrêmes ne contient cependant pas autant d’information
que la figure 5.3 (la symétrie par rapport au centre du domaine est,
par exemple, indétectable à l’aide du VDG). Il permet cependant de
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réaliser un encadrement de la variance prédite qui peut s’avérer suff-
isant dans bon nombre d’applications pratiques (la valeur Vmax est
alors primordiale car elle permet d’obtenir une borne supérieure pour
la dispersion des réponses moyennes prédites).

5.3 Plans composites centrés

5.3.1 Définition

Afin de proposer une classe de plans d’expérience faciles à construire et à
analyser la première idée consiste à réutiliser les plans factoriels (complets
ou fractionnaires) déjà mis en oeuvre pour les modèles d’ordre un ou à ef-
fets d’interactions. Une telle démarche est cependant impossible ici car les
plans factoriels sont toujours singuliers lorqu’un modèle de degré deux est
utilisé (ceci est une conséquence directe de la proposition 5.2 puisqu’avec de
tels plans tous les points ont leurs coordonnées égales en valeur absolue). Une
solution consiste à rajouter un petit nombre de points (la partie dite ”axi-
ale”) afin de rendre le plan d’expérience obtenu régulier. Ceci conduit aux
plans d’expérience dits composites centrés très utilisés en pratique, introduits
historiquement par Box et Wilson [16] puis Box et Hunter [15].

Définition 5.7. Un plan d’expérience composite centré pour m facteurs
est constitué par :
1) la partie factorielle contenant tous les sommets du cube [−1, 1]m ou une
fraction régulière de résolution égale à V (ou plus) de ces sommets,
2) la partie axiale contenant tous les points situés sur les axes du repère à
une même distance α du centre du domaine expérimental,
3) la partie centrale contenant n0 éventuelles réplications du centre du do-
maine expérimental.

Remarquons que le terme ”centré” provient du centrage de ce plan par rapport
à l’origine du repère utilisé. Le terme ”composite” traduit la séquentialité du
plan : il est possible de réaliser dans un premier temps les expériences de la
partie factorielle (et donc d’ajuster un modèle à effets d’interactions) puis de
rajouter ensuite, si nécessaire, les expériences de la partie axiale. La fraction
régulière des sommets de [−1, 1]m étant définie par q générateurs, le nombre
d’expériences à réaliser avec un tel plan d’expérience est donc (puisqu’il y a
sur chaque axe 2 points situés à une distance α du centre) :

n = 2m−q + 2m + n0.

Un plan composite centré est entièrement déterminé par la connaissance de
sa partie factorielle, de la distance α des points axiaux au centre du domaine
et par le nombre de réplications centrales utilisées, c’est pourquoi un tel plan
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sera désormais désigné par (CCD venant de la terminologie anglaise Central
Composite Design) :

CCD
(
2m−q
R , α, n0

)
ou CCD

(
2m−q
R , α, n0, I =C1 = C2 = ... = Cq

)
.

La deuxième notation sera utilisée afin de préciser les générateurs de la partie
factorielle. On qualifie souvent de plan composite centré complet tout CCD
dont la partie factorielle est constituée par les 2m sommets du cube [−1, 1]m.
Dans les autres cas le CCD est dit fractionnaire.

Exemple

Le plan d’expérience composite centré complet pour m = 2 facteurs
avec la partie axiale située à α = 2 unités du centre du domaine et
n0 = 1 expérience centrale (i.e. le plan de type CCD

(
22, 2, 1

)
) a pour

matrice :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1
1 −1

−1 1
1 1
2 0

−2 0
0 2
0 −2
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et donc X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 1 1 1
1 1 −1 1 1 −1
1 −1 1 1 1 −1
1 1 1 1 1 1
1 2 0 4 0 0
1 −2 0 4 0 0
1 0 2 0 4 0
1 0 −2 0 4 0
1 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

5.3.2 Propriétés

Le résultat suivant est primordial pour l’analyse des plans d’expérience com-
posites centrés :

Proposition 5.8. [�] Tout plan d’expérience composite centré (complet ou
fractionnaire) est un plan d’expérience usuel pour un modèle linéaire d’ordre
deux. Il vérifie de plus (avec q = 0 pour un plan complet) :

s2 = 2m−q + 2α2, s4 = 2m−q + 2α4 et s22 = 2m−q.

La classe des plans d’expérience composite centrés présente l’avantage de pou-
voir faire varier le paramètre α (distance des points axiaux au centre) afin
d’obtenir diverses propriétés. Voici, plus précisemment, quelques configura-
tions courantes.

1) Plans composites centrés isovariants.
Il s’agit ici de la propriété la plus souvent recherchée pour ce type de plan
d’expérience (la plupart des logiciels proposent automatiquement des plans
isovariants). Il a été vu précédemment (paragraphe 5.2.5) que la dispersion
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de la réponse moyenne prédite au point x ne dépend que de la distance entre
x et le centre du domaine si et seulement si :

s4 = 3s22.

Comme s4 = 2m−q + 2α4 et s22 = 2m−q on en déduit le résultat suivant :

Proposition 5.9. Un plan d’expérience composite centré est isovariant par
transformations orthogonales si et seulement si :

α =
(
2m−q

) 1
4 .

Il est donc très facile, par un simple choix de la distance des points axi-
aux au centre du domaine, d’obtenir une configuration vérifiant la propriété
d’isovariance. L’analyse du modèle ajusté s’en trouve alors simplifiée (voir le
paragraphe 5.2.5).

2) Plans composites centrés à faces centrées.
L’utilisateur peut parfois être tenté, par souci de simplicité, de considérer la
valeur α = 1 pour la distance des points axiaux au centre du domaine. Un
tel choix correspond alors à celui d’un CCD dit à faces centrées (en effet,
si l’on considère la partie factorielle comme étant les sommets ou un sous-
ensemble des sommets du cube unité [−1, 1]m alors choisir α = 1 équivaut à
prendre les points axiaux au centre des faces de ce cube). Le principal intérêt
de ce type de CCD réside dans le fait que tous les facteurs considérés ont
uniquement trois niveaux distincts (−1, 0 et 1 sous forme codée). Ceci peut
donc s’avérer intéressant dans toutes les situations où il est difficile, long ou
coûteux de changer de niveau (par exemple il peut être intéressant de n’avoir
que 3 températures différentes à fixer dans un four industriel au lieu de 5 pour
un choix de α différent de 1).

3) Plans composites centrés équiradiaux.
Un autre objectif peut être d’obtenir un plan d’expérience équiradial, c’est-
à-dire tel que toutes les unités expérimentales (réplications centrales exclues)
soient situées à la même distance du centre du domaine. En désignant par
S (r) la sphère centrée de rayon r il vient pour tout CCD à m facteurs :

{
les points de la partie factorielle sont à la surface de S (

√
m) ,

les points de la partie axiale sont à la surface de S (α).

Il en résulte immédiatement la proposition suivante :

Proposition 5.10. Un plan d’expérience composite centré est équiradial si
et seulement si:

α =
√

m.
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L’utilisation d’un tel plan d’expérience peut être utile pour positionner tous
les points expérimentaux aux bornes du domaine expérimental (sphérique).
Ce type de configuration est optimal selon le critère de D-optimalité qui sera
étudié à la fin de cet ouvrage (paragraphes 10.4.3 et 10.6.3). Remarquons aussi
que la notion de CCD équiradial cöıncide parfois avec celle de CCD isovariant
(par exemple pour m = 2, 4 et 8 facteurs). Prenons garde au fait que, par
définition, un CCD équiradial ne peut être à matrice des moments inversible
que s’il est utilisé avec au moins une expérience centrale (sinon tous les points
expérimentaux sont à la même distance de l’origine et la singularité est une
conséquence de la proposition 5.2).

4) Plans composites centrés presque-orthogonaux.
L’objectif est de se rapprocher le plus possible d’une situation d’orthogonalité.
Il a été montré (section 5.2.4) qu’il est impossible pour un modèle d’ordre
deux d’obtenir un plan d’expérience usuel orthogonal à cause des termes non-
diagonaux suivants de la matrice des covariances :

Cov
(
β̂ii, β̂jj

)
= σ2

(
ns22 − s22

)

φ (s22 − s4)
et Cov

(
β̂ii, β̂0

)
= −σ2 s2

φ
.

On constate que l’on ne peut pas annuler Cov
(
β̂ii, β̂0

)
(sauf dans le cas sans

intérêt où s2 = 0) mais par contre :

Cov
(
β̂ii, β̂jj

)
= 0 ⇐⇒ ns22 − s22 = 0 ⇐⇒ n2m−q =

(
2m−q + 2α2

)2
.

Ces résultats permettent alors d’énoncer la proposition suivante :

Proposition 5.11. Un plan d’expérience composite centré est presque-
orthogonal si et seulement si:

α =

√
√
√
√
√

2m−q
(√

n−√
2m−q

)

2
.

Remarquons que, contrairement aux autres propriétés vues précédemment, la
presque-orthogonalité est atteinte pour une valeur du paramètre α dépendant
du nombre total d’expériences n (α est de plus croissant en fonction de n c’est-
à-dire en particulier croissant en fonction du nombre d’expériences centrales
n0).

La table 5.1 résume les diverses valeurs du paramètre α nécessaires à
l’obtention de la propriété d’isovariance (Isovari.), de centrage des faces (F-
Cent.), d’équiradialité (Equira.) et enfin de presque-orthogonalité (P-Orth.).
Quatre valeurs sont données pour cette dernière propriété, elles correspon-
dent (de haut en bas) à n0 = 0, 1, 2 et 3 expériences centrales. Les valeurs
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de α associées à un plan d’expérience équiradial donnent un plan à matrice
des moments non-inversible, il est obligatoire de rajouter alors au moins une
expérience supplémentaire au centre du domaine.

Table 5.1. Valeurs de α pour l’obtention de différentes propriétés.

Isovari. F-Cent. Equira. P-Orth.

CCD
(
22, α, n0

)
1.414 1.000 1.414

0.910
1.000
1.078
1.147

CCD
(
23, α, n0

)
1.682 1.000 1.732

1.136
1.215
1.287
1.353

CCD
(
24, α, n0

)
2.000 1.000 2.000

1.341
1.414
1.483
1.547

CCD
(
25−1

V , α, n0

)
2.000 1.000 2.236

1.483
1.547
1.607
1.664

CCD
(
26−1

V , α, n0

)
2.378 1.000 2.449

1.662
1.724
1.784
1.841

CCD
(
27−1

V , α, n0

)
2.828 1.000 2.646

1.824
1.885
1.943
2.000

CCD
(
28−2

V , α, n0

)
2.828 1.000 2.828

1.943
2.000
2.055
2.108

CCD
(
29−2

V , α, n0

)
3.364 1.000 3.000

2.086
2.141
2.195
2.247

CCD
(
210−3

V , α, n0

)
3.364 1.000 3.162

2.195
2.247
2.298
2.348
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5.3.3 Intérêt des réplications centrales

Une nouvelle fois le problème du nombre n0 d’expériences à réaliser au centre
du domaine expérimental se pose. L’utilisation de telles expériences présente à
la fois des avantages et des inconvénients (tout comme cela a déjà été constaté
au paragraphe 3.3.3 pour des modèles d’ordre un). Les inconvénients sont
encore liés au fait que ces réplications centrales vont augmenter la taille du
plan d’expérience (ce qui n’est pas toujours souhaitable) et vont introduire un
niveau supplémentaire pour les facteurs (0 sous forme codée). L’utilisation de
telles réplications présente, par contre, de nombreux avantages. En effet :

1) la qualité de l’estimation du paramètre β0 augmente en fonction du nom-
bre d’expériences au centre (i.e. Var β̂0 est décroissante en n0). Ce résultat
s’explique à l’aide de la proposition 5.3 puisque la quantité φ est, par
définition, croissante en n,

2) la qualité de l’estimation des effets quadratiques βii (i = 1, ..., n) augmente
en fonction du nombre d’expériences au centre (i.e. Var β̂ii est décroissante
en n0). Ceci découle toujours de la proposition 5.3 où il a été prouvé que :

Var β̂ii =
σ2

s4 − s22

(

1 +
s22 − ns22

n [s4 + (m− 1) s22]−ms22.

)

.

En interprétant ce dernier résultat comme une fonction de n, on montre
alors sans peine (par simple calcul de dérivée) qu’il s’agit d’une quantité
décroissante en n. Remarquons aussi (voir la proposition 5.3) que le nombre
d’expériences au centre du domaine est sans effet sur la qualité de l’estimation
des effets linéaires et des effets d’interactions,

3) le recours à au moins une expérience centrale est obligatoire dans tous les
cas où le plan d’expérience utilisé est équiradial,

4) lorsque des réplications au centre du domaine sont vraiment réalisées (i.e.
lorsque n0 ≥ 2) on peut affiner l’analyse du modèle en déterminant les sommes
des carrés dues au manque d’ajustement et à l’erreur pure (voir le paragraphe
2.5.4),

5) la qualité des prédictions dans le domaine expérimental augmente en fonc-
tion du nombre d’expériences au centre (i.e. Var Ŷ (x) est décroissante en
n0). Ce résultat est démontrable en utilisant des arguments similaires à ceux
présentés aux points 1 et 2. On constate de plus que généralement un petit
nombre de réplications centrales permet d’améliorer la qualité des résultats
de manière significative. Ceci est illustré par la figure 5.5 représentant la fonc-
tion Var Ŷ (avec σ2 = 1) pour un plan composite centré isovariant à m = 5
facteurs de type CCD

(
25−1

V , 2, n0

)
.
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Fig. 5.5.
Graphe de Var Ŷ en fonction de r pour n0 = 0, 1, 2, 3 et ∞.

Effectuons une lecture des courbes de ce graphique de haut en bas.
La courbe supérieure (en pointillés) représente la situation où il n’y a pas
d’expérience au centre du domaine (n0 = 0). On constate ensuite une
amélioration très sensible pour la seconde courbe correspondant à n0 = 1
expérience centrale. La qualité des prédictions continue à augmenter (mais
de manière moins sensible) pour les cas où 2 ou 3 expériences centrales sont
réalisées. Remarquons enfin que la courbe inférieure (aussi en pointillés) cor-
respond au cas limite où le nombre d’expériences au centre du domaine tend
vers l’infini. En d’autres termes l’expression de Var Ŷ est obtenue en passant
à la limite sur n dans la formule de la proposition 5.5, donc :

Var Ŷ∞ (r) = σ2

[
1
s2

r2 +
1

2s22

(

1− 1
m + 2

)

r4
]

.

Cet exemple montre bien l’intérêt d’inclure dans le protocole expérimental des
expériences centrales, un petit nombre de celles-ci étant suffisant afin d’obtenir
une amélioration très sensible de la qualité des prédictions. Remarquons enfin
que l’utilisation d’un petit nombre d’expériences centrales permet aussi de
se rapprocher d’une situation de ”dispersion uniforme” dans le sens où la
dispersion de la réponse moyenne prédite est alors quasi-constante sur une
partie du domaine expérimental (c’est le cas pour n0 = 3 car la variance de
Ŷ est alors presque constante dès lors que l’on évite les bornes du domaine).
Le lecteur souhaitant aller plus loin sur le problème du choix du nombre de
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réplications centrales pourra consulter l’article de Draper [31] où un certain
nombre de critères sont présentés et analysés.

5.3.4 Plans composites centrés de petite taille

Ce paragraphe présente brièvement quelques résultats relatifs à une classe de
plans d’expérience composites centrés de petite taille proposée initialement
par Hartley [48]. Le recours à de telles configurations peut être justifié si
l’objectif de minimisation du nombre des expériences à réaliser est primordial.
Afin d’obtenir des plans composites centrés ayant moins d’expériences que les
plans composites centrés fractionnaires classiques l’idée de Hartley consiste à
utiliser comme partie factorielle une fraction régulière de résolution III∗ selon
la définition suivante (voir la section 3.4 du chapitre 3 pour la théorie générale
des fractions régulières) :

Définition 5.12. Une fraction régulière est dite de résolution III∗ si et
seulement si elle est une fraction régulière de résolution III dont le groupe des
contrastes de définition ne contient aucun élément de longueur égale à 4.

Voici un exemple de telle fraction régulière :

Exemple

Pour m = 6 facteurs, la fraction régulière définie par I =123 = 456
est une fraction régulière de résolution III∗. En effet, son groupe des
contrastes de définition est :

G = {I, 123, 456, 123456} .

Ce groupe ne contient donc que des éléments de longueur 3 ou 6.

Un plan d’expérience est dit composite centré de petite taille dès lors
qu’il vérifie la définition 5.7 mais avec cette fois la partie factorielle qui est
une fraction régulière de résolution III∗.

Il est étonnant, a priori, de considérer une telle configuration. En ef-
fet, il a été montré au chapitre 4 qu’il est impossible d’utiliser une frac-
tion régulière de résolution III afin d’ajuster un modèle contenant des effets
d’interactions (car il y a forcément alors des confusions entre effets linéaires
et effets d’interactions). Dans le cas où un plan composite centré de pe-
tite taille est utilisé les éléments de longueur 3 du groupe des contrastes de
définition entrâıneraient aussi les mêmes confusions entre effets linéaires et
effets d’interactions si le plan était seulement limité à la partie factorielle.
Mais l’utilisation d’une partie axiale donne des informations supplémentaires
sur les effets linéaires permettant cette fois de supprimer cette confu-
sion d’effets. Remarquons enfin que le fait d’utiliser une fraction régulière
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de résolution III∗ permet d’affirmer qu’il n’y a aucun élément de longueur 4
dans le groupe G donc il n’existe pas de confusions entre les différents effets
d’interactions. Toutes ces constatations entrâınent qu’un tel plan d’expérience
va bien être régulier (sauf cas particuliers liés à la valeur de α).

Concernant maintenant la construction de ce type de plans, les plus petites
tailles qu’il est possible d’obtenir sont résumées dans la table 5.2. L’obtention
des générateurs de fractions régulières de résolution III∗ ne pose pas de
problèmes particuliers pour un petit nombre de facteurs. Pour des méthodes de
construction plus générales le lecteur pourra se référer aux articles de Draper
et Lin [33] [34]. En ce qui concerne les propriétés des plans composites centrés
de petite taille attention au fait qu’ils ne font pas partie de la classe des
plans d’expérience usuels (en effet, il existe au moins un élément de longueur
égale à 3 dans le groupe des contrastes de définition donc au moins un moment
d’ordre 3 est non-nul). Il découle de ceci qu’il est alors impossible d’obtenir
la propriété d’isovariance par transformations orthogonales. Voir Tinsson [97]
pour plus de détails théoriques concernant cette classe de plans d’expérience.

5.3.5 Taille des plans composites centrés

La table 5.2 présentée ci-dessous résume les différentes tailles des plans com-
posites centrés (avec n0 = 0). Le tableau donne pour m facteurs (2 ≤ m ≤ 10)
le nombre de paramètres inconnus p du modèle d’ordre deux, la taille du plan
composite centré complet (i.e. 2m + 2m), la taille minimale possible pour un
plan composite centré fractionnaire de résolution V et enfin la taille minimale
possible pour un plan composite centré de petite taille (avec une fraction
régulière de résolution III∗).

Remarquons que les plans composites centrés de petite taille sont saturés
pour 3 ou 6 facteurs.

Table 5.2. Taille de différents plans composites centrés.

p CCD comp. CCD res. V CCD res. III∗

2 facteurs 6 8 × ×
3 facteurs 10 14 × 10
4 facteurs 15 24 × 16
5 facteurs 21 42 26 26
6 facteurs 28 76 44 28
7 facteurs 36 142 78 46
8 facteurs 45 272 80 80
9 facteurs 55 530 146 82

10 facteurs 66 1044 148 148
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5.4 Plans de Box et Behnken

5.4.1 Définition

Cette section introduit les plans d’expérience construits selon la technique
proposée par Box et Behnken [10]. L’idée de ces auteurs est de combiner des
plans d’expérience en blocs pour facteurs qualitatifs avec des plans factoriels
classiques à deux niveaux. Plus précisemment la technique de construction,
en deux étapes, est la suivante (voir aussi la section 9.4 relative à la notion
de plan en blocs incomplets équilibré (BIBD) pour facteurs qualitatifs) :

1) déterminer un BIBD(m, b, k, r, λ) où m désigne le nombre de traitements,
b le nombre de blocs, k la taille de chacun des blocs, r le nombre d’occurences
de chaque traitement et λ le nombre de blocs contenant chacun des couples
de traitements,

2) remplacer chacun des blocs du BIBD par le plan d’expérience factoriel
FD

(
2k, 0

)
complet correspondant.

On limite volontairement ici la classe des plans proposés par Box et Behnken.
En effet, ces auteurs ont donné dans leur article une définition plus générale
permettant l’utilisation de structures autres que les BIBD (notamment les
PBIBD présentés à la section 9.5). Comme nous le verrons par la suite seuls les
plans d’expérience construits à partir d’un BIBD ont d’intéressantes propriétés
(plans usuels, isovariances, etc ...), on les qualifiera désormais de plans de Box
et Behnken simples.

Exemple

Considérons ici la construction d’un plan de Box et Behnken simple
pour m = 3 facteurs. Il faut dans un premier temps déterminer un
BIBD relatif à 3 traitements. On a alors classiquement la structure
suivante :

Trait. 1 Trait. 2 Trait. 3
Bloc 1 × ×
Bloc 2 × ×
Bloc 3 × ×

Il s’agit en fait ici d’un plan en blocs incomplet équilibré de type
BIBD(3, 3, 2, 2, 1) . En le combinant avec un plan factoriel de type
FD

(
22, 0

)
on obtient la matrice du plan d’expérience suivant :
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 0
1 −1 0

−1 1 0
1 1 0

−1 0 −1
1 0 −1

−1 0 1
1 0 1
0 −1 −1
0 1 −1
0 −1 1
0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Ceci constitue donc un plan d’expérience avec n = 12 et trois niveaux
sont nécessaires (−1, 0 et 1 sous forme codée). Afin de simplifier
l’écriture d’une telle matrice il est classique de la désigner par :

D =

⎡

⎣
±1 ±1 0
±1 0 ±1
0 ±1 ±1

⎤

⎦ .

Voici la liste des premiers plans de Box et Behnken simples (voir Box et
Behnken [10]). Une nouvelle fois, la notation ±1 signifie que la colonne est
celle d’un plan factoriel complet (si ±1 apparait k fois dans la ligne considérée
les colonnes sont donc constituée par 2k éléments).

1) Pour m = 3 facteurs la construction découle d’un BIBD(3, 3, 2, 2, 1) et la
matrice du plan a été donnée dans l’exemple précédent. On obtient donc ici
une configuration constituée par n = 12 expériences.

2) Pour m = 4 facteurs la construction découle d’un BIBD(4, 6, 2, 3, 1) et la
matrice du plan est donnée par :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

±1 ±1 0 0
0 0 ±1 ±1
±1 0 0 ±1
0 ±1 ±1 0
±1 0 ±1 0
0 ±1 0 ±1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On obtient donc ici une configuration constituée par n = 24 expériences.

3) Pour m = 5 facteurs la construction découle d’un BIBD(5, 10, 2, 4, 1) et la
matrice du plan est donnée par :
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

±1 ±1 0 0 0
0 0 ±1 ±1 0
0 ±1 0 0 ±1
±1 0 ±1 0 0
0 0 0 ±1 ±1
0 ±1 ±1 0 0
±1 0 0 ±1 0
0 0 ±1 0 ±1
±1 0 0 0 ±1
0 ±1 0 ±1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On obtient donc ici une configuration constituée par n = 40 expériences.

4) Pour m = 7 facteurs la construction découle d’un BIBD(7, 7, 3, 3, 1) et la
matrice du plan est donnée par :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 ±1 ±1 ±1 0
±1 0 0 0 0 ±1 ±1
0 ±1 0 0 ±1 0 ±1
±1 ±1 0 ±1 0 0 0
0 0 ±1 ±1 0 0 ±1
±1 0 ±1 0 ±1 0 0
0 ±1 ±1 0 0 ±1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On obtient donc ici une configuration constituée par n = 56 expériences.

Concernant les autres nombres de facteurs notons qu’il n’existe pas de plan
de Box et Behnken pour 2 ou 8 facteurs. Pour maintenant 6, 9 et 10 facteurs
on peut obtenir de tels plans, constitués par respectivement 48, 120 et 160
expériences mais il ne sont pas construits à partir d’un BIBD (voir Box et
Behnken [10]).

5.4.2 Propriétés

Considérons dans cette section uniquement des plans de Box et Benhken sim-
ples (c’est-à-dire obtenus à partir d’un BIBD) auxquels n0 ∈ N expérience(s)
supplémentaire(s) sont ajoutées au centre du domaine expérimental. Remar-
quons au préalable qu’un tel plan d’expérience résulte de la construction de
b blocs (les blocs initiaux du BIBD) de taille 2k (puisque chacun des blocs
initiaux est remplacé par le plan FD

(
2k, 0

)
), il est donc constitué par un

total de b2k + n0 expériences. En ce qui concerne maintenant leurs moments
les résultats ci-dessous sont immédiats :

1) l’utilisation de blocs qui sont des plans factoriels complets FD
(
2k, 0

)
en-

trâıne que tous les moments impairs jusqu’à l’ordre 4 sont nuls (i.e. chacun
des blocs va vérifier cette propriété d’après les résultats du chapitre 4),
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2) chaque traitement étant répété r fois dans le BIBD initial, on obtient donc
puisque zui = ±1 (∀ i = 1, ..., m) :

n∑

u=1

z2ui = r2k et
n∑

u=1

z4ui = r2k,

3) de même, chaque couple de traitements étant répété λ fois dans le BIBD
initial on obtient (∀ i, j = 1, ..., m avec i 	= j) :

n∑

u=1

z2uiz
2
uj = λ2k.

On en déduit alors le résultat suivant :

Proposition 5.13. Tout plan de Box et Benhken simple, construit à par-
tir d’un BIBD(m, b, k, r, λ) est un plan d’expérience usuel pour un modèle
linéaire d’ordre deux, constitué par n = b2k + n0 expériences. Il vérifie :

s2 = r2k, s4 = r2k et s22 = λ2k.

Remarque. Lorsque le plan de Box et Benhken n’est pas simple on a alors
généralement une structure où chaque couple de traitements n’apparait pas
le même nombre de fois et donc le point 3 n’est plus vérifié.

On déduit immédiatement de la proposition 5.5 qu’un plan de Box et
Benhken simple construit à partir d’un BIBD(m, b, k, r, λ) est isovariant si
et seulement si :

r = 3λ.

Les plans de Box et Benhken proposés précedemment sont donc isovariants
pour 4 ou 7 facteurs. Concernant l’utilisation pratique des plans de Box et
Benhken simples prenons garde au fait que, par définition, ils sont constitués
de points situés à la même distance

√
k de l’origine lorsque le plan est obtenu

à partir d’un BIBD(m, b, k, r, λ) . D’après la proposition 5.4 un plan de Box
et Benhken est donc à matrice des moments inversible si et seulement si il
est utilisé avec au moins une expérience centrale (i.e. n0 ≥ 1).

5.5 Plans simplexes augmentés

5.5.1 Définition

L’objet de cette section est de généraliser la structure de plan simplexe (voir le
chapitre 3, section 3.5) au cas d’un modèle d’ordre deux. Les plans simplexes
étant saturés pour l’utilisation d’un modèle d’ordre un il est évident qu’une
telle structure n’est pas assez riche pour l’utilisation d’un modèle d’ordre deux.
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Box et Behnken [11] ont alors proposé de considérer des plans dits simplexes
augmentés (simplex-sum designs) obtenus de la manière suivante :

1) déterminer un plan simplexe initial pour m facteurs (zu)u=1,...,n ,

2) construire la partie augmentée du plan en rajoutant, pour chaque couple
de points du plan zs ∈ R

m et zt ∈ R
m (s, t = 1, ..., n avec s 	= t) le nouveau

point :
z (α, s, t) = α (zs + zt)

avec α ∈ R constante fixée par l’utilisateur.

Ce type de plan d’expérience est donc obtenu de manière séquentielle puisqu’il
est possible dans un premier temps de réaliser les expériences du plan simplexe
initial (et donc d’ajuster un modèle polynomial d’ordre un) puis de rajouter,
si nécessaire, celles de la partie augmentée du plan.

Exemple

Considérons la construction d’un plan simplexe augmenté pour m = 3
facteurs. Cette construction commence par le choix préalable d’un
plan simplexe initial. La matrice D1 de ce plan est donnée par util-
isation de la technique de construction des plans simplexe cycliques
(voir la section 3.5.1) :

D1 =

⎡

⎢
⎢
⎣

−1 −1 −1
1 1 −1

−1 1 1
1 −1 1

⎤

⎥
⎥
⎦ .

La matrice D2 de la partie augmentée est obtenue en effectuant toutes
les sommes de couples de lignes différentes de la matrice D1 :

D2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 −2
−2 0 0

0 −2 0
0 2 0
2 0 0
0 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

La partie augmentée étant utilisée à un coefficient multiplicateur α
près, le plan simplexe augmenté est donc défini par la matrice D telle
que :

tD =
[

tD1 αtD2

]
.
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5.5.2 Propriétés

Examinons quelques-unes des propriétés des plans d’expérience simplexes aug-
mentés. De manière générale considérons ici que n0 éventuelles expériences ont
été rajoutées au centre du domaine. Lorsque le plan fait intervenir m facteurs
et qu’une constante α a été fixée pour construire la partie augmentée, on le
désigne dans la suite par la notation (pour Simplex Sum Design) :

SSD (m, α, n0) .

L’intérêt premier de ce type de plans réside dans leur très petite taille; de
telles configurations peuvent donc être particulièrement intéressantes dans le
cas où les expériences sont très coûteuses à réaliser. En effet, lorsqu’un tel plan
d’expérience est utilisé il est donc constitué par les (m + 1) expériences du plan
simplexe initial et les expériences de la partie augmentée dont le nombre est
égal au nombre de choix (non ordonnés) de deux expériences distinctes parmi
les (m + 1) de la partie initiale, c’est-à-dire :

C2
m+1 =

(m + 1)!
2! (m− 1)!

=
m (m + 1)

2
.

On en déduit immédiatement que tout plan simplexe augmenté SSD (m, α, n0)
a pour nombre d’expériences :

n =
(m + 1) (m + 2)

2
+ n0.

Un tel plan d’expérience est donc saturé pour un modèle d’ordre deux
lorsqu’il est utilisé sans expérience au centre (n0 = 0).

Lors de l’étude des plans simplexes (section 3.5) il a été montré que tous
les points de ce type de plan sont situés à la surface de la sphère centrée
S (

√
m) de rayon

√
m (paragraphe 3.5.2). Il est possible d’avoir encore une

telle interprétation géométrique des plans simplexes augmentés puisque pour
tout SSD (m, α, n0) (voir Tinsson [98]) :

1) la partie initiale est située à la surface de la sphère S (
√

m) ,

2) la partie augmentée est située à la surface de la sphère
S
(
|α|√2 (m− 1)

)
.

Les plans simplexes augmentés sont donc particulièrement intéressants du
point de vue de leur faible taille mais en contrepartie ils ne présentent pas de
structure simple à analyser puisque un plan simplexe de type SSD (m, α, n0)
n’est jamais un plan d’expérience usuel pour un modèle d’ordre deux (voir
Tinsson [98]). Ceci entrâıne donc qu’il n’est pas possible d’obtenir, par exem-
ple, des plans simplexes augmentés isovariants par transformations orthogo-
nales. Tout comme pour les cas des plans composites centrés, le problème du
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choix du paramètre α se pose concrêtement. Voici quelques choix possibles
pour la valeur du paramètre α intervenant dans la construction d’un plan
d’expérience simplexe augmenté de type SSD (m, α, n0) .

1) Plans simplexes augmentés classiques.
La valeur du paramètre α la plus couramment utilisée en pratique consiste à
prendre α = 1/2 (voir Spendley et al. [93]). Le principal avantage de cette
méthode réside dans la simplicité de la valeur utilisée ainsi que dans la facilité
de l’interprétation géométrique de la configuration ainsi obtenue (la partie
augmentée est alors constituée de tous les points situés au milieu des arêtes
du simplexe initial).

2) Plans simplexes augmentés améliorés.
Plus récemment, Morris [66] a proposé de considérer la valeur α = −1/2 (et
ceci pour construire de manière générale des ”augmented pair designs” inclu-
ant les plans d’expérience considérés ici). Morris a montré que cette valeur
permet, tout en gardant des configurations faciles à construire, d’obtenir des
plans d’expérience de meilleure qualité (i.e. permettant d’obtenir des estima-
teurs moins dispersés) que dans le cas classique vu précédemment.

3) Plans simplexes augmentés équiradiaux.
Pour diverses raisons l’utilisateur peut rechercher des plans équiradiaux, c’est-
à-dire constitués par des points situés à la même distance de l’origine. D’après
les résultats précédents une telle propriété est vérifiée par un plan simplexe
augmenté de type SSD (m, α, n0) si et seulement si :

|α|
√

2 (m− 1) =
√

m ⇐⇒ α = ±
√

m

2 (m− 1)
.

4) Plans simplexes augmentés optimaux.
La détermination de la valeur du paramètre α peut enfin être guidée par des
objectifs d’optimalité pour certains critères usuels. Dans cette optique diverses
valeurs de α ont été proposées par Tinsson [98] afin de maximiser l’efficacité
du plan SSD (m, α, n0) considéré (voir la section 10.4 relative aux critères
d’efficacité).

5.6 Plans hybrides

5.6.1 Définition

Présentons ici les plans d’expérience qualifiés d’hybrides, introduits par Roque-
more [81]. L’objectif de l’auteur était alors de présenter des plans pouvant être
une alternative aux plans composites centrés, mais de taille moindre tout en
restant relativement ”efficaces”. Pour cela, la technique mise en oeuvre con-
siste à procéder de la manière suivante dans le cas de m facteurs :



5.6 Plans hybrides 177

1) déterminer un plan d’expérience pour (m− 1) facteurs ayant un maximum
de propriétés intéressantes (le plus souvent sous forme d’un plan composite
centré isovariant). Ce plan d’expérience va être transcrit dans les (m− 1)
premières colonnes de la matrice du plan final,

2) fixer ”au mieux” les niveaux du dernier facteur tout en gardant le nombre
d’expériences de l’étape 1. En d’autres termes on construit la dernière colonne
de la matrice du plan final de manière à ce que le plan d’expérience obtenu
soit le plus régulier possible.

L’intérêt de cette méthode provient du fait qu’un plan pour m facteurs est
construit à partir d’un plan pour (m− 1) facteurs (étape 1) d’où la possi-
bilité d’obtenir des tailles intéressantes. La difficulté principale, qui a motivé
l’article de Roquemore [81], réside dans le choix des niveaux du dernier fac-
teur. L’auteur utilise une terminologie particulière afin de désigner les plans
d’expérience obtenus. Par exemple, le plan hybride ”416B” désigne un plan
pour 4 facteurs constitué par 16 expériences et il s’agit du plan B présenté par
Roquemore car il existe dans ce cas plusieurs plans hybrides de même taille
(les plans A et B).

Exemple

Considérons le plan hybride 311A. Ce plan d’expérience est défini par
la matrice suivante (par rapport au plan de Roquemore toutes les
coordonnées ont été divisées ici par

√
2 afin d’obtenir pour les deux

première colonnes une écriture conforme à celle de la définition 5.7) :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 1/
√

2
1 −1 1/

√
2

−1 1 1/
√

2
1 1 1/

√
2√

2 0 −1/
√

2
−√2 0 −1/

√
2

0
√

2 −1/
√

2
0 −√2 −1/

√
2

0 0
√

2
0 0 −√2
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

On constate que pour les deux premiers facteurs le plan d’expérience
utilisé est un plan composite centré isovariant. Les niveaux du dernier
facteur proposés par Roquemore sont donnés dans la troisième colonne.
Il s’agit donc d’affecter la valeur 1/

√
2 à tous les points de la partie

factorielle du plan à deux facteurs, −1/
√

2 pour ceux de la partie ax-
iale et enfin ±√2 pour les expériences centrales. Remarquons qu’une
expérience centrale a enfin été ajoutée afin d’éviter tout problème de
singularité.
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5.6.2 Propriétés

Ces plans d’expérience hybrides sont construits au cas par cas et ne découlent
pas d’une théorie générale pouvant conduire à des propriétés bien définies.
Notons en particulier que Roquemore a proposé des configurations unique-
ment pour un nombre de facteurs égal à 3 (en 10 et 11 expériences), 4 (en 16
expériences), 6 (en 28 expériences) et enfin 7 facteurs (en 46 expériences). La
plupart des plans proposés ne sont pas usuels car ils ne vérifient généralement
pas les conditions relatives aux moments d’ordre 4. Par exemple le plan hy-
bride 311A présenté dans le paragraphe précédent n’est pas usuel car :

n
[
14
]

= 12 et n
[
34
]

= 10.

Deux exceptions notables sont cependant d’un grand intérêt. Il s’agit des plans
hybrides 311B et 628A présentés en détail ci-dessous.

1) Plan hybride 311B. Il s’agit du plan dont la matrice est donnée par :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.5308 1.4894 1/
√

2
1.4894 0.5308 1/

√
2

0.5308 −1.4894 1/
√

2
−1.4894 −0.5308 1/

√
2

0.5308 1.4894 −1/
√

2
1.4894 −0.5308 −1/

√
2

−0.5308 −1.4894 −1/
√

2
−1.4894 0.5308 −1/

√
2

0 0
√

3
0 0 −√3
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Il s’agit bien d’un plan d’expérience usuel tel que :

s2 = 20 , s4 = 80 et s22 = 20.

Comme s4 	= 3s22 ce plan d’expérience n’est donc pas isovariant. Remarquons
que le plan d’expérience proposé ici correspond au plan original de Roquemore
dont toutes les coordonnées des points ont été divisées par

√
2 afin d’obtenir

une configuration telle que toutes les unités expérimentales soient situées à la
surface de la sphère centrée de rayon

√
m avec ici m = 3 facteurs (sauf, bien

entendu, la dernière expérience au centre du domaine).

2) Plan hybride 628A. Il s’agit du plan d’expérience dont la matrice orig-
inale proposée par Roquemore est présenté ci-dessous. La construction de ce
plan hybride est basée initialement sur un plan composite centré fractionnaire
isovariant pour 5 facteurs. Plus précisemment, ce plan est obtenu à partir de
la fraction régulière de résolution V telle que I = −12345. La colonne relative
au sixième facteur est ensuite obtenue en rajoutant la valeur 1/

√
3 aux points
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de la partie factorielle, −2/
√

3 à ceux de la partie axiale et enfin 4/
√

3 pour
l’expérience centrale. On obtient ainsi un plan d’expérience usuel tel que :

s2 = 24, s4 = 48 et s22 = 16.

Comme s4 = 3s22 le plan hybride 628A est donc isovariant. Sa petite taille
(28 expériences) rend ce plan d’expérience très attractif par rapport au plan
composite centré correspondant (44 expériences au minimum). C’est pourquoi
cette configuration est certainement le plan hybride le plus utilisé en pratique.

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1 −1 1/
√

3
1 1 −1 −1 −1 1/

√
3

1 −1 1 −1 −1 1/
√

3
−1 1 1 −1 −1 1/

√
3

1 −1 −1 1 −1 1/
√

3
−1 1 −1 1 −1 1/

√
3

−1 −1 1 1 −1 1/
√

3
1 1 1 1 −1 1/

√
3

1 −1 −1 −1 1 1/
√

3
−1 1 −1 −1 1 1/

√
3

−1 −1 1 −1 1 1/
√

3
1 1 1 −1 1 1/

√
3

−1 −1 −1 1 1 1/
√

3
1 1 −1 1 1 1/

√
3

1 −1 1 1 1 1/
√

3
−1 1 1 1 1 1/

√
3

2 0 0 0 0 −2/
√

3
−2 0 0 0 0 −2/

√
3

0 2 0 0 0 −2/
√

3
0 −2 0 0 0 −2/

√
3

0 0 2 0 0 −2/
√

3
0 0 −2 0 0 −2/

√
3

0 0 0 2 0 −2/
√

3
0 0 0 −2 0 −2/

√
3

0 0 0 0 2 −2/
√

3
0 0 0 0 −2 −2/

√
3

0 0 0 0 0 4/
√

3
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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5.7 Exemple d’application

Terminons ce chapitre par un exemple d’application pratique. Considérons un
laboratoire biologique cherchant à élaborer une solution ayant la plus grande
concentration cellulaire possible. Les biologistes ont établi que la réponse
obtenue (i.e. la concentration cellulaire mesurée en μg/l) semble dépendre
principalement de 5 facteurs qui sont la température, le pH de la solution, la
vitesse d’agitation, le taux d’oxygénation ainsi et la durée de la culture. Les
diverses plages d’utilisation possibles pour ces divers facteurs sont résumées
dans le tableau ci-dessous :

Minimum Maximum
Température (en ◦C) 30 40
pH 6 8
Vitesse agit. (en tr/mn) 100 200
Taux oxygénation (en %) 10 30
Durée culture (en h) 2 4

Supposons que les spécialistes du phénomène étudié estiment qu’il ne s’agit
pas d’un phénomène simple à appréhender car des interactions entre couples
de facteurs peuvent survenir ainsi que des courbures dans la surface de réponse
(i.e. des effets quadratiques peuvent être nécessaires). On peut alors mettre
en oeuvre un plan d’expérience composite centré de matrice D.

Le plan composite centré proposé utilise une partie fractionnaire définie
par la relation I =12345 (il s’agit bien d’une fraction régulière de résolution
V). Le choix du paramètre α = 2 a été fait de manière à obtenir un
plan d’expérience isovariant. Enfin trois réplications du centre du domaine
expérimental sont utilisées afin d’améliorer la qualité ainsi que l’analyse de
l’ajustement du modèle (voir le paragraphe 5.3.3). Les variables codées étant
ici à valeurs dans l’intervalle [−2, 2] , on en déduit que le passage d’une vari-
able initiale x à valeurs dans [a, b] à une telle variable est donné par (voir le
paragraphe 3.2.1) :

x∗ = 2
[
2x− (a + b)

(b− a)

]

.

Ceci permet de proposer à la suite le protocole expérimental, c’est-à-dire
la liste des n = 29 expériences à effectuer, exprimées avec leurs unités ini-
tiales. Parallèlement, le vecteur Y des réponses mesurées pour chacune de ces
expériences est donné.
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1
−1 −1 1 1 1
−1 1 −1 1 1
−1 1 1 −1 1
−1 1 1 1 −1

1 −1 −1 1 1
1 −1 1 −1 1
1 −1 1 1 −1
1 1 −1 −1 1
1 1 −1 1 −1
1 1 1 −1 −1

−1 −1 −1 −1 1
−1 −1 −1 1 −1
−1 −1 1 −1 −1
−1 1 −1 −1 −1

1 −1 −1 −1 −1
2 0 0 0 0

−2 0 0 0 0
0 2 0 0 0
0 −2 0 0 0
0 0 2 0 0
0 0 −2 0 0
0 0 0 2 0
0 0 0 −2 0
0 0 0 0 2
0 0 0 0 −2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Le programme SAS suivant rentre ces données. La table ”donnees” ne contient
que les colonnes des effets linéaires et la réponse.

Data Donnees;
Input tem ph vit oxy dur y;
Cards;
1.0 1.0 1.0 1.0 1.0 23.2

-1.0 -1.0 1.0 1.0 1.0 27.9
...

expérience i et réponse i
...

0.0 0.0 0.0 0.0 0.0 70.6
0.0 0.0 0.0 0.0 0.0 65.8

Run;
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Il est inutile de créer les colonnes des effets d’interactions ou des effets
quadratiques car le modèle va être ensuite analysé à l’aide de procédures
ne nécessitant que la connaissance de la matrice D.

Tem. pH Vit. Oxy. Dur.
Exp 1 37.5 7.5 175 25 3.5
Exp 2 32.5 6.5 175 25 3.5
Exp 3 32.5 7.5 125 25 3.5
Exp 4 32.5 7.5 175 15 3.5
Exp 5 32.5 7.5 175 25 2.5
Exp 6 37.5 6.5 125 25 3.5
Exp 7 37.5 6.5 175 15 3.5
Exp 8 37.5 6.5 175 25 2.5
Exp 9 37.5 7.5 125 15 3.5
Exp 10 37.5 7.5 125 25 2.5
Exp 11 37.5 7.5 175 15 2.5
Exp 12 32.5 6.5 125 15 3.5
Exp 13 32.5 6.5 125 25 2.5
Exp 14 32.5 6.5 175 15 2.5
Exp 15 32.5 7.5 125 15 2.5
Exp 16 37.5 6.5 125 15 2.5
Exp 17 40 7 150 20 3
Exp 18 30 7 150 20 3
Exp 19 35 8 150 20 3
Exp 20 35 6 150 20 3
Exp 21 35 7 200 20 3
Exp 22 35 7 100 20 3
Exp 23 35 7 150 30 3
Exp 24 35 7 150 10 3
Exp 25 35 7 150 20 4
Exp 26 35 7 150 20 2
Exp 27 35 7 150 20 3
Exp 28 35 7 150 20 3
Exp 29 35 7 150 20 3

Y
23.2
27.9
24.7
24.5
20.5
58.4
27.5
33.0
26.5
22.5
22.5
37.5
25.4
21.5
28.5
19.5
41.3
35.0
26.0
41.3
24.8
36.4
34.1
28.6
32.2
19.3
68.0
70.6
65.8

Si ce plan d’expérience est mis en oeuvre itérativement en réalisant au
préalable les 16 expériences de la partie axiale on constate alors qu’un modèle
à effets d’interactions d’ordre deux n’est pas adapté car l’ajustement obtenu
est très mauvais (R2 = 0.273). Ceci conduit donc à réaliser des expériences
axiales afin d’ajuster un modèle de degré deux complet. On obtient alors le
tableau d’analyse de la variance suivant :
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Source ddl S. carrés M. Carrés St. Test Proba.
Régression 20 5846.98 292.35 20.70 0.0002 •••

Erreur 8 113.01 14.13 2.92 0.2740 ◦◦◦

Pure. 2 11 .55 5 .77
Ajus. 6 101 .46 16 .91

Total 28 5959.99

Ces résultats sont donnés immédiatement par la procédure GLM du logiciel
SAS. Cette procédure (pour General Linear Model) est plus générale que la
procédure REG utilisée jusqu’à présent car elle permet d’introduire directe-
ment dans le modèle analysé tous les types d’effets (effets d’interactions et
effets quadratiques ici, voir la commande ”model”).

Proc Glm data Donnee;
Model y = tem ph vit oxy dur

tem*tem ph*ph vit*vit oxy*oxy dur*dur
tem*ph tem*vit tem*oxy tem*dur
ph*vit ph*oxy ph*dur
vit*oxy vit*dur
oxy*dur;

Run;

On constate que le modèle utilisé est valide puisqu’il est possible de rejeter très
clairement l’hypothèse ”tous les paramètres du modèle (sauf β0) sont nuls”.
Un estimateur sans biais de la variance des résidus est donné par (valeur
”Root MSE” de la sortie SAS) :

σ̂2 = MSE = 14.13 (donc σ̂ � 3.76).

Le coefficient de corrélation linéaire obtenu traduit le bon ajustement global
du modèle utilisé (valeur ”R-Square” de la sortie SAS) :

R2 = 1− SSE

SST
� 0.981.

Les trois expériences répliquées au centre du domaine permettent d’affiner la
somme des carrés due à l’erreur en la décomposant en erreur pure et erreur
d’ajustement. On constate alors que l’erreur totale est ici due majoritaire-
ment au défaut d’ajustement du modèle. Ce défaut d’ajustement n’est cepen-
dant pas assez important pour rejeter significativement l’hypothèse d’un bon
ajustement en moyenne. La faible erreur pure montre par contre qu’a pri-
ori les bons facteurs ont été sélectionnés car répéter des expériences dans
les mêmes conditions n’induit pas de trop grandes variations au niveau de la
réponse.

Il est possible d’évaluer les différents estimateurs des paramètres du modèle
(voir la proposition 5.3 pour les formules explicites) :
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Param. Estimat. Ec. type St. Test Proba.
β0 66.43 2.074 32.04 0.0001 •••

β1 1.467 0.767 1.91 0.0900 ◦◦◦

β2 −3.683 0.767 −4.80 0.0015 ••◦

β3 −2.733 0.767 −3.56 0.0074 ••◦

β4 1.608 0.767 2.10 0.0670 ◦◦◦

β5 3.442 0.767 4.49 0.0022 ••◦

β11 −6.434 0.759 −8.48 0.0002 •••

β22 −7.559 0.759 −9.96 0.0001 •••

β33 −8.322 0.759 −10.97 0.0001 •••

β44 −8.134 0.759 −10.72 0.0001 •••

β55 −9.534 0.759 −12.56 0.0001 •••

β12 −1.850 0.940 −1.97 0.0820 ◦◦◦

β13 0.062 0.940 0.07 0.9470 ◦◦◦

β14 3.412 0.940 3.63 0.0669 ••◦

β15 1.212 0.940 1.29 0.2320 ◦◦◦

β23 1.212 0.940 1.29 0.2320 ◦◦◦

β24 −3.112 0.940 −3.31 0.0105 •◦◦

β25 −2.938 0.940 −3.13 0.0139 •◦◦

β34 −0.650 0.940 −0.69 0.5140 ◦◦◦

β35 −2.850 0.940 −3.03 0.0159 •◦◦

β45 0.550 0.940 0.59 0.5800 ◦◦◦

Ces résulats sont disponibles dans le dernier tableau de résultats en sortie de
la procédure GLM. On en déduit qu’il est possible de réaliser des prédictions
à l’aide du meilleur modèle au sens des moindres carrés, donné ici par :

Ŷ (x) = 66.43 + 1.467x1 − 3.683x2 − 2.733x3 + 1.608x4 + 3.442x5

−6.434x2
1 − 7.559x2

2 − 8.322x2
3 − 8.134x2

4 − 9.534x2
5

−1.850x1x2 + 0.062x1x3 + 3.412x1x4 + 1.212x1x5 + 1.212x2x3

−3.112x2x4 − 2.938x2x5 − 0.650x3x4 − 2.850x3x5 + 0.550x4x5.

Si l’on souhaite utiliser un modèle plus simple, il est possible de supprimer
les coefficients non-significatifs. Par exemple la suppression de β13, β15, β23,
β34 et β45 (qui sont réellement non-significatifs car leur statistique de test
est très éloignée du seuil des 5%) se traduit par un coefficient de corrélation
linéaire multiple de R2 = 0.971 c’est-à-dire très peu différent de la valeur pour
le modèle complet (ces notions ne pas abordées ici mais la détermination,
parallèlement à R2, du coefficient de corrélation linéaire ajusté R2

a peut être
d’une grande utilité pour la sélection d’un sous-modèle).

Utilisons maintenant le modèle déterminé précédemment afin de cerner au
mieux le comportement du phénomène étudié. Puisque le plan d’expérience
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utilisé est isovariant la proposition 5.5 donne explicitement la dispersion de
la réponse prédite en tout point situé à la distance r du centre du domaine :

Var Ŷ (r) = σ2

(
7
23

− 49
552

r2 +
15
368

r4
)

.

3

4

5

6

7

8

9

10

11

12

13

14

Var

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2r

Fig. 5.6. Graphe de Var Ŷ en fonction de r.

Un estimateur de la dispersion des résidus étant ici connu on obtient alors
une représentation graphique (figure 5.6) en remplaçant σ2 par σ̂2. Cette
figure montre que la qualité des prédictions réalisées est relativement stable à
l’intérieur du domaine expérimental mais il convient d’être plus prudent aux
bornes du domaine car la variance de prédiction devient alors beaucoup plus
importante.

Intéressons-nous maintenant à l’objectif de cette étude, c’est-à-dire la max-
imisation de la concentration cellulaire. La recherche de l’extremum de la
réponse moyenne prédite Ŷ (x) conduit à un maximum atteint au point suiv-
ant :

x1 = 0.265, x2 = −0.396, x3 = −0.254, x4 = 0.251 et x5 = 0.304.

Ce résultat est obtenu très facilement en annulant les dérivées partielles de Ŷ
puis en étudiant la nature du point critique obtenu. Si l’extremum est obtenu
aux bornes du domaine expérimental (par exemple la boule de rayon r =

√
5
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ici) il est alors nécessaire d’utiliser le théorème des multiplicateurs de Lagrange
pour le déterminer (puisque le problème est alors lié à la recherche d’un max-
imum sous la contrainte txx ≤ 5). D’autres méthodes, souvent implémentées
dans les logiciels statistiques, sont aussi disponibles afin de déterminer ces
extrema : analyse R ou RT (voir Goupy [45]) afin de simplifier le modèle par
rotation des axes et translation du centre du repère, algorithmes itératifs de
recherche d’extrema, etc... Remarquons enfin que le modèle utilisé prédit une
réponse moyenne en l’extremum donnée par (avec son écart-type associé entre
parenthèses) :

Ŷmax = 68.46 (1.96).

Fig. 5.7. Réponse moyenne prédite (facteurs 1, 2 et 3 fixés).

Une représentation graphique de ce phénomène (source : logiciel Nem-
rod) est donnée à la figure 5.7. On y distingue les lignes de niveau de
la surface de réponse prédite lorsque les variables x1, x2 et x3 (i.e. la
température, le pH et la vitesse d’agitation) sont fixées aux niveaux 0.265,
−0.396 et −0.254. On retrouve bien l’extremum ainsi que la valeur maximale
déterminées précédemment de manière théorique.
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La totalité des résultats obtenus dans cet exemple d’application (recherche
de l’extremum comprise) peuvent être donnés par la procédure RSREG du
logiciel SAS.

Proc Rsreg data Donnee;
Model y = tem ph vit oxy dur / lackfit;

Run;

Cette procédure (pour Response Surface REGression) est adaptée à l’étude
spécifique des modèles pour surface de réponse. Elle est de plus simple à écrire
puisqu’il n’est pas nécessaire de préciser la totalité du modèle utilisé (qui est
automatiquement d’ordre deux ici). Elle peut être utilisée avec en entrée les
variable initiales, elles seront alors automatiquement codées. L’option ”lackfit”
permet d’obtenir l’analyse de la variance plus fine découlant des répétitions
effectuées (SSPE et SSLOF). Les derniers tableaux présentés en sortie de
cette procédure sont relatifs à la ”canonical analysis” permettant de cerner
un éventuel extremum (à l’aide d’une décomposition de la réponse sur une
base de vecteurs propres). Dans le cadre de cette étude la procédure détecte
bien le point stationnaire présenté précédemment et affirme qu’il s’agit d’un
maximum.

Conclusion

Les résultats obtenus précedemment permettent de dire que :

1) Le phénomène étudié se traduit par une importante courbure de la
surface de réponse. Des effets quadratiques sont donc nécessaires et sont
tous très significatifs. Il existe de plus un effet linéaire significatif pour les
facteurs pH, vitesse d’agitation et durée de la culture. Concernant main-
tenant les interactions entre facteurs, l’effet le plus important détecté con-
cerne la température avec le taux d’oxygénation. Une interaction moins
marquée, mais non-négligeable, a aussi été relevée pour les couples de fac-
teurs suivants : pH/taux d’oxygénation, pH/durée de culture et enfin vitesse
d’agitation/durée de culture.

2) L’objectif de l’étude était de déterminer des conditions expérimentales con-
duisant à une maximisation de la concentration cellulaire. Le modèle polyno-
mial ajusté présente un maximum au sein du domaine expérimental. Il est
atteint au point dont les coordonnées avec les unités initiales sont :

Facteur Niveau
Température 35.7 ◦C
pH 6.8
Vitesse agitation 144 tr/mn
Taux oxygénéation 21.3 %
Durée culture 3 h 09 mn
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Le modèle théorique prédit en ce point une réponse moyenne égale à :

68.46 μg/l.

Il convient maintenant d’effectuer en pratique l’expérience avec ces valeurs
afin de comparer la réponse théorique avec la réponse réelle.

5.8 Résumé

Voici en conclusion un tableau résumant les tailles des divers plans d’expérience
présentés dans ce chapitre (pour un nombre de facteurs compris entre 2 et 10).
On considère plus précisemment :

1) les plans composites centrés de type CCD (2m, α, n0) ou bien encore
CCD

(
2m−q
V , α, n0

)
lorsqu’il est possible de réduire la taille de la partie fac-

torielle,

2) les plans composites centrés de petite taille de type CCD
(
2m−q
III∗ , α, n0

)
,

3) les plans de Box et Benhken simples obtenus à partir d’un BIBD(m, b, k,
r, λ),

4) les plans simplexes augmentés de type SSD (m, α, n0),

5) les plans hybrides.

Figure aussi entre parenthèses la taille relative δ du plan considéré, c’est-à-dire
sa taille ramenée au nombre de paramètres inconnus p du modèle considéré,
donc :

δ =
2n

(m + 1) (m + 2)
.

Pour chaque plan on utilise les conventions suivantes :

le symbole USU désigne un plan d’expérience usuel,

le symbole ISO désigne un plan d’expérience isovariant ou pouvant
l’être par un choix adéquat du paramètre α pour des plans composites
centrés,

Les plans proposés ici sont de taille minimale. Il est parfois nécessaire de
rajouter au moins une expérience au centre du domaine afin de rendre leur
matrice des moments régulière.
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p CCD CCD III∗ Box-Behn. Simplexe Hybride

2 facteurs 6
8 (1.33)

USU

ISO

× ×
6 (1.00)

×

3 facteurs 10
14 (1.40)

USU

ISO

10 (1.00) 13 (1.30)

USU

10 (1.00) 11 (1.10)

USU

4 facteurs 15
24 (1.60)

USU

ISO

16 (1.07) 25 (1.67)

USU

ISO

15 (1.00) 15 (1.07)

5 facteurs 21
26 (1.24)

USU

ISO

26 (1.24) 41 (1.95)

USU

21 (1.00)

×

6 facteurs 28
44 (1.57)

USU

ISO

28 (1.00) 49 (1.75) 28 (1.00) 28 (1.00)

USU

ISO

7 facteurs 36
78 (2.17)

USU

ISO

46 (1.28) 57 (1.58)

USU

ISO

36 (1.00) 46 (1.28)

8 facteurs 45
80 (1.78)

USU

ISO

80 (1.78)

×
45 (1.00)

×

9 facteurs 55
146 (2.65)

USU

ISO

82 (1.49) 121 (2.20) 55 (1.00)

×

10 facteurs 66
148 (2.24)

USU

ISO

148 (2.24) 161 (2.44) 66 (1.00)

×

Ce tableau permet de constater que certain plans sont remarquables car
économes en terme d’expériences tout en gardant de très intéressantes pro-
priétés. Il s’agit principalement des plans composites centrés pour 5 fac-
teurs, des plans hybrides pour 6 facteurs et des plans de Box et Behnken
pour 7 facteurs.
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COMPLEMENTS



192
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5.9 (Compléments) Résultats théoriques

5.9.1 Quelques résultats de calcul matriciel

Les deux lemmes présentés ci-dessous sont d’une grande utilité pour les
démonstrations de ce chapitre.

Lemme 5.A. Considérons une matrice complètement symétrique, c’est-à-dire
de la forme A = aIn + bJn. On a alors les propriétés suivantes :
1) une telle matrice est inversible si et seulement si a 	= 0 et a + nb 	= 0. Son
déterminant est de plus égal à :

Det (A) = an−1 (a + nb)

2) lorsque A est inversible son inverse est elle-même une matrice
complètement symétrique donnée explicitement par :

A−1 =
1
a

(

In − b

a + nb
Jn

)

.

Démonstration. Pour la première relation remarquons que le vecteur In est
vecteur propre de A, associé à la valeur propre a + nb, puisque :

AIn = (aIn + bJn) In = aIn + bIn
t
InIn = (a + nb) In.

De même, tout contraste c de R
n (i.e. tel que tcIn =t

Inc = 0) est un vecteur
propre de A, associé à la valeur propre a, puisque :

Ac = (aIn + bJn) c = ac + bnIn
t
Inc = ac.

La matrice A admet donc uniquement deux valeurs propres : a + nb d’ordre
de multiplicité 1 et a d’ordre de multiplicité (n− 1) (car l’espace vectoriel des
constrastes de R

n a pour dimension n− 1). Ceci donne alors les conditions de
régularité pour A. Le déterminant étant obtenu à l’aide du produit de toutes
les valeurs propres (répétées selon leur multiplicité) on a donc aussi :

Det (A) = an−1 (a + nb) .

Afin de démontrer maintenant la seconde relation il suffit de prouver que
le produit matriciel est une opération interne dans l’ensemble des matrices
complètement symétriques. Considérons les matrices A = aIn + bJn et A′ =
a′In + b′Jn, il vient :

AA′ = (aIn + bJn) (a′In + b′Jn) = aa′In + (ab′ + a′b)Jn + bb′J2
n.

Or : J2
n = (In

t
In) (In

t
In) = In (t

InIn) t
In = nIn

t
In = nJn donc :

AA′ = aa′In + (ab′ + a′b + nbb′)Jn.
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Le produit de deux matrice complètement symétriques est donc bien complète-
ment symétrique. Déterminer l’inverse de A équivaut alors maintenant à
déterminer A′ telle que :

AA′ = In ⇔
{

aa′ = 1
ab′ + a′b + nbb′ = 0 ⇔

{
a′ = 1/a
b′ = −b/a (a + nb) .

D’où le résultat énoncé ci-dessus �

Lemme 5.B. Soit A une matrice carrée telle que :

A =
[

A11 A12
tA12 A22

]

avec A11 matrice inversible.

En désignant par sA22 = A22 − tA12A
−1
11 A12 le complément de Schur de

A22 on a :
1) DetA = (Det A11) (Det sA22) ,

2) si de plus A est inversible alors :

A−1 =
[

A−1
11 0
0 0

]

+
[−A−1

11 A12

Id

]

(sA22)
−1 [−tA12A

−1
11 Id

]
.

Démonstration. Ce résultat est très classique. Le lecteur pourra en trouver
une forme plus générale dans l’ouvrage de Searle et al. [89] (appendice M) �

5.10 (Compléments) Démonstrations

Proposition 5.2. Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre deux. Sa matrice des moments est inversible si et seulement si au-
cune des trois conditions suivantes n’est vérifiée :
1) la distribution des points du plan est concentrée sur les axes,
2) tout point du plan a ses coordonnées égales en valeur absolue,
3) tous les points du plan sont équidistants de l’origine.

Démonstration. Remarquons au préalable que si l’on écrit le vecteur des
paramètres inconnus β selon l’ordre suivant :

tβ =
(
β0 | tβQ | tβL | tβI

)

alors la matrice des moments d’un plan usuel est diagonale par blocs avec :

tXX = diag
(
Δ, s2Im, s22Im(m−1)/2

)

où :
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Δ = Δ (s2, s22, s4) =
[

n s2
t
Im

s2Im (s4 − s22) Im + s22Jm

]

=
[

A11 A12
tA12 A22

]

.

On peut donc affirmer, d’après les propriétés des déterminants, que :

Det
(
tXX

)
= sm

2 s
m(m−1)

2
22 Det (Δ) .

D’après le lemme 5.B on a de plus :

Det (Δ) = n Det (sA22) avec sA22 = (s4 − s22) Im + s22Jm − (1/n) s22In
t
In

= (s4 − s22) Im +
(
s22 − s22/n

)
Jm.

L’utilisation du lemme 5.A permet de dire que :

Det
(
tXX

)
= nsm

2 s
m(m−1)

2
22 (s4 − s22)

m−1

[

s4 + (m− 1) s22 − ms22
n

]

.

La matrice tXX étant positive elle est donc régulière si et seulement si son
déterminant est strictement positif. Ceci entrâıne que le plan usuel est à ma-
trice des moments inversible si et seulement si :

s2 > 0, s4 > s22 > 0 et n [s4 + (m− 1) s22]−ms22 > 0.

Traduisons géométriquement ces différentes relations. Les différents cas à
éviter sont donnés ci-dessous.

1) La situation où s2 =
n∑

u=1

z2ui = 0 est facile à interpréter car elle ne peut être

vérifiée que si tous les points du plan d’expérience sont concentrés en l’origine.

2) De même, la situation où s22 =
n∑

u=1

z2uiz
2
uj = 0 ne peut être vérifiée que si

tous les points du plan d’expérience sont concentrés sur les axes du repère.

3) Traduisons maintenant la condition n [s4 + (m− 1) s22] − ms22 > 0. Si du

(u = 1, ..., n) désigne la distance du u-ième point du plan à l’origine alors :

d4u =
m∑

i=1

z4ui +
∑∑

i�=j

z2uiz
2
uj =⇒

n∑

u=1

d4u =
m∑

i=1

n∑

u=1

z4ui +
∑∑

i�=j

n∑

u=1

z2uiz
2
uj .

Mais on sait que :

∀ i, j = 1, ..., m avec i 	= j,
n∑

u=1

z4ui = s4 et
n∑

u=1

z2uiz
2
uj = s22.

Donc :
n∑

u=1

d4u = ms4 + m (m− 1) s22 = m [s4 + (m− 1) s22] .
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On a de même :

n∑

u=1

d2u =
m∑

i=1

n∑

u=1

z2ui = ms2 donc

(
n∑

u=1

d2u

)2

= m2s22.

On en déduit que :

n [s4 + (m− 1) s22]−ms22 > 0 ⇔ n

n∑

u=1

d4u >

(
n∑

u=1

d2u

)2

.

L’inégalité de Cauchy-Schwarz appliquée à In et t
(
d21, ..., d

2
n

)
permet d’affirmer

que la relation ci-dessus est vérifiée dès lors que ces deux vecteurs ne sont
pas colinéaires. En d’autres termes, il faut donc éviter le cas où tous les du

(u = 1, ..., n) sont égaux, c’est-à-dire la situation iii où tous les points du plan
sont équidistants de l’origine.

4) Traduisons enfin la condition s4 > s22. Remarquons que :

m∑

i=1

z4ui −
∑∑

i�=j

z2uiz
2
uj = tz (2Im − Jm) z en notant z = t

(
z2u1, ..., z

2
um

)
.

La matrice (2Im − Jm) étant complètement symétrique elle n’admet que deux
valeurs propres distinctes égales à (2−m) et 2 (voir la démonstration du
lemme 5.A). Le théorème de représentation extrémale permet d’énoncer que :

m∑

i=1

z4ui −
∑∑

i�=j

z2uiz
2
uj ≥ (2−m)

m∑

i=1

z4ui

⇐⇒
m∑

i=1

n∑

u=1

z4ui −
∑∑

i�=j

n∑

u=1

z2uiz
2
uj ≥ (2−m)

m∑

i=1

n∑

u=1

z4ui

⇐⇒ ms4 −m (m− 1) s22 ≥ (2−m)ms4

⇐⇒ s4 − (m− 1) s22 ≥ (2−m) s4 ⇐⇒ s4 ≥ s22.

Il est bien connu que l’on a de plus l’égalité entre ces deux derniers termes si
et seulement si z est colinéaire au vecteur propre Im associé à la valeur propre
(2−m) . Il faut donc éviter le cas où tous les éléments de z sont égaux, c’est-
à-dire la situation ii où tous les points du plan ont leurs coordonnées égales
en valeur absolue �

Proposition 5.3. Soit un plan d’expérience usuel D = {zu, u = 1, ..., n} pour
un modèle linéaire d’ordre deux. Les différents estimateurs des moindres
carrés des paramètres du modèle ainsi que leurs caractéristiques de dispersion
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sont alors obtenus explicitement par les relations suivantes en notant
φ = ns4 + n (m− 1) s22 −ms22 :

1) β̂0 = Y +
s2
φ

(

ms2Y −
n∑

u=1

‖zu‖2 Yu

)

avec Var
(
β̂0

)
=

σ2

n

(

1 +
ms22
φ

)

.

2) β̂L =
1
s2

tDLY avec V

(
β̂L

)
=

σ2

s2
Im.

3) β̂Q =
1

s4 − s22
tDQY − 1

φ

[

ns2Y +
ns22 − s22
s4 − s22

n∑

u=1

‖zu‖2 Yu

]

Im.

avec V

(
β̂Q

)
=

σ2

s4 − s22

(

Im +
s22 − ns22

φ
Jm

)

.

4) β̂I =
1

s22
tDIY avec V

(
β̂I

)
=

σ2

s22
Im(m−1)/2.

Démonstration. Ecrivons ici le vecteurs des paramètres inconnus β sous la
même forme que celle déjà utilisée pour la démonstration de la proposition 5.2.
Il vient alors (voir la forme du bloc Δ dans la démonstration de la proposition
5.2) :

tXX = diag
(
Δ, s2Im, s22Im(m−1)/2

)
.

Les estimateurs des moindres carrés vérifient alors :
⎡

⎢
⎢
⎣

n s2
t
Im 0 0

s2Im (s4 − s22) Im + s22Jm 0 0
0 0 s2Im 0
0 0 0 s22Im(m−1)/2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

β̂0

β̂Q

β̂L

β̂I

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

t
InY

tDQY
tDLY
tDIY

⎤

⎥
⎥
⎦ .

Il en résulte immédiatement la forme explicite des estimateurs des effets
linéaires et d’interaction donnés en 2 et 4 ainsi que leurs caractéristiques
de dispersion. L’obtention des estimateurs de l’effet moyen général et des ef-
fets quadratiques nécessite maintenant de connaitre l’inverse de la matrice Δ.
Remarquons que le complément de Schur du bloc A22 est égal à :

sA22 = A22 − tA12A
−1
11 A12 = A22 −

(
s22/n

)
Im

t
Im

= (s4 − s22) Im +
(
s22 − s22/n

)
Jm.

Il s’agit d’une matrice complètement symétrique donc le lemme 5.A permet
d’affirmer que, en posant φ = ns4 + n (m− 1) s22 −ms22 :

(sA22)
−1 =

1
s4 − s22

(

Im −
(
ns22 − s22

)

φ
Jm

)

.
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Le lemme 5.B donne alors l’inverse de Δ sous la forme :

Δ−1 =
[

B11 B12
tB12 B22

]

.

Le bloc B22 = (sA22)
−1 est obtenu immédiatement. Concernant B12 on a :

B12 = −A−1
11 A12 (sA22)

−1 = − s2
n (s4 − s22)

t
Im

(

Im −
(
ns22 − s22

)

φ
Jm

)

= − s2
n (s4 − s22)

[

1 +
m
(
ns22 − s22

)

φ

]

t
Im = −s2

φ
t
Im.

En utilisant ce résultat on obtient pour B11 :

B11 = A−1
11 +

[
A−1

11 A12 (sA22)
−1
]

tA12A
−1
11 =

1
n

+
s22
nφ

t
ImIm =

1
n

+
ms22
nφ

.

Il en découle les caractéristiques de dispersion suivantes :

Var
(
β̂0

)
= σ2B11 et V

(
β̂Q

)
= σ2B22.

Déterminons enfin la forme explicite des estimateurs β̂0 et β̂Q. On a :
[

β̂0

β̂Q

]

=
[

B11 B12
tB12 B22

] [
t
InY

tDQY

]

donc :

β̂0 =
(

1
n

+
ms22
nφ

)
t
InY − s2

φ
t
Im

tDQY = Y +
s2
φ

(ms2
n

t
InY − t

Im
tDQY

)
.

Si le plan d’expérience est constitué des points z1, ..., zn de R
m alors (‖.‖

désignant la norme usuelle de R
m) :

t
Im

tDQY =
n∑

u=1

‖zu‖2 Yu.

Il en résulte que :

β̂0 = Y +
s2
φ

(

ms2Y −
n∑

u=1

‖zu‖2 Yu

)

.

On obtient de même pour β̂Q :

β̂Q = −s2
φ

Im

(
t
InY

)
+

1
s4 − s22

(

Im −
(
ns22 − s22

)

φ
Jm

)
(
tDQY

)
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Donc :

β̂Q = −ns2
φ

Y Im +
1

s4 − s22
tDQY −

(
ns22 − s22

)

(s4 − s22) φ
Im (t

Im
tDQY )

=
1

s4 − s22
tDQY − 1

φ

[

ns2Y +

(
ns22 − s22

)

(s4 − s22)

n∑

u=1

‖zu‖2 Yu

]

Im.

D’où le résultat énoncé dans la proposition �

Proposition 5.4. Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre deux. En désignant par ‖.‖ la norme usuelle de R

m, la dispersion de
la réponse prédite en x = t (x1, ..., xm) ∈ E est donnée par :

Var Ŷ (x) = σ2

[

f (r) +
(

1
s4 − s22

− 1
2s22

) m∑

i=1

x4
i

]

avec :

f (r) =
(

1
n

+
ms22
nφ

)

+
(

1
s2

− 2
s2
φ

)

r2 +
(

1
2s22

+
s22 − ns22

φ (s4 − s22)

)

r4,

r = ‖x‖ et φ = ns4 + n (m− 1) s22 −ms22.

Démonstration. D’après la proposition 2.7, il vient :

Var Ŷ (x) = σ2 tg (x)
(
tXX

)−1
g (x)

avec g (x) vecteur de régression construit de manière identique aux lignes
de X. Ici on a donc (en gardant l’ordre des colonnes de X utilisé pour la
démonstration de la proposition 5.2) :

∀ x = t (x1, ..., xm) ∈ E , g (x) =
(
1, x2

1, ..., x
2
m, x1, ..., xm, x1x2, ..., xm−1xm

)
.

Il vient alors (en posant ici σ2 = 1 pour simplifier) :

Var Ŷ (x) =
(

1
n

+
ms22
nφ

)

+
1
s2

m∑

i=1

x2
i +

1
s4 − s22

(

1− ns22 − s22
φ

) m∑

i=1

x4
i

+
1

s22

∑∑

i<j

x2
i x

2
j − 2

s2
φ

m∑

i=1

x2
i − 2

(
ns22 − s22

)

φ (s4 − s22)

∑∑

i<j

x2
i x

2
j .

Après regroupement des termes, on obtient :

Var Ŷ (x) =
(

1
n

+
ms22
nφ

)

+
(

1
s2

− 2
s2
φ

)

r2 +
1

s4 − s22

(

1− ns22 − s22
φ

) m∑

i=1

x4
i

+
(

1
s22

− 2
ns22 − s22

φ (s4 − s22)

)
∑∑

i<j

x2
i x

2
j .
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Or, remarquons que :

r4 =

(
m∑

i=1

x2
i

)2

=
m∑

i=1

x4
i + 2

∑∑

i<j

x2
i x

2
j .

Il en résulte que :

1
s4 − s22

(

1− ns22 − s22
φ

) m∑

i=1

x4
i +

(
1

s22
− 2

ns22 − s22
φ (s4 − s22)

)
∑∑

i<j

x2
i x

2
j =

(
1

2s22
− ns22 − s22

φ (s4 − s22)

)

r4 +
(

1
s4 − s22

− 1
2s22

) m∑

i=1

x4
i .

D’où le résultat énoncé �

Proposition 5.6. Soit un plan d’expérience usuel pour un modèle linéaire
d’ordre deux. La variance sphérique moyenne ainsi que les variances
sphériques extrémales sont données par (la fonction f étant toujours celle
de la proposition 5.4) :

1) V (r) = σ2

[

f (r) +
3

m + 2

(
1

s4 − s22
− 1

2s22

)

r4
]

,

2)

⎧
⎪⎪⎨

⎪⎪⎩

Vmin (r) = σ2

[

f (r) +
1
m

(
1

s4 − s22
− 1

2s22

)

r4
]

,

Vmax (r) = σ2

[

f (r) +
(

1
s4 − s22

− 1
2s22

)

r4
]

.

Les résultats présentés en 2 sont valables uniquement si s4 < 3s22. Dans le
cas contraire il convient de permuter les rôles de Vmin et Vmax.

Démonstration. Pour la variance sphérique moyenne, il vient (en posant
σ2 = 1) :

V (r) = Ψ
∫

Ur

[

f (r) +
(

1
s4 − s22

− 1
2s22

) m∑

i=1

x4
i

]

dx

⇒ V (r) = f (r) +
(

1
s4 − s22

− 1
2s22

)

Ψ

∫

Ur

m∑

i=1

x4
i dx .

Or, la géométrie de Ur entrâıne que :
∫

U1

x4
1dx =

∫

U1

x4
2dx = ... =

∫

U1

x4
mdx.

Donc :
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Ψ

∫

Ur

m∑

i=1

x4
i dx = Ψ

m∑

i=1

∫

Ur

x4
i dx = mΨ

∫

Ur

x4
1dx.

La quantité Ψ
∫

Ur
x4
1dx est bien connue puisqu’il s’agit d’un moment sphérique

pur (σ4) d’ordre 4 donné par (voir par exemple Giovannitti-Jensen et Myers
[44]) :

σ4 =
3r4

m (m + 2)
.

Il en découle immédiatement la forme de la variance sphérique moyenne
proposée à la relation 1. Concernant maintenant l’obtention des variances
sphériques extrémales, il s’agit de résoudre le problème d’optimisation suiv-
ant :

(P ) : optimiser Var Ŷ (x) sous la contrainte
m∑

i=1

x2
i = r2.

Comme la fonction f est constante à la surface de toute sphère centrée, le
problème (P ) est donc équivalent à :

(P ) : optimiser
(

1
s4 − s22

− 1
2s22

) m∑

i=1

x4
i sous la contrainte

m∑

i=1

x2
i = r2.

Le signe de l’expression prémultipliant la somme peut varier car :
⎧
⎪⎪⎨

⎪⎪⎩

si s22 < s4 < 3s22 alors
(

1
s4 − s22

− 1
2s22

)

> 0,

si s4 > 3s22 alors
(

1
s4 − s22

− 1
2s22

)

< 0.

.

Plaçons nous ici dans le cas où s4 < 3s22 (avec s22 < s4 puisque le plan utilisé
est à matrice des moments inversible). La fonction à optimiser étant con-
tinue sur un compact atteint bien ses bornes. Celles-ci sont de plus obtenues
immédiatement par le théorème des multiplicateurs de Lagrange qui dit que :

1) le maximum vaut r4, il est atteint en 2m points de coordonnées (±r, 0, ..., 0) ,
(0,±r, ..., 0) ... (0, 0, ...,±r) ,

2) le minimum vaut r4/m, il est atteint en 2m points de coordonnées de la
forme (±r/

√
m,±r/

√
m, ...,±r/

√
m) .

Ces résultats permettent bien d’obtenir les formules explicites de la partie 2.
Si s4 > 3s22 alors le signe de l’expression à optimiser change et il convient
donc de permuter le rôle des extrema obtenus �
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Proposition 5.8. Tout plan d’expérience composite centré (complet ou frac-
tionnaire) est un plan d’expérience usuel pour un modèle linéaire d’ordre
deux. Il vérifie de plus (avec q = 0 pour un plan complet) :

s2 = 2m−q + 2α2, s4 = 2m−q + 2α4 et s22 = 2m−q.

Démonstration. Considérons dans un premier temps la partie factorielle
d’un tel plan, constituée des points (zu)u=1,...,2m−q . D’après les résultats du
chapitre 4 tous les moments impairs d’une tel plan (complet ou obtenu avec
une fraction régulière de résolution V ou plus) sont nuls jusqu’à l’ordre 4.
Concernant les moments pairs on a immédiatement, puisque tous les points
ont des coordonnées égales à ±1 (avec i, j = 1, ..., m et i 	= j) :

2m−q
∑

u=1

z2ui = 2m−q,
2m−q
∑

u=1

z4ui = 2m−q et
2m−q
∑

u=1

z2uiz
2
uj = 2m−q.

Remarquons maintenant que la partie axiale est constituée par les points,
notés (zu)u=2m−q+1,...,2m−q+2m , de coordonnées (±α, 0, ..., 0) , (0,±α, ..., 0) ...
(0, 0, ...,±α) . Il en découle que tous les moments impairs jusqu’à l’ordre 4
d’une telle configuration sont nuls et pour les moments pairs, il vient alors :

2m−q+2m∑

u=2m−q+1

z2ui = 2α2,
2m−q+2m∑

u=2m−q+1

z4ui = 2α4 et
2m−q+2m∑

u=2m−q+1

z2uiz
2
uj = 0.

Le rajout éventuel d’expériences au centre du domaine n’ayant aucun effet sur
les sommes présentées ci-dessus on peut donc conclure, par simple sommation,
que tout plan composite centré est tel que tous ses moments impairs jusqu’à
l’ordre 4 sont nuls et les moments pairs vérifient :

n∑

u=1

z2ui = 2m−q + 2α2,
n∑

u=1

z4ui = 2m−q + 2α4 et
n∑

u=1

z2uiz
2
uj = 2m−q.

On en déduit bien qu’il s’agit d’un plan d’expérience usuel �



6

Plans d’expérience en blocs

6.1 Introduction

Le chapitre précédent a présenté la construction de plans d’expérience adaptés
à l’ajustement d’une surface de réponse. Le modèle utilisé alors est rela-
tivement riche puisqu’il tient compte d’effets linéaires et quadratiques des
facteurs ainsi que d’éventuels effets d’interactions entre couples de facteurs.
Ce modèle postule cependant que toutes les observations effectuées sont ho-
mogènes (i.e. le même modèle est utilisé pour toutes les expériences) et ceci
peut s’avérer génant en pratique. En effet, il existe de nombreuses situa-
tions pour lesquelles l’hypothèse d’hétérogénéité des observations s’impose
naturellement : production industrielle réalisée à partir de divers arrivages
de matière première, utilisation d’une machine-outil par plusieurs ouvriers,
expériences agronomiques sur plusieurs parcelles situées dans des endroits
différents, etc... Pour s’adapter à ce type de situation il est naturel de re-
grouper les observations en sous-ensembles homogènes, appelés blocs, et de
tenir compte d’un éventuel effet de bloc dans le modèle utilisé (dans les ex-
emples précédents les blocs seraient les observations découlant d’un même
arrivage de matière première, du travail d’un même ouvrier ou encore des
mesures effectuées au sein d’une même parcelle). Une telle démarche est
d’usage courant, les premiers travaux abordant cette problématique remon-
tent à la fin des années 30 et sont dus à Yates [107] ou [108] dans une optique
d’analyse intra et inter-blocs.

Ce chapitre propose des constructions de plans d’expérience pour effets
de blocs. Pour cela il est nécessaire de généraliser tout d’abord la notion de
plan d’expérience usuel. Ceci permet ensuite de déterminer explicitement bon
nombre d’éléments nécessaires à l’analyse des résultats tels que les estimateurs
des moindres carrés ainsi que leurs dispersions. Des propriétés classiques telles
que l’isovariance sont aussi généralisées au cas des plans en blocs et de nou-
velles propriétés telle que le blocage orthogonal sont présentées. Toutes ces no-
tions sont ensuite appliquées aux plans d’expérience pour surfaces de réponse

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 6,
c© Springer-Verlag Berlin Heidelberg 2010
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déjà étudiés (composites centrés, Box et Behnken, etc...) afin de définir une
méthode permettant de les partitionner en blocs. La dernière partie de ce
chapitre est consacrée à l’étude d’un exemple d’application, illustré à l’aide
de programmes SAS.

6.2 Généralités

6.2.1 Modèle utilisé

Considérons un plan d’expérience D = {zu, u = 1, ..., , n} à m facteurs quan-
titatifs décomposé en b blocs et mis en oeuvre sur le domaine expérimental
E ⊂ R

m . Un modèle polynomial est dit d’ordre deux avec effets de blocs dès
lors que l’on considère le modèle statistique Y (x) = fl (x) + ε (x) pour les
réponses associées au bloc l (l = 1, ..., b) avec la loi de réponse donnée par la
relation :

∀ x ∈ E , fl (x) = γl +
m∑

i=1

βixi +
m∑

i=1

βiix
2
i +

∑∑

i<j

βijxixj .

Pour un tel modèle, on dit que :
⎧
⎪⎪⎨

⎪⎪⎩

γl (l = 1, ..., b) est l’effet du bloc l,
βi (i = 1, ..., m) est l’effet linéaire du i-ème facteur,
βii (i = 1, ..., m) est l’effet quadratique du i-ème facteur,
βij (i, j =1, ..., m, i < j) est l’effet d’interaction entre les facteurs i et j.

Ce modèle est donc plus complexe que le modèle classique pour surfaces de
réponse dans la mesure où il n’y a plus une seule constante polynomiale (i.e.
l’effet moyen général β0) mais une constante associée à chacun des blocs.
On peut donc considérer ce modèle comme une généralisation naturelle
du modèle pour surfaces de réponse car ce dernier correspond au cas où le
plan est considéré comme étant en un seul bloc. Le nombre de paramètres
inconnus de ce modèle est égal à celui du modèle pour surfaces de réponse
diminué de un (puisqu’on a supprimé β0) et augmenté de b (les b effets de
bloc), donc :

p =
[
(m + 1) (m + 2)

2
− 1

]

+ b =
m (m + 3)

2
+ b.

L’écriture matricielle de ce modèle est :

Y = Xβ + ε = Bγ + Wτ + ε.

avec ici X = [B | W ] ∈ M (n, p) matrice du modèle où B ∈ M (n, b) est la
matrice des indicatrices des blocs (i.e. telle que chacune de ses colonnes est
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associée à un bloc et repère l’absence ou la présence d’expérience au sein du
bloc par, respectivement, les valeurs 0 ou 1) et W ∈ M (n, p− b) est la ma-
trice contenant les effets linéaires, quadratiques et d’interactions considérés.
Donc tγ = (γ1, γ2, ..., γb) est le vecteur contenant les b effets de bloc et τ le
vecteur contenant les effets linéaires, quadratiques et d’interaction du modèle
(remarquons qu’avec les notations du chapitre précédent on a tβ = (β0,

tτ)).
Désignons dans la suite par k1, ..., kb les tailles des différents blocs, c’est-à-dire
le nombre d’expériences de chacun d’eux (on aura toujours, bien entendu,∑

l kl = n).

Exemple

Considérons un plan factoriel complet pour deux facteurs et supposons
qu’il est décomposé en trois blocs : les deux premières expériences
(selon l’ordre de Yates) sont dans le premier bloc, les troisième et
quatrième étant respectivement dans les blocs 2 et 3. On a donc b =
3, k1 = 2, k2 = k3 = 1 et la matrice du modèle est donnée par
X = [B | W ] où :

B =

⎡

⎢
⎢
⎣

1 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥
⎥
⎦ et W =

⎡

⎢
⎢
⎣

−1 −1 1 1 1
1 −1 1 1 −1

−1 1 1 1 −1
1 1 1 1 1

⎤

⎥
⎥
⎦ .

Le modèle à effets de blocs est Y = Bγ +Wτ +ε avec tγ = (γ1, γ2, γ3)
et tτ = (β1, β2, β11, β22, β12) . Il est constitué de p = 8 paramètres
inconnus.

Remarque 1. Si un seul bloc est utilisé alors B = In (i.e. toutes les
expériences sont évidemment dans cet unique bloc) et on retrouve bien la
matrice du modèle pour surface de réponse classique.

Remarque 2. On trouve souvent dans la littérature le modèle à effets de
blocs écrit sous la forme suivante :

∀ x ∈ E , fl (x) = β0 +
m∑

i=1

βixi +
m∑

i=1

βiix
2
i +

∑∑

i<j

βijxixj + γl.

En d’autres termes l’effet moyen général n’est pas supprimé. Cette convention
n’est pas utilisée ici car elle implique que tout plan est forcément à matrice
des moments non-inversible. En effet, la matrice de ce modèle est telle que
la somme de toutes les colonnes de B est toujours égale à In, donc elle n’est
jamais de plein rang. C’est pour lever cette singularité structurelle que l’effet
moyen général est systématiquement supprimé par la suite (sinon il faudrait
avoir recours à des contraintes d’identifiabilité afin de pouvoir estimer tous
les paramètres).
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6.2.2 Plans d’expérience usuels

La notion de moment des points d’un plan d’expérience a été utilisée à de
multiples reprises dans les chapitres précédents. Maintenant que des config-
urations décomposées en blocs sont utilisées il est nécessaire d’affiner ces in-
dicateurs en considérant des moments par blocs. Désignons dans la suite par∑

bloc l la somme portant sur toutes les expériences zu du bloc l. Pour tout
plan d’expérience D = {zu, u = 1, ..., n} décomposé en b blocs de tailles respec-
tives k1, k2, ..., kb on appelle moment par bloc associé au bloc l = 1, ..., b
tout réel obtenu par la relation suivante (avec δ1, δ2, ..., δm ∈ N) :

[
1δ12δ2 ...mδm

]

l
=

1
kl

∑

bloc l

zδ1
u1z

δ2
u2...z

δm
um.

Remarquons que cette définition est naturelle puisqu’elle consiste à dire
qu’un moment du bloc l est simplement égal au moment classique corre-
spondant obtenu si le plan d’expérience se résume au seul bloc l. Il découle
immédiatement de cette définition que la relation entre moments et moments
par blocs est donnée par :

[
1δ12δ2 ...mδm

]
=

b∑

l=1

kl

n

[
1δ12δ2 ...mδm

]

l
.

Pour un modèle à effets de blocs la matrice des moments généralisée obtenue
à partir de X = [B | W ] est donnée par :

M =
1
n

[
tBB tBW
tWB tWW

]

=
1
n

⎡

⎢
⎢
⎣

tBB tBD tBDQ
tBDI

tDB tDD tDDQ
tDDI

tDQB tDQD tDQDQ
tDQDI

tDIB tDID
tDIDQ

tDIDI

⎤

⎥
⎥
⎦ .

La structure des blocs tDD, tDDQ, tDDI ,
tDQDQ ainsi que tDIDI est con-

nue d’après les chapitres 3, 4 et 5. Détaillons uniquement la forme des blocs
présentés ci-dessus en gras. Comme B est la matrice des indicatrices des blocs
du plan d’expérience on obtient immédiatement :

tBB = diag (k1, k2, ..., kb) ,

tBD =

⎡

⎢
⎢
⎢
⎣

k1 [1]1 k1 [2]1 . . . k1 [m]1
k2 [1]2 k2 [2]2 . . . k2 [m]2

...
...

...
kb [1]b kb [2]b . . . kb [m]b

⎤

⎥
⎥
⎥
⎦

,
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tBDQ =

⎡

⎢
⎢
⎢
⎢
⎣

k1
[
12
]

1
k1

[
22
]

1
. . . k1

[
m2

]

1

k2
[
12
]

2
k2

[
22
]

2
. . . k2

[
m2

]

2
...

...
...

kb

[
12
]

b
kb

[
22
]

b
. . . kb

[
m2

]

b

⎤

⎥
⎥
⎥
⎥
⎦
,

tBDI =

⎡

⎢
⎢
⎢
⎣

k1 [12]1 k1 [13]1 . . . k1 [(m− 1)m]1
k2 [12]2 k2 [13]2 . . . k2 [(m− 1)m]2

...
...

...
kb [12]b kb [13]b . . . kb [(m− 1)m]b

⎤

⎥
⎥
⎥
⎦

.

La matrice M = (1/n) tXX obtenue lorsque X = [B | W ] contient bien à la
fois des moments et des moments par bloc, la qualification de matrice des
moments généralisée et donc adaptée. La forme de la matrice des moments
généralisée étant connue un objectif classique est de chercher des configura-
tions la rendant la plus simple possible. La démarche naturelle consiste à
annuler tous les moments par bloc lorsque cela est possible et à rendre tous
les autres égaux. Ceci conduit à la notion de plan d’expérience usuel :

Définition 6.1. Un plan d’expérience en blocs est qualifié d’usuel si et seule-
ment si il s’agit d’un plan d’expérience usuel pour un modèle linéaire d’ordre
deux vérifiant les conditions supplémentaires suivantes :
1) tous ses moments par bloc impairs jusqu’à l’ordre deux sont nuls :

∀ l = 1, ..., b et ∀ i, j = 1, ..., m avec i 	= j , [i]l = [ij]l = 0.

2) tous ses moments par bloc pairs d’ordre deux vérifient :

∀ l = 1, ..., b ,
[
12
]

l
=
[
22
]

l
= ... =

[
m2

]

l
.

En d’autres termes, tous les moments pairs d’ordre deux sont égaux au sein
d’un même bloc. Désignons dans la suite par μl la valeur commune pour
tous ces moments associés au bloc l.

Il résulte de cette définition et des résultats des chapitres précédents
que la matrice des moments généralisée a la forme suivante pour tout plan
d’expérience en blocs usuel :

M =
1
n

tXX =
1
n

⎡

⎢
⎢
⎣

tBB 0 tBDQ 0
0 s2Im 0 0

tDQB 0 (s4 − s22) Im + s22Jm 0
0 0 0 s22Im(m−1)/2

⎤

⎥
⎥
⎦

avec toujours pour tout plan usuel D = {zu, u = 1, ..., n} les constantes s2, s22
et s4 définies par (∀ i, j = 1, ..., m avec i 	= j ) :

s2 = n
[
i2
]

=
n∑

u=1

z2ui , s22 = n
[
i2j2

]
=

n∑

u=1

z2uiz
2
uj , s4 = n

[
i4
]

=
n∑

u=1

n∑

u=1

z4ui.
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Les blocs tBB ainsi que tDQB ont de plus une forme très simple à manier
lorsque le plan est en blocs usuel.

6.2.3 Inversion de la matrice des moments généralisée

Des conditions algébriques ont été établies dans le chapitre précédent afin
de pouvoir caractériser un plan d’expérience usuel à matrice des moments
inversible pour un modèle polynomial classique d’ordre deux. Voici une ex-
tension de ce résultat à la classe des plans d’expérience en blocs. On montre
que pour tout plan en blocs usuel, décomposé en b blocs de tailles k1, k2, ..., kb,
sa matrice des moments généralisée est inversible si et seulement si (la
démonstration est effectuée avec celle de la proposition 6.2) :

s2 > 0, s4 > s22 > 0 et s4 + (m− 1) s22 −m

b∑

l=1

klμ
2
l > 0.

Ces derniers résultats peuvent encore être interprétés facilement à l’aide, une
nouvelle fois, d’arguments géométriques :

Proposition 6.2. [�] Soit un plan d’expérience en blocs usuel décomposé en
b blocs de tailles respectives k1, k2, ..., kb. Sa matrice des moments généralisée
est inversible si et seulement si aucune des trois conditions suivantes n’est
vérifiée :
1) la distribution des points du plan est concentrée sur les axes,
2) tout point du plan a ses coordonnées égales en valeur absolue,
3) chaque bloc est constitué par des points équidistants de l’origine.

6.2.4 Estimations et prédictions

Considérons toujours à partir de maintenant un plan d’expérience usuel en
blocs dont la matrice des moments généralisée est inversible. Un tel plan
permet d’estimer au sens des moindres carrés tous les paramètres inconnus
du modèle (effets des blocs, linéaires, quadratiques et d’interactions). On a
explicitement :

Proposition 6.3. [�] Soit un plan d’expérience en blocs D = {zu, u = 1, ..., n}
usuel, décomposé en b blocs de tailles respectives k1, k2, ..., kb. Les différents
estimateurs des moindres carrés des paramètres du modèle sont alors
obtenus explicitement par les relations suivantes :

1) γ̂ =

⎛

⎜
⎝

Y B1

...
Y Bb

⎞

⎟
⎠ +

n

φ

[

m

(
b∑

l=1

klY Blμl

)

−
n∑

u=1

‖zu‖2 Yu

]
⎛

⎜
⎝

μ1

...
μb

⎞

⎟
⎠
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avec V (γ̂) = diag
(

σ2

k1
, ...,

σ2

kb

)

+
mnσ2

φ
diag (μ1, ..., μb)Jb diag (μ1, ..., μb) ,

2) β̂L =
1
s2

tDLY avec V

(
β̂L

)
=

σ2

s2
Im,

3) β̂Q =
1

s4 − s22
tDQY−n

φ

⎡

⎢
⎢
⎢
⎣

b∑

l=1

klY Blμl +

⎛

⎜
⎜
⎜
⎝

s22 −
b∑

l=1

klμ
2
l

s4 − s22

⎞

⎟
⎟
⎟
⎠

n∑

u=1

‖zu‖2 Yu

⎤

⎥
⎥
⎥
⎦

Im

avec V

(
β̂Q

)
=

σ2

s4 − s22

[

Im − n

φ

(

s22 −
b∑

l=1

klμ
2
l

)

Jm

]

,

4) β̂I =
1

s22
tDIY avec V

(
β̂I

)
=

σ2

s22
Im(m−1)/2,

avec Y Bl (l = 1, ..., b) valeur moyenne des observations associées au bloc l et

φ = n

[

s4 + (m− 1) s22 −m

b∑

l=1

klμ
2
l

]

.

Ce résultat permet donc d’affirmer que pour tout plan d’expérience en
blocs usuel la dispersion de l’estimateur de l’effet du bloc l (l = 1, ..., b) est
donnée par :

Var (γ̂l) = σ2

(
1
kl

+
mn

φ
μ2

l

)

.

Concernant maintenant les dispersions des estimateurs des effets linéaires,
quadratiques et d’interactions on a (∀ i, j = 1, ..., m avec i 	= j) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Var
(
β̂i

)
=

σ2

s2
et Var

(
β̂ij

)
=

σ2

s22
,

Var
(
β̂ii

)
=

σ2

s4 − s22

[

1− n

φ

(

s22 −
b∑

l=1

klμ
2
l

)]

.

Remarquons que cette proposition est une généralisation de la proposition
5.3 relative aux plans d’expérience pour un modèle classique d’ordre deux.
En effet si le plan d’expérience est considéré comme étant constitué d’un seul
bloc on retrouve sans peine les résultats de la proposition 5.3 (poser b = 1 ,
k1 = n et μ1 = s2/n).

Considérons maintenant les prédictions réalisées par un tel modèle. La
situation est alors plus complexe que dans le cas classique sans bloc car il
n’y a plus maintenant une réponse moyenne prédite au point x ∈ R

m mais
b réponses prédites. En désignant par Ŷl (x) (l = 1, ..., b) la réponse moyenne
prédite lorsque le point x du domaine expérimental est supposé associé au
bloc l :
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Ŷl (x) = tg (x)
(

γ̂
τ̂

)

avec g (x) ∈ R
p vecteur de régression donné pour le modèle à effets de blocs

par :

tg (x) =
(
δl1, ..., δlb, x1, ..., xm, x2

1, ..., x
2
m, x1x2, ..., xm−1xm

)

où δlj est le symbole de Kronecker (i.e. δlj = 1 si l = j, δlj = 0 sinon). On
obtient alors le résultat explicite suivant :

Proposition 6.4. [�] Soit un plan d’expérience en blocs usuel, décomposé en
b blocs de tailles k1, k2, ..., kb. En désignant par ‖.‖ la norme usuelle de R

m,
la dispersion de la réponse prédite en un point x = t (x1, ..., xm) ∈ E associé
au bloc l = 1, ..., b est donnée par :

Var Ŷl (x) = σ2

[

fl (r) +
(

1
s4 − s22

− 1
2s22

) m∑

i=1

x4
i

]

avec :

fl (r) =
(

1
kl

+
mnμ2

l

φ

)

+
(

1
s2

− 2
nμl

φ

)

r2 +

[
1

2s22
+

n
(∑

l klμ
2
l − s22

)

φ (s4 − s22)

]

r4

r = ‖x‖ et φ = n

[

s4 + (m− 1) s22 −m
b∑

l=1

klμ
2
l

]

.

Remarque. Durant tout ce chapitre on suppose qu’il est intéressant pour
l’utilisateur d’estimer les divers effets de blocs. Ceci est, par exemple, le
cas lorsque divers matériaux sont testés. Les expériences associées à chaque
matériau sont regroupées dans un même bloc et l’estimation des effets des
blocs va permettre de comparer la qualités des matériaux testés. Une autre
approche consiste à considérer les effets des blocs comme des étant des ef-
fets de nuisance. Dans ce cas les effets de blocs ont pour rôle d’enrichir
le modèle mais leur estimation n’intéresse pas l’utilisateur. C’est, par ex-
emple, le cas lorsque les blocs regroupent des arrivages de diverses matières
premières généralement hétérogènes mais difficilement contrôlables. Sous cette
hypothèse réaliser une prédiction sur la base de la fonction Ŷl n’a pas vraiment
de sens en pratique puisqu’il va être impossible de reproduire exactement les
conditions expérimentales du bloc l. Divers auteurs utilisent alors la réponse
prédite moyenne η̂ (voir Khuri [54] ou Park et Jang [69]) obtenue à partir de
la moyenne des réponses associées à chacun des blocs :

η̂ (x) =
1
b

b∑

l=1

Ŷl (x) .



6.2 Généralités 211

6.2.5 Comparaison des effets de blocs

L’analyse d’un modèle à effets de blocs peut être menée de manière identique
à celle des modèles présentés dans les chapitres précédents. Il est par exemple
encore possible d’évaluer la qualité du modèle ajusté à l’aide de la technique
d’analyse de la variance et chacun des paramètres peut être jugé significatif
ou non en utilisant un test d’hypothèse le comparant à zéro. On a cependant
maintenant b blocs et il est naturel de se demander si les effets de chaque
couple de blocs sont réellement différents entre eux (i.e. les expériences re-
groupées dans deux blocs sont-elles réellement hétérogènes ?). Pour comparer
les effets des blocs i et j (i, j = 1, ..., b avec i 	= j) il faut donc ici tester
l’hypothèse suivante :

H0 : ”γi = γj” contre H1 = H0.

Utilisons pour cela un résultat classique concernant les hypothèses linéaires
de la forme H0 : ”Aβ = a” avec A ∈M (r, p) telle que r = rg (A) (i.e. avec la
dimension de Im A égale au nombre de ses lignes) et a ∈ R

r. Il est alors bien
connu (voir, par exemple, l’ouvrage de Searle [88] paragraphe 6 du chapitre
3) que si l’hypothèse linéaire considérée est vérifiable (i.e. KerX ⊂ KerA
avec X matrice du modèle) alors elle peut être testée à l’aide de la statistique
suivante :

T =
t
(
Aβ̂ − a

) [
A (tXX)−1 tA

]−1 (
Aβ̂ − a

)

rσ̂2

où σ̂2 = SSE/ (n− p) est l’estimateur sans biais classique de σ2 (voir le
paragraphe 2.5.3). La règle de décision est alors donnée par (avec fα,r,n−p

fractile de la loi de Fisher à r et (n− p) ddl) :

on rejette H0 au niveau α si t ≥ fα,r,n−p.

Ceci permet d’obtenir le résultat suivant relatif aux effets de blocs :

Proposition 6.5. [�] Soit un plan d’expérience en blocs usuel, décomposé
en b blocs de tailles respectives k1, k2, ..., kb. Un test de l’hypothèse d’égalité
des effets de blocs H0 : ”γi = γj” pour i, j = 1, ..., b avec i 	= j contre
l’hypothèse H1 = H0 peut être réalisé à l’aide de la statistique :

T =
(γ̂i − γ̂j)

2

σ̂2

[
(ki + kj)

kikj
+

mn

φ
(μi − μj)

2

]

avec σ̂2 =
SSE

n− p
= MSE et φ = n

[

S4 + (m− 1)S22 −m
b∑

l=1

klμ
2
l

]

.

La règle de décision est alors donnée par (avec fα,1,n−p fractile de la loi de
Fisher à 1 et (n− p) ddl) :
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on rejette H0 au niveau α si t ≥ fα,1,n−p.

Remarque. Dans le cas particulier où μi = μj (pour tous les i, j = 1, ..., b
avec i 	= j) on obtient alors :

T =
kikj

σ̂2 (ki + kj)
(γ̂i − γ̂j)

2 .

La statistique de test ne nécessite pas ici de déterminer le coefficient φ ce
qui simplifie grandement les calculs. Remarquons enfin que si de plus tous les
blocs sont de même taille alors T est encore plus simple puisque dans ce cas :

T =
n

2σ̂2b
(γ̂i − γ̂j)

2 =
k

2σ̂2
(γ̂i − γ̂j)

2
.

Ces situations sont courantes en pratique car elles correspondent à un blocage
orthogonal du plan (voir la section suivante).

6.3 Plans bloqués orthogonalement

6.3.1 Définition

Lorsque des plans d’expérience en blocs sont utilisés il est naturel de rechercher
une méthode ”optimale” de blocage. Pour cela, un objectif très intéressant du
point de vue pratique (proposé initialement par Box et Hunter [15]) est le
suivant.

Définition 6.6. Un plan d’expérience en blocs est dit bloqué orthogo-
nalement si et seulement si ses estimateurs des moindres carrés des effets
linéaires, quadratiques et d’interactions sont identiques à ceux obtenus avec le
même plan d’expérience sans bloc.

Cette définition montre tout l’intérêt de ce type de plans d’expérience dans
une démarche séquentielle : il est possible de commencer par ajuster un
modèle linéaire classique d’ordre deux et si l’ajustement obtenu s’avère mau-
vais on peut alors l’enrichir par l’ajustement d’un modèle à effets de blocs
obtenu très facilement puisque seuls les effets de blocs sont à déterminer alors
(tous les autres effets restent identiques). Il est possible aussi d’introduire
la problématique du blocage orthogonal dans le cas où les effets des blocs
sont des paramètres de nuisance. Il est alors naturel de rechercher des
plans d’expérience conduisant à des estimateurs des autres effets du modèle
indépendants des effets de blocs, sans intérêt pour l’étude du phénomène.
L’hypothèse de blocage orthogonal se traduit mathématiquement par :
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Proposition 6.7. [�] Soit un plan d’expérience en blocs associé à la matrice
du modèle X = [B | W ] . Ce plan d’expérience est bloqué orthogonalement
si et seulement si :

tW

(

In − 1
n

Jn

)

B = 0.

Cette proposition appliquée à la classe des plans d’expérience usuels donne le
résultat suivant :

Proposition 6.8. [�] Un plan d’expérience en blocs usuel est bloqué or-
thogonalement si et seulement si il vérifie la condition supplémentaire suiv-
ante pour ses moments par bloc d’ordre deux :

μ1 = μ2 = ... = μb =
s2
n

.

En pratique il est donc très facile, dans le cas des plans usuels, de traduire la
propriété de blocage orthogonal puisqu’elle ne fait intervenir que les moments
purs d’ordre deux. Remarquons aussi qu’il est suffisant de vérifier que :

μ1 = μ2 = ... = μb

pour en déduire que le plan d’expérience est bien bloqué orthogonalement.
En effet, si ces moments par blocs sont égaux on sait alors d’après la relation
liant moments et moments par blocs (voir le paragraphe 6.2.2) qu’il vient (∀
i = 1, ..., m et ∀ l∗ = 1, ..., b) :

[
i2
]

=
s2
n

=
b∑

l=1

kl

n

[
i2
]

l
=

μl∗

n

b∑

l=1

kl = μl∗ .

Remarquons enfin qu’outre le fait de conserver des estimateurs pour les effets
linéaires, quadratiques et d’interaction identiques à ceux du cas sans bloc,
le blocage orthogonal est aussi particulièrement intéressant car il entrâıne
d’importantes simplifications dans l’analyse du modèle (reprendre tous les
résultats obtenus précédemment et les simplifier à l’aide de la proposition 6.8).
On vérifie aussi que les dispersions des différents estimateurs des paramètres
du modèle restent identiques à celles obtenues avec le modèle d’ordre deux
sans bloc.

6.3.2 Reconstruction de l’information

Lorsque le plan d’expérience est bloqué orthogonalement la plupart des
résultats obtenus sont soit identiques soit très proches du cas sans bloc. Ceci
permet de reconstruire très facilement l’estimateur des moindres carrés de
l’effet moyen général β0 (absent dans le modèle à effets de blocs) à partir
des informations issues de l’analyse du modèle en blocs. En effet, d’après la
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proposition 5.3 du dernier chapitre, il vient pour un modèle linéaire d’ordre
deux analysé à l’aide d’un plan usuel :

β̂0 = Y +
s2
φ

(

ms2Y −
n∑

u=1

‖zu‖2 Yu

)

.

Pour un plan d’expérience en blocs usuel bloqué orthogonalement l’estimateur
des moindres carrés de l’effet du bloc l (l = 1, ..., b) est donné par :

γ̂l = Y Bl +
s2
φ

(

m2Y −
n∑

u=1

‖zu‖2 Yu

)

avec dans les deux cas φ = ns4 + n (m− 1) s22 −ms22. Il en découle que :

∀ l = 1, ..., b , β̂0 − γ̂l = Y − Y Bl.

Cette relation étant vraie pour tous les estimateurs des effets de blocs et∑
l klY Bl = nY on en déduit donc le résultat suivant :

Proposition 6.9. Soit un plan d’expérience en blocs usuel et bloqué orthogo-
nalement. L’estimateur des moindres carrés de l’effet moyen général β0 du
modèle linéaire d’ordre deux peut alors être déduit directement des estimateurs
des moindres carrés des effets de blocs par la relation :

β̂0 =
1
n

b∑

l=1

klγ̂l.

Ce résultat montre donc qu’il est très facile de reconstruire l’estimateur des
moindres carrés de l’effet moyen général β0 puisqu’il est obtenu par simple
calcul d’une moyenne pondérée sur les estimateurs des effets des blocs. En
cas de doute sur l’homogénéité des résultats il est donc conseillé d’utiliser
un plan bloqué orthogonalement quitte à finalement ne pas considérer les
estimateurs des effets des blocs (et à déterminer alors β̂0 à partir du résultat
de la proposition 6.9) si ceux-ci ne sont pas significativement différents.

6.3.3 Isovariance par transformations orthogonales

Utilisons ici une nouvelle fois la similarité entre l’analyse d’un plan sans
bloc et celle d’un plan bloqué orthogonalement afin de généraliser la notion
d’isovariance. On sait (voir la proposition 5.3) que la dispersion de la réponse
moyenne prédite en un point x ∈ E est donnée pour tout plan d’expérience
usuel (sans bloc) par :

Var Ŷ (x) = σ2

[

f (r) +
(

1
s4 − s22

− 1
2s22

) m∑

i=1

x4
i

]

avec :
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f (r) =
(

1
n

+
ms22
nφ

)

+
(

1
s2

− 2
s2
φ

)

r2 +
(

1
2s22

+
s22 − ns22

φ (s4 − s22)

)

r4.

On vérifie facilement que pour un plan d’expérience en blocs usuel bloqué
orthogonalement la dispersion de la réponse moyenne prédite en un point
x ∈ E associé au bloc l = 1, ..., b est :

Var Ŷl (x) = σ2

[

fl (r) +
(

1
s4 − s22

− 1
2s22

) m∑

i=1

x4
i

]

avec

fl (r) =
(

1
kl

+
ms22
nφ

)

+
(

1
s2

− 2
s2
φ

)

r2 +
(

1
2s22

+
s22 − ns22

φ (s4 − s22)

)

r4.

Comme dans ces deux situations la même valeur du paramètre φ est utilisée
(en l’occurence φ = ns4 + n (m− 1) s22−ms22) on en déduit alors immédiate-
ment le résultat suivant par simple différence :

Proposition 6.10. Soit un plan d’expérience en blocs usuel et bloqué or-
thognalement. Si Ŷl (x) désigne la réponse moyenne prédite en un point
x ∈ E associé au bloc l ( l = 1, ..., b) et Ŷ (x) la réponse moyenne prédite en
ce même point pour le modèle linéaire d’ordre deux alors :

Var Ŷl (x) = Var Ŷ (x) + σ2

(
n− kl

nkl

)

.

En d’autres termes, lorsque le plan d’expérience est bloqué orthogonalement
la variance de prédiction associée à chacun des blocs est identique à une
constante additive près à la variance de prédiction du plan sans bloc. Cette
constante étant de plus toujours positive ceci montre que l’introduction de
blocs diminue forcément la qualité de la réponse moyenne prédite par rapport
au cas sans bloc (consulter les articles de Khuri [54] ou bien Park et Jang
[69] pour plus de détails concernant l’impact de la structure des blocs sur la
réponse moyenne prédite). Dans le cas particulier où tous les blocs sont de
même taille (i.e. kl = n/b) il existe alors uniquement une seule variance de
prédiction donnée quel que soit le bloc considéré par :

Var Ŷl (x) = Var Ŷ (x) + σ2

(
b− 1

n

)

.

La proposition 6.10 permet donc d’étendre la notion d’isovariance au cas des
plans bloqués orthogonalement puisqu’il suffit de réutiliser tous les résultats
obtenus dans le cas sans bloc (voir le paragraphe 5.2.5). On en déduit la
proposition suivante :
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Proposition 6.11. Soit un plan d’expérience en blocs usuel et bloqué orthog-
nalement. Ce plan d’expérience est alors isovariant par transformations
orthogonales (i.e. pour tout bloc l = 1, ..., b la dispersion de Ŷl (x) ne dépend
que de la distance ‖x‖) si et seulement si :

s4 = 3s22.

La dispersion de Ŷl (∀ l = 1, ..., b) est de plus donnée explicitement par :

Var Ŷl (r) = Var Ŷ (r) + σ2

(
n− kl

nkl

)

avec :

Var Ŷ (r) = σ2

[(
1
n

+
ms22
nφ

)

+
(

1
s2

− 2
s2
φ

)

r2 +
1

2s22

(

1 +
s22 − ns22

φ

)

r4
]

,

r = ‖x‖ et φ = n (m + 2) s22 −ms22.

Remarquons que l’étude de la propriété d’isovariance a été limitée au cas
des plans bloqués orthogonalement. Cette propriété peut cependant aussi être
obtenue sans difficulté pour des plans en blocs usuels non bloqués orthogonale-
ment (toujours en posant s4 = 3s22). Si maintenant la propriété d’isovariance
n’est pas vérifiée il est cependant possible de généraliser la notion de graphe
des variances extrêmes vue au chapitre 5 (mais la situation est alors plus
complexe car on a maintenant un graphe des variances extrêmes par bloc). Le
lecteur souhaitant plus de développements sur ces thèmes pourra se référer à
Tinsson [100].

6.3.4 Une méthode universelle de blocage orthogonal

Le problème de la construction de plans d’expérience bloqués orthogonale-
ment est primordial en pratique. Il existe une méthode universelle permettant
d’atteindre facilement cet objectif qui est celle de la réplication de la totalité
des expériences. En effet, soit un plan d’expérience D usuel pour un modèle
linéaire d’ordre deux classique selon la définition 5.1. Ce plan d’expérience
peut être aussi considéré dans sa gobalité comme étant un bloc qui peut être
répété b fois. Il découle immédiatement d’une telle opération que les moments
obtenus après b répétitions restent identiques aux moments initiaux, le plan
d’expérience ainsi obtenu est donc bien encore usuel pour le modèle d’ordre
deux classique. Concernant maintenant les moments par blocs on peut alors
dire, puisque D est usuel, qu’en particulier tous les moments impairs jusqu’à
l’ordre deux de ce plan sont nuls et tous ses moments pairs d’ordre deux sont
égaux. En d’autres termes :

μ1 = μ2 = ... = μb.

Ceci permet d’affirmer que :
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Proposition 6.12. Soit un plan d’expérience D usuel pour un modèle linéaire
d’ordre deux. Le plan d’expérience D′ constitué des b blocs D1, ...,Db obtenus
à la suite de b réplications du plan initial (i.e. ∀ l = 1, ..., b , Dl = D) est
alors un plan d’expérience en blocs usuel bloqué orthogonalement.

Remarquons que cette méthode (parfois implémentée par défaut sur des logi-
ciels de statistique) a pour avantage sa simplicité mais pour principal in-
convénient le fait qu’elle conduit à des plans d’expérience de grande taille
(puisque appliquée à un plan initial en n expériences elle conduit à un plan
en blocs en nb expériences).

Cette même méthode peut aussi être appliquée partiellement à partir d’un
des blocs d’un plan d’expérience initial. Considérons un plan d’expérience D
constitué des blocs D1, ...,Db, usuel et bloqué orthogonalement. Effectuons
maintenant une réplication d’un des b blocs (supposons, par exemple, que le
nouveau bloc introduit est une duplication du bloc 1, i.e. Db+1 = D1). Le fait
de poser Db+1 = D1 entrâıne immédiatement que les moments impairs pour
ce nouveau bloc jusqu’à l’ordre deux sont nuls et :

μ1 = μ2 = ... = μb = μb+1.

Il faut prendre garde au fait que les constatations faites ci-dessus ne concernent
que les moments jusqu’à l’ordre deux. Le fait de rajouter le bloc Db+1 peut
poser un problème car le plan obtenu n’est plus forcément un plan d’expérience
usuel pour un modèle d’ordre deux. Pour garder une structure de plan usuel
pour un tel modèle il est nécessaire que les moments impairs d’ordre 3 et 4
du bloc dupliqué soient nuls et que tous ses moments pairs d’ordre 4 soient
égaux. Ceci permet alors d’énoncer le résultat suivant :

Proposition 6.13. Soit un plan d’expérience D constitué des blocs D1, ...,Db

tel que D soit usuel et bloqué orthogonalement. Soit D′ le plan d’expérience
obtenu en duplicant un des blocs de D. En d’autres termes, D′ est constitué
des blocs :

D1, ...,Db,Db+1 et ∃ i = 1, ..., b / Db+1 = Di.

Le plan d’expérience D′ est alors aussi un plan d’expérience en blocs usuel
bloqué orthogonalement si et seulement si le bloc Di constitue un plan
d’expérience usuel pour un modèle linéaire d’ordre deux.

6.4 Exemples de constructions

6.4.1 Plans composites centrés

Conidérons ici un phénomène aléatoire dépendant de m = 3 facteurs. Il est
alors possible d’utiliser, par exemple, un plan composite centré. Un tel plan
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d’expérience est forcément constitué par la partie factorielle complète (23 = 8
points), la partie axiale située à la distance α du centre du domaine (6 points)
et un certain nombre de réplications centrales. On vérifie aisément qu’afin
d’obtenir une structure de plan en blocs usuel il est possible d’utiliser comme
blocs soit la partie factorielle (ou une fraction régulière de celle-ci), soit la
partie axiale. Voici alors plusieurs plans d’expérience en blocs construits à
partir de cette constatation.

Configuration 1 Une structure en deux blocs est donnée par :
∣
∣
∣
∣
Bloc 1 : partie factorielle et n1 points centraux,
Bloc 2 : partie axiale et n2 points centraux.

On vérifie aisément qu’un tel plan est un plan en blocs usuel (voir la défintion
6.1) avec de plus :

μ1 =
8

8 + n1
et μ2 =

2α2

6 + n2
.

Configuration 2 Une structure en trois blocs est donnée par :
∣
∣
∣
∣
∣
∣

Bloc 1 : fraction régulière I =123 et n1 points centraux,
Bloc 2 : fraction régulière I = −123 et n2 points centraux,
Bloc 3 : partie axiale et n3 points centraux.

Afin d’obtenir un bloc supplémentaire la partie factorielle a été décomposée
ici en deux fractions régulières vérifiant les conditions imposées aux plans en
blocs usuels (définition 6.1). Remarquons que d’après les résultats du chapitre
3 ces conditions (moments impairs jusqu’à l’ordre deux nuls et moments pairs
d’ordre deux tous égaux) sont bien vérifiées par toute fraction régulière de
résolution III. On en déduit qu’une telle structure constitue un plan en blocs
usuel avec de plus :

μ1 =
4

4 + n1
, μ2 =

4
4 + n2

et μ3 =
2α2

6 + n3
.

Configuration 3 Une structure en trois blocs est donnée par :
∣
∣
∣
∣
∣
∣

Bloc 1 : partie factorielle et n1 points centraux,
Bloc 2 : partie axiale et n2 points centraux,
Bloc 3 : partie axiale et n3 points centraux.

La technique utilisée ici afin d’obtenir trois blocs consiste simplement à du-
pliquer la partie axiale (ce type de structure où plusieurs parties axiales
sont utilisées à été proposé initialement par Gardiner et al. [42]). Le plan
d’expérience ainsi obtenu est bien usuel pour un modèle linéaire d’ordre deux
et chacun des blocs est bien compatible avec la structure de plan usuel en
blocs avec :
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μ1 =
8

8 + n1
, μ2 =

2α2

6 + n2
et μ3 =

2α2

6 + n3
.

Configuration 4 Une structure en quatre blocs est donnée par :

∣
∣
∣
∣
∣
∣
∣
∣

Bloc 1 : fraction régulière I =123 et n1 points centraux,
Bloc 2 : fraction régulière I = −123 et n2 points centraux,
Bloc 3 : partie axiale et n3 points centraux,
Bloc 4 : partie axiale et n4 points centraux.

Cette structure combine les techniques présentées aux configurations 3 et 4.
Le plan ainsi obtenu est un plan en blocs usuel tel que :

μ1 =
4

4 + n1
, μ2 =

4
4 + n2

, μ3 =
2α2

6 + n3
et μ3 =

2α2

6 + n4
.

Considérons maintenant le problème du blocage orthogonal en supposant
que l’expérimentateur soit intéressé par la configuration numéro 2. D’après la
proposition 6.8 le blocage orthogonal est alors obtenu si et seulement si :

μ1 = μ2 = μ3 ⇔ n1 = n2 et α =
√

12 + 2n3

4 + n1
.

On constate donc qu’en fonction du nombre de réplications souhaitées il existe
toujour une valeur du paramètre α permettant d’obtenir le blacage orthogonal
(par exemple pour n1 = n2 = n3 = 1 il vient α =

√
14/5 � 1.673).

Supposons maintenant que l’utilisateur souhaite travailler avec un plan
composite centré à faces centrées (i.e. avec α = 1). L’égalité μ1 = μ2 se
traduit toujours par n1 = n2 et on a de plus :

μ1 = μ3 ⇔ 4
4 + n1

=
2

6 + n3
⇔ n1 = 2 (n3 + 4) .

On a donc bien un plan composite centré à faces centrées bloqué orthogonale-
ment dès lors que le nombre d’expériences au centre vérifie bien les conditions
déterminées ci-dessus. La configuration de plus petite taille comportant des
expériences au centre est alors telle que : n1 = n2 = 8 et n3 = 0 (donc n = 30).

Supposons enfin que l’on cherche à obtenir un plan d’expérience équiradial.
Il faut alors que α =

√
m donc les conditions de blocage orthogonal sont

n1 = n2 et :

μ1 = μ3 ⇔ 4
4 + n1

=
2m

6 + n3
⇔ 2n3 = 3n1.

On en déduit que le plan d’expérience composite centré équiradial et bloqué
orthogonalement de plus petite taille ayant des expériences au centre est donné
par : n1 = n2 = 2 et n3 = 3 (donc n = 21).
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Recherchons maintenant un plan d’expérience qui soit à la fois bloqué
orthogonalement et isovariant. Remarquons tout d’abord qu’il est impossi-
ble d’atteindre simultanément ces deux objectifs en gardant la configuration
numéro 2. En effet, d’après les résultats précédents ce plan d’expérience est
bloqué orthogonalement si et seulement si :

n1 = n2 et α =
√

12 + 2n3

4 + n1
.

Cependant d’après la proposition 6.11 l’isovariance est obtenue si et seulement
si :

s4 = 3s22 ⇔ α =
(
23
) 1

4 = 8
1
4 .

Ces deux objectifs seront donc atteints simultanément dès lors que :

√
8 =

12 + 2n3

4 + n1
.

Il est évidemment impossible de vérifier cette dernière égalité puisque le mem-
bre de gauche est irrationnel.

Afin de pallier ce type de difficulté il est possible de dupliquer la partie
axiale, c’est-à-dire de s’orienter vers la configuration numéro 4. Le blocage
orthogonal est alors obtenu si et seulement si :

μ1 = μ2 = μ3 = μ4 ⇔ n1 = n2 , n3 = n4 et α =
√

12 + 2n3

4 + n1
.

De même, l’isovariance est obtenue si et seulement si :

s4 = 3s22 ⇔ α = 4
1
4 .

Ces deux objectifs seront donc atteints simultanément dès lors que :

2 =
12 + 2n3

4 + n1
.

Il est cette fois possible de vérifier cette égalité puisque le membre de gauche
n’est plus maintenant irrationnel. La matrice du plan d’expérience en 4 blocs
est alors la suivante avec les différents blocs séparés par des traits horizontaux
(le plan étant associé aux valeurs n1 = n2 = 2 , n3 = n4 = 0 et α =

√
2) :
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 1
1 −1 −1

−1 1 −1
1 1 1
0 0 0
0 0 0

−1 −1 −1
1 −1 1

−1 1 1
1 1 −1
0 0 0
0 0 0

−√2 0 0√
2 0 0
0 −√2 0
0

√
2 0

0 0 −√2
0 0

√
2

−√2 0 0√
2 0 0
0 −√2 0
0

√
2 0

0 0 −√2
0 0

√
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6.4.2 Plans de Box et Benkhen

Il a été montré à la section 5.4 du chapitre précédent que les plans de Box
et Behnken pour m = 3, 4, 5 et 7 facteurs sont d’analyse aisée puisqu’ils sont
des plans d’expérience usuels pour un modèle linéaire d’ordre deux. Etudions
brièvement les possibilités de décomposition en blocs.

1) Pour m = 3 facteurs la manière naturelle de décomposer en trois blocs le
plan de Box et Behnken est donnée ci-dessous (en séparant dans la matrice
du plan chacun des blocs par un trait plein) :

D =

⎡

⎣
±1 ±1 0
±1 0 ±1
0 ±1 ±1

⎤

⎦ .

Une telle configuration n’est cependant pas un plan en blocs usuel car elle ne
vérifie pas la condition d’égalité de tous les moments par blocs pairs d’ordre
deux (en effet on a, par exemple,

[
12
]

1
=
[
22
]

1
= 1 mais

[
32
]

1
= 0).
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2) Pour m = 4 facteurs il existe un plan d’expérience de Box et Behnken
isovariant. Il est possible de le décomposer naturellement en trois blocs donnés
ci-dessous :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

±1 ±1 0 0
0 0 ±1 ±1
±1 0 0 ±1
0 ±1 ±1 0
±1 0 ±1 0
0 ±1 0 ±1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Cette structure est bien celle d’un plan d’expérience en blocs usuel.
Utilisée sous cette forme elle conduit cependant à un plan d’expérience à
matrice des moments généralisée non-inversible (puisque tous les blocs sont
constitués de points équidistants de l’origine). On peut donc considérer, de
manière plus générale, la configuration suivante :

∣
∣
∣
∣
∣
∣

Bloc 1 : (±1,±1, 0, 0)∪ (0, 0,±1,±1) et n1 points centraux,
Bloc 2 : (±1, 0, 0,±1)∪ (0,±1,±1, 0) et n2 points centraux,
Bloc 3 : (±1, 0,±1, 0)∪ (0,±1, 0,±1) et n3 points centraux.

Le blocage orthogonal est alors obtenu si et seulement si :

μ1 = μ2 = μ3 ⇔ 4
8 + n1

=
4

8 + n2
=

4
8 + n3

⇔ n1 = n2 = n3.

Le plan de plus petite taille isovariant et bloqué orthogonalement ainsi
obtenu est donc constitué par un total de 27 expériences (9 par bloc). Il
constitue une alternative au plan composite centré en trois blocs tout en
présentant le même coût pour sa mise en oeuvre puisque ces deux plans ont
un nombre d’expériences identique (leur grande similarité vient du fait qu’ici le
plan de Box et Behnken est obtenu par une simple rotation du plan composite
centré comme cela a été prouvé dans l’annexe B de l’article de Box et Behnken
[10]).

3) Pour m = 5 facteurs il est possible de considérer le plan de Box et Behnken
décomposé selon les deux blocs suivants :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

±1 ±1 0 0 0
0 0 ±1 ±1 0
0 ±1 0 0 ±1
±1 0 ±1 0 0
0 0 0 ±1 ±1
0 ±1 ±1 0 0
±1 0 0 ±1 0
0 0 ±1 0 ±1
±1 0 0 0 ±1
0 ±1 0 0 ±1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Un tel plan n’est pas isovariant mais on vérifie aisément que sa structure est
bien celle d’un plan en blocs usuel. En considérant que n1 expériences cen-
trales sont ajoutées au premier bloc et n2 au second, le blocage orthogonal
se traduit alors par :

μ1 = μ2 ⇔ 4
20 + n1

=
4

20 + n2
⇔ n1 = n2.

Le plan régulier de plus petite taille ainsi obtenu est donc constitué par un
total de 42 expériences.

4) Pour m = 7 facteurs il existe un plan de Box et Behnken isovariant par
transformations orthogonales donné par :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 ±1 ±1 ±1 0
±1 0 0 0 0 ±1 ±1
0 ±1 0 0 ±1 0 ±1
±1 ±1 0 ±1 0 0 0
0 0 ±1 ±1 0 0 ±1
±1 0 ±1 0 ±1 0 0
0 ±1 ±1 0 0 ±1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Il n’existe pas dans ce cas de décomposition en blocs telle que le plan obtenu
soit en blocs usuel (la matrice D ci-dessus est constituée par trois blocs de
tailles k1 = k2 = 16 et k3 = 24 mais l’analyse d’un tel plan ne peut pas être
menée à partir des propriétés des plans en blocs usuels).

6.4.3 Plans hybrides

Il a été montré à la section 5.6 du chapitre précédent que, pour m = 6 fac-
teurs, le plan hybride de Roquemore 628A est particulèrement intéressant
dans la mesure où il est un plan usuel, isovariant par transformations or-
thogonales et de très petite taille (28 expériences) puisque saturé pour un
modèle linéaire d’ordre deux. Une décomposition en deux blocs lui donnant
une structure de plan en blocs usuel n’étant pas réalisable il est cependant pos-
sible d’utiliser deux blocs tels que chacun d’eux soit un plan hybride 628A.
Ceci assure immédiatement une structure de plan en blocs usuel isovariant
et bloqué orthogonalement d’après la proposition 6.12 tout en gardant
une taille relativement correcte (n = 56). Le nombre total d’expériences est
plus intéressant que pour un plan composite centré classique (où n = 72).
Remarquons que la méthode présentée ici n’entrâıne pas forcément une dupli-
cation à l’identique du plan hybride 628A. En effet, la matrice d’un tel plan
est obtenue en rajoutant une colonne judicieuseusement choisie à la matrice
d’un plan composite centré fractionnaire à 5 facteurs. Cette colonne concerne
le facteur 6 pour la matrice de ce plan présentée au paragraphe 5.6.2 mais
il est possible de l’affecter à deux facteurs différents pour chacun des deux
blocs.
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6.5 Exemple d’application

Considérons une entreprise cherchant à expliquer et modéliser le taux de corro-
sion de différents matériaux. L’objectif final est naturellement de sélectionner
à la fois le matériau et les conditions expérimentales susceptibles de minimiser
ce taux. La corrosion semble être liée principalement à quatre facteurs qui sont
: la concentration de gaz acide, la température, la pression de gaz acide et en-
fin la durée d’application d’un additif censé protéger le matériau. L’entreprise
souhaite tester de plus trois matériaux différents (désignés par A, B et C).

Minimum Maximum
Concentration (en %) 0 10
Température (en ◦C) 20 80
Pression (en atm) 2 6
Durée (en jours) 5 15

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 0 0
1 −1 0 0

−1 1 0 0
1 1 0 0
0 0 −1 −1
0 0 1 −1
0 0 −1 1
0 0 1 1
0 0 0 0

−1 0 0 −1
1 0 0 −1

−1 0 0 1
1 0 0 1
0 −1 −1 0
0 1 −1 0
0 −1 1 0
0 1 1 0
0 0 0 0

−1 0 −1 0
1 0 −1 0

−1 0 1 0
1 0 1 0
0 −1 0 −1
0 1 0 −1
0 −1 0 1
0 1 0 1
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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⎥
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⎥
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⎥
⎥
⎥
⎥
⎦

La corrosion obtenue est quantifiée par la perte de masse de l’échantillon
en mg (tous les échantillons étant de même surface donc comparables). Les
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diverses plages d’utilisation pour les facteurs ainsi que leurs unités de mesure
sont résumées dans le premier tableau. Divers plans d’expérience utilisables
ici ont été présentés durant ce chapitre. On peut par exemple s’orienter (vu
qu’il y a trois matériaux différents à considérer) vers un plan d’expérience de
Box et Behnken décomposé naturellement en trois blocs. En d’autres termes
les n = 27 expériences à réaliser sont données par la matrice D du plan.
Le tableau suivant est cette fois le protocole expérimental c’est-à-dire la liste
des expériences à réaliser exprimées avec leurs unités initiales. Le vecteur Y
contenant les réponses mesurées (donc les différentes pertes de masses) est
donné parallèlement. Afin de repérer les blocs une colonne (dénommée Mat.)
est affectée au type de matériau choisi avec les différentes modalités notées
A, B ou C. Une telle écriture montre qu’un plan d’expérience en blocs peut
aussi être vu comme une structure permettant de tenir compte à la fois de
m facteurs quantitatifs et d’un facteur qualitatif associé aux différents
blocs (le type de matériau ici).

Mat. Con. Tem. Pre. Dur.
Exp 1 A 0 20 4 10
Exp 2 A 10 20 4 10
Exp 3 A 0 80 4 10
Exp 4 A 10 80 4 10
Exp 5 A 5 50 2 5
Exp 6 A 5 50 6 5
Exp 7 A 5 50 2 15
Exp 8 A 5 50 6 15
Exp 9 A 5 50 4 10
Exp 10 B 0 50 4 5
Exp 11 B 10 50 4 5
Exp 12 B 0 50 4 15
Exp 13 B 10 50 4 15
Exp 14 B 5 20 2 10
Exp 15 B 5 80 2 10
Exp 16 B 5 20 6 10
Exp 17 B 5 80 6 10
Exp 18 B 5 50 4 10
Exp 19 C 0 50 2 10
Exp 20 C 10 50 2 10
Exp 21 C 0 50 6 10
Exp 22 C 10 50 6 10
Exp 23 C 5 20 4 5
Exp 24 C 5 80 4 5
Exp 25 C 5 20 4 15
Exp 26 C 5 80 4 15
Exp 27 C 5 50 4 10

Y
18.8
18.1
19.7
24.4
22.1
22.7
23.3
24.2
21.0
24.1
16.2
16.7
27.9
19.4
22.2
20.1
24.9
20.2
13.9
15.0
14.2
16.4
13.2
21.7
19.2
18.3
14.8
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Voici un programme SAS permettant de rentrer toutes ces données. La ta-
ble ”donnees” contient ici d’une part la matrice des indicatrices des blocs
(colonnes b1, b2 et b3) et d’autre part la matrice du plan (effets linéaires con,
tem, pre et dur). Tout comme au chapitre 4 les colonnes des effets quadratiques
et des effets d’interaction sont ensuite créées automatiquement (la notation
”con2” désignant l’effet quadratique de la concentration alors que la notation
”tempre” désigne l’effet d’interaction entre la température et la pression).

Data Donnees;
Input b1 b2 b3 con tem pre dur y;
con2 = con*con; tem2 = tem*tem;
pre2 = pre*pre; dur2 = dur*dur;
contem = con*tem; conpre = con*pre; condur = con*dur;
tempre = tem*pre; temdur = tem*dur;
predur = pre*dur;
Cards;
1 0 0 -1.0 -1.0 0.0 0.0 18.8
1 0 0 1.0 -1.0 0.0 0.0 18.1

...
expérience i et réponse i

...
0 0 1 0.0 1.0 0.0 1.0 18.3
0 0 1 0.0 0.0 0.0 0.0 14.8

Run;

Avant de débuter l’analyse vérifions au préalable qu’un modèle à effets
de blocs est bien nécessaire dans cette situation. Ajustons alors un modèle
linéaire d’ordre deux (i.e. négligeons l’effet éventuel du matériau). Selon les
techniques vues au chapitre précédent, l’analyse de la variance entrâıne que :

SST = 386.08 et SSE = 160.75 donc R2 � 0.584.

Ce résultat montre donc clairement qu’un tel modèle est mal ajusté au
phénomène étudié. Un effet dû au matériau est donc peut être à considérer.
Ceci est de plus confirmé par la représentation graphique des résidus (i.e. des
valeurs Ŷ − Y calculées en chacun des points expérimentaux) donnée à la
figure 6.1 (source : Nemrod). On constate que le nuage de points obtenu n’est
pas homogène puisqu’il est constitué par deux ensembles clairement séparés.
Un premier ensemble est formé par 9 résidus, tous clairement négatifs, il s’agit
en fait de tous les résidus associés au bloc C. L’autre ensemble de points re-
groupe cette fois tous les résidus, clairement positifs, associés aux blocs A
et B. Ceci montre donc que le modèle utilisé sous-estime la réponse sur
le bloc C et par contre la sur-estime sur les blocs A et B d’où l’intérêt
évident d’introduire ici trois effets de blocs. Remarquons qu’un tel graphique
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peut être aussi obtenu facilement avec SAS en récupérant le vecteur Ŷ des
réponses moyennes prédites par le modèle à l’aide de l’option ”clm” de la
procédure REG (voir l’analyse de l’exemple à la fin du chapitre 3).

1.24

Y Calculé

Résidus

0.00
14.79 17.06 19.32 21.58 23.85

–1.24

–2.48

–3.72

Fig. 6.1. Résidus obtenus avec un modèle sans blocs.

La mise en oeuvre d’un modèle linéaire à effets de blocs permet d’obtenir
maintenant le tableau d’analyse de la variance suivant :

Source ddl S. carrés M. Carrés St. Test Proba.
Régression 16 384.50 24.03 152.33 0.0001 •••

Erreur 10 1.58 0.16
Total 26 386.08

Ces résultats proviennent de la procédure SAS donnée ci-dessous :

Proc Reg data=Donnees;
Model y = b1 b2 b3 con tem pre dur

con2 tem 2 pre2 dur2
contem conpre condur
tempre temdur predur / noint;

Run;

Cette procédure de régression a déjà été utilisée dans les chapitres 3 et 4.
L’option ”noint” (no intercept) est ajoutée ici afin d’indiquer au logiciel de ne
pas introduire l’effet moyen général β0. On constate donc que l’introduction
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d’effets de blocs donne un modèle d’excellente qualité puisque (valeur ”R-
Square” de la sortie SAS) :

R2 = 1− SSE

SST
� 0.996.

Un estimateur sans biais de la variance des résidus est alors (valeur ”Root
MSE” de la sortie SAS) :

σ̂2 = MSE = 0.158 (donc σ̂ � 0.397).

Prenons garde au fait que, contrairement au cas sans blocs, il n’est pas possible
ici de décomposer plus finement la somme des carrées due à l’erreur. En effet,
trois expériences ont bien été réalisées au centre du domaine expérimental
mais il ne s’agit pas d’expériences répétées puisqu’à chaque fois le matériau
est différent.

Il est maintenant possible d’obtenir facilement les différents estimateurs
des moindres carrés des paramètres du modèle par le biais des caractéristiques
du plan d’expérience utilisé. Concernant les différentes tailles, 27 expériences
ont été réalisées et le plan est décomposé en trois blocs de même taille donc :

n = 27, m = 4, b = 3, k1 = k2 = k3 = 9.

Les moments et moments par blocs de ce plan en blocs usuel sont de plus :

s2 = 12 , s4 = 12 , s22 = 4
μ1 = μ2 = μ3 = 4/9

}

⇒ φ = 72.

On retrouve bien par le biais de ces divers moments que le plan d’expérience
utilisé est à la fois isovariant par transformations orthogonales (s4 = 3s22) et
bloqué orthogonalement (μ1 = μ2 = μ3). Les estimateurs des moindres carrés
des paramètres du modèle peuvent être obtenus explicitement par la proposi-
tion 6.3. Tous ces résultats sont résumés dans le tableau donné ci-dessous. On
remarquera (voir le paragraphe 6.3.1) que le blocage orthogonal entrâıne ici
que les estimateurs des effets linéaires, quadratiques et d’interactions (ainsi
que leurs dispersions) sont identiques à ceux obtenus avec un modèle d’ordre
deux sans bloc. Les résultats du paragraphe 6.3.2 permettent de plus d’affirmer
que si le modèle d’ordre deux sans blocs avait été utilisé on aurait eu alors :

β̂0 =
1
n

b∑

l=1

klγ̂l =
1
b

3∑

l=1

γ̂l = 18.67.

Le tableau suivant donne les valeurs de tous les paramètres estimés du modèle,
leurs dispersions ainsi que les statistiques de test. Ces résultats proviennent de
la deuxième partie de la sortie SAS de la procédure REG (”Résultats estimés
des paramètres”).
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Param. Estimat. Ec. type St. Test Proba.
γ1 20.53 0.254 80.96 0.0001 •••

γ2 20.24 0.254 79.82 0.0001 •••

γ3 15.24 0.254 60.10 0.0001 •••

β1 0.833 0.115 7.70 0.0001 •••

β2 1.867 0.115 16.28 0.0001 •••

β3 0.550 0.115 4.80 0.0007 •••

β4 0.800 0.115 6.98 0.0001 •••

β11 −1.021 0.172 −5.94 0.0001 •••

β22 0.804 0.172 4.68 0.0009 •••

β33 0.604 0.172 3.51 0.0056 ••◦

β44 2.004 0.172 11.65 0.0001 •••

β12 1.350 0.199 6.80 0.0001 •••

β13 0.275 0.199 1.38 0.1962 ◦◦◦

β14 4.775 0.199 3.63 0.0001 •••

β23 0.500 0.199 24.04 0.0305 •◦◦

β24 −2.350 0.199 2.52 0.0001 •••

β34 0.075 0.199 0.38 0.7136 ◦◦◦

On déduit de ce tableau que la meilleure réponse moyenne prédite au sens
des moindres carrés (associée au bloc l = 1, 2, 3) est donnée par :

Ŷl (x) = γ̂l + 0.833x1 + 1.867x2 + 0.550x3 + 0.800x4 − 1.021x2
1 + 0.804x2

2

+0.604x2
3 + 2.004x2

4 + 1.350x1x2 + 0.275x1x3 + 4.775x1x4

+0.500x2x3 − 2.350x2x4 + 0.075x3x4.

Les coeffficients β13 et surtout β34 ne sont pas significativement différents de
zéro. L’utilisateur souhaitant simplifier le modèle peut donc omettre ces deux
quantités (il vient alors R2 = 0.993 ce qui confirme que le modèle reste de
bonne qualité même après ces simplifications).

Concernant maintenant les effets de blocs il est naturel de se demander s’ils
sont significativement différents. On utilise pour cela les résultats du para-
graphe 6.2.5 afin de réaliser un test de l’hypothèse ”γi = γj”. Ceci conduit
donc à réaliser les trois tests d’hypothèse donnés ci-dessous :

St. Test Proba.
Hypothèse ”γ1 = γ2” 2.395 0.1535 ◦◦◦

Hypothèse ”γ1 = γ3” 797.0 0.0001 •••

Hypothèse ”γ2 = γ3” 712.0 0.0001 •••

On en déduit qu’il est possible d’affirmer très clairement que l’effet du bloc 3
(i.e. du matériau C) est différent des deux autres et on peut aussi remarquer,
d’après les valeurs des paramètres estimés, que l’utilisation de ce matériau
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induit une forte diminution de la réponse moyenne prédite par rapport aux
matériaux A ou B. Par contre il n’est pas possible de rejeter significativement
l’hypothèse ”γ1 = γ2” c’est-à-dire qu’il n’est pas possible d’affirmer clairement
que les effets des matériaux A et B sont vraiment différents (sinon le risque
d’erreur associé est de l’ordre de 15%).

Une fois le matériau sélectionné il est donc possible de réaliser des
prédictions au sein du domaine expérimental à l’aide du meilleur modèle ajusté
présenté ci-dessus. Concernant la qualité des prédictions il a été montré qu’il
est possible de l’obtenir de manière très simple puisque le plan d’expérience
est isovariant et bloqué orthogonalement (il suffit donc de rajouter une con-
stante additive à la variance de prédiction du modèle sans bloc). Remarquons
de plus qu’ici les trois blocs utilisés sont de même taille donc (voir la proposi-
tion 6.10) les dispersions associées à chacun des blocs sont égales. D’après la
proposition 6.11 la dispersion de la réponse moyenne prédite dans le cas sans
bloc est donnée explicitement par :

Var Ŷ (r) = σ2

(
1
3
− 1

4
r2 +

3
16

r4
)

.

On en déduit que la dispersion de la réponse moyenne prédite associée à
chacun des blocs est obtenue en rajoutant simplement la constante :

σ2

(
b− 1

n

)

=
2
27

σ2.

En conclusion on a donc :

∀ l = 1, ..., b , Var Ŷl (r) = σ2

(
11
27

− 1
4
r2 +

3
16

r4
)

.

En remplaçant σ2 par l’estimation σ̂2 = 0.158 on obtient donc la
représentation graphique donnée à la figure 6.2. Cette figure montre que la
qualité des prédictions réalisées est optimale lorsqu’on se situe à une distance
du centre du domaine expérimental de l’ordre de 0.8 unité. Les dispersions
associées à des points proches du centre du domaine sont par contre moins
bonnes (ceci pourrait une nouvelle fois être amélioré par ajout d’expériences
centrales supplémentaires) et les plus mauvais résultats sont obtenus aux lim-
ites du domaine expérimental (considéré ici comme étant une boule centrée de
rayon

√
2 puisque les expériences du plan de Box et Behnken les plus éloignées

du centre sont à cette distance là de l’origine).
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Fig. 6.2. Graphe de Var Ŷl en fonction de r (l = 1, 2, 3).

Il est maintenant possible de conclure cette étude par la détermination des
conditions optimales (c’est-à-dire associées à un taux de corrosion le plus faible
possible). Le problème mathématique consiste donc à déterminer le minimum
de l’application Ŷ3 au sein du domaine expérimental choisi (la boule centrée
de rayon

√
2) puisque le matériau C (associé aux expériences du bloc 3) s’est

avéré être clairement celui qui résiste le mieux à la corrosion. Il convient
cependant d’être très prudent ici dans la recherche de cet extremum. En effet
on vérifie facilement que les 4 dérivées partielles de Ŷ3 s’annulent bien en
un point du domaine expérimental mais une analyse plus fine montre que ce
point n’est ni un maximum ni un minimum puisqu’il s’agit en fait d’un point
selle (voir des ouvrages généraux sur les problèmes d’optimisation, tel que
Ciarlet [18], pour plus d’informations). Ceci nous amène donc à une recherche
d’extrema sous containte (la contrainte étant ici de rester dans le domaine
expérimental donc mathématiquement txx ≤ 2). En utilisant des techniques
du type multiplicateurs de Lagrange on montre que le minimum cherché est
obtenu aux limites du domaine expérimental (i.e. à la surface de la sphère
centrée de rayon

√
2) et correspond au point (en coordonnées codées) :

x1 = 0.997, x2 = −0.675, x3 = −0.063 et x4 = −0.738.

On vérifie alors aisément que la réponse moyenne prédite par le modèle en ce
point est (avec son écart-type associé entre parenthèses) :

Ŷmin = 9.05 (0.32).
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Conclusion

Les résultats obtenus précédemment permettent d’affirmer que :

1) Le phénomène étudié ici nécessite bien l’utilisation d’un modèle polyno-
mial du second degré car tous les effets quadratiques du modèle complet sont
significativement différents de zéro. Il en va de même pour la plupart des
interactions car, mis à part les interactions concentration/pression et pres-
sion/durée, toutes les autres sont clairement non-négligeables.

2) Concernant les différents matériaux testés, l’introduction d’effets de blocs
permet d’arriver à la conclusion que le matériau C résiste bien mieux à la
corrosion puisque l’effet qui lui est associé est inférieur de quasiment 5 unités
aux effets des matériaux A et B. Les expériences réalisées n’ont par contre pas
permis de déceler clairement un comportement réellement différent vis-à-vis
de la corrosion en ce qui concerne les matériaux A et B.

3) L’analyse du modèle ajusté permet de proposer les conditions expérimen-
tales suivantes (avec les unités initiales) dans le but de minimiser la réponse,
c’est-à-dire le taux de corrosion :

Facteur Niveau
Matériau C
Concentration 9.98 %
Température 29.7 ◦C
Pression 3.9 atm
Durée 6.31 jours

D’après le modèle utilisé, la réponse moyenne prédite en ce point est alors
égale au taux de corrosion moyen suivant :

9.05.

Il convient, une nouvelle fois, de se placer dans les conditions expérimentales
proposées ci-dessus afin de voir si la réalité correspond bien aux prédictions
du modèle.

6.6 Résumé

En conclusion, les divers plans d’expérience présentés dans ce chapitre sont :

1) les plans composites centrés de type CCD (2m, α, n0) ou bien encore
CCD

(
2m−q

V , α, n0

)
lorsqu’il est possible de réduire la taille de la partie fac-

torielle. Les blocs sont alors obtenus à partir de la partie factorielle, d’une
fraction de résolution III de celle-ci ou encore de la partie axiale.
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2) les plans de Box et Benhken simples, obtenus à partir d’un BIBD(m, b, k,
r, λ). Les blocs sont alors obtenus à partir d’une partition de ce plan (voir les
exemples du paragraphe 6.4.2).

3) les plans hybrides. Les blocs sont alors obtenus par répétition du plan.

Trois tableaux sont présentés ci-dessous. Ils résument les différentes config-
urations possibles de plans bloqués orthogonalement pour les situations
classiques où le nombre b de blocs est égal à 2, 3 ou 4. La taille relative de
chaque plan figure entre parenthèses. Il s’agit de sa taille ramenée au nombre
de paramètres inconnus du modèle donc :

δ =
2n

m (m + 3) + 2b
.

2 BLOCS p CCD Box-Behn. Hybride

2 facteurs 7
10 (1.43)

ISO

B=

× ×

3 facteurs 11
24 (2.18)

ISO

B=

×
22 (2.00)

B=

4 facteurs 16
27 (1.69)

ISO × ×

5 facteurs 22
30 (1.36)

ISO

42 (1.91)

B=

×

6 facteurs 29
72 (2.48)

ISO ×
56 (1.93)

ISO

B=

7 facteurs 37
80 (2.16)

ISO × ×

8 facteurs 46
85 (1.85)

ISO × ×
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3 BLOCS p CCD Box-Behn. Hybride

2 facteurs 8
20 (2.50)

ISO × ×

3 facteurs 12
24 (2.00)

ISO ×
33 (2.75)

B=

4 facteurs 17
27 (1.59)

ISO

B=

27 (1.59)

ISO

B=

×

5 facteurs 23
60 (2.61)

ISO

B=

× ×

6 facteurs 30
72 (2.40)

ISO

B=

×
84 (2.80)

ISO

B=

7 facteurs 38
80 (2.11)

ISO × ×

8 facteurs 47
85 (1.81)

ISO × ×

4 BLOCS p CCD Box-Behn. Hybride

2 facteurs 9
20 (2.22)

ISO

B=

× ×

3 facteurs 13
24 (1.85)

ISO

B=

×
44 (3.38)

B=

4 facteurs 18
54 (3.00)

ISO × ×

5 facteurs 24
60 (2.50)

ISO

84 (3.50)

B=

×

6 facteurs 31 72 (2.32)

ISO
×

112 (3.61)

B=

7 facteurs 39
96 (2.46)

ISO × ×

8 facteurs 48
102 (2.13)

ISO × ×
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On utilise les conventions suivantes pour chaque plan :

le symbole B= désigne les configurations en blocs de même taille,

le symbole ISO désigne les configurations isovariantes par trans-
formations orthogonales ou pouvant l’être par un choix adéquat du
paramètre α pour des plans composites centrés (ces différentes valeurs
sont données dans le dernier tableau de ce paragraphe).

On donne ici le nombre minimal d’expériences à réaliser pour que le plan
obtenu soit à matrice des moments généralisée inversible (tout en étant iso-
variant si cela est possible). Ces tableaux montrent tout l’intérêt de la classe
des plans composites centrés, facilement décomposables en blocs, et permet-
tant d’obtenir bon nombre de propriétés en jouant sur la distance des points
axiaux au centre du domaine.

Le tableau suivant détaille alors ces différents types de constructions.
Les plans composites centrés présentés sont isovariants et bloqués orthog-
onalement pour un nombre de facteurs compris entre m = 2 et m =
8 (voir le paragraphe 6.4.1 pour un exemple de telle construction). La
première colonne du tableau est le nombre de facteurs considérés. La sec-
onde est la valeur du paramètre α (distance des points axiaux au centre
du domaine) permettant d’obtenir l’isovariance. La troisième colonne est le
nombre total n d’expériences à réaliser. On donne encore ici le nombre min-
imal d’expériences à réaliser tout en prenant garde au fait que les plans pro-
posés soient à matrice des moments généralisée inversible (voir la proposition
6.2).Comme précedemment, le symbole B= est utilisé pour désigner les con-
figurations composées de blocs de même taille. Pour les quatre dernières
colonnes détaillant le type de bloc la terminologie suivante et utilisée :

2m−q
III désigne une fraction régulière de la partie factorielle,

PA désigne la partie axiale,

PA2 désigne la partie axiale dupliquée.

Le nombre d’expériences à réaliser pour chacun des blocs figure aussi entre
crochets.

En ce qui concerne le détail des constructions proposées ici remarquons que
la méthode générale du foldover introduite initialement par Box et Hunter
[13] est parfois utilisable. En effet à partir d’une fraction régulière de type
2m−p
III∗ (voir la définition 5.12 pour ce type de fractions) le plan d’expérience

de matrice : [
D

−D

]
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est toujours une fraction régulière de type 2m−(p−1)
VI (voir par exemple l’article

de synthèse de Draper et Lin [33]). Cette méthode permet donc ici de constru-
ire deux blocs usuels (puisque définis par une fraction régulière de résolution
III∗) tels que leur union constitue bien un plan d’expérience usuel (puisque
défini par une fraction régulière de résolution supérieure à V). Ceci permet,
par exemple, d’obtenir la configuration en trois blocs pour m = 6 facteurs
présentée dans le tableau ci-dessus.

m α n Bloc 1 Bloc 2 Bloc 3 Bloc 4

1.414 10 B= 22 [5] PA [5] × ×
2 1.414 20 22 [5] 22 [5] PA2 [10] ×

1.414 20 B= 22 [5] 22 [5] PA [5] PA [5]

1.414 24 B= 23 [12] PA2 [12] × ×
3 1.414 24 23−1

III [6] 23−1
III [6] PA2 [12] ×

1.414 24 B= 23−1
III [6] 23−1

III [6] PA [6] PA [6]

2.000 27 24 [18] PA [9] × ×
4 2.000 27 B= 24−1

IV [9] 24−1
IV [9] PA [9] ×

2.000 54 24−1
IV [18] 24−1

IV [18] PA [9] PA [9]

2.000 30 25−1
V [20] PA [10] × ×

5 2.000 60 B= 25−1
V [20] 25−1

V [20] PA2 [20] ×
2.000 60 25−1

V [20] 25−1
V [20] PA [10] PA [10]

2.000 72 26−1
V [48] PA2 [24] × ×

6 2.000 72 B= 26−2
III [24] 26−2

III [24] PA2 [24] ×
2.000 72 26−2

III [24] 26−2
III [24) PA [12] PA [12]

2.828 80 27−1
V [64] PA [16] × ×

7 2.828 80 27−2
III [32] 27−2

III [32] PA [16] ×
2.828 96 27−2

III [32] 27−2
III [32] PA [16] PA [16]

2.828 85 28−2
V [68] PA [17] × ×

8 2.828 85 28−3
III [34] 28−3

III [34] PA [17] ×
2.828 102 28−3

III [34] 28−3
III [34] PA [17] PA [17]
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COMPLEMENTS
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6.7 (Compléments) Démonstrations

Proposition 6.2. Soit un plan d’expérience en blocs usuel décomposé en b
blocs de tailles respectives k1, k2, ..., kb. Sa matrice des moments généralisée
est inversible si et seulement si aucune des trois conditions suivantes n’est
vérifiée :
1) la distribution des points du plan est concentrée sur les axes,
2) tout point du plan a ses coordonnées égales en valeur absolue,
3) chaque bloc est constitué par des points équidistants de l’origine.

Démonstration. Ecrivons le vecteur des paramètres inconnus du modèle
dans l’ordre suivant :

(
tγ | tτ

)
=
(
tγ | tβQ | tβL | tβI

)
.

La matrice des moments généralisée est dans ce cas diagonale par blocs
puisque :

tXX = diag
(
A, s2Im, s22Im(m−1)/2

)

avec :

A =
[

tBB tBDQ
tDQB (s4 − s22) Im + s22Jm

]

.

D’après les propriétés des déterminants, on a donc :

Det
(
tXX

)
= sm

2 s
m(m−1)

2
22 Det (A) .

Concernant le déterminant du bloc A, on a d’après le lemme 5.B (en posant
A22 = (s4 − s22) Im + s22Jm) :

Det (A) = Det
(
tBB

)
Det (sA22) .

Le complément de Schur de A22 est donné par :

sA22 = (s4 − s22) Im + s22Jm − tDQB
(
tBB

)−1 tBDQ.

Or, on sait que pour tout plan usuel :

tBDQ = diag (k1μ1, ..., kbμb)Jbm

Il vient alors (puisque tBB = diag (k1, ..., kb)) :

tBDQ (tBB)−1 tDQB

= Jmb diag (k1μ1, ..., kbμb) (tBB)−1 diag (k1μ1, ..., kbμb)Jbm

= Im
t
Ib diag

(
k1μ

2
1, ..., klμ

2
l

)
Ib

t
Im =

(
b∑

l=1

klμ
2
l

)

Jm
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On en déduit que le complément de Schur de A22 est :

sA22 = (s4 − s22) Im +

(

s22 −
b∑

l=1

klμ
2
l

)

Jm.

Il s’agit donc d’une matrice complètement symétrique dont le déterminant est
facilement obtenu par utilisation du lemme 5.B :

Det (tXX) =
(

b∏

l=1

kl

)

sm
2 s

m(m−1)
2

22 (s4 − s22)
m−1

[
s4 + (m− 1) s22 −m

∑b
l=1 klμ

2
l

]
.

La matrice tXX étant positive elle est donc inversible si et seulement si son
déterminant est strictement positif. Ceci permet donc d’énoncer les conditions
suivantes pour atteindre cet objetif :

s2 > 0, s4 > s22 > 0 et s4 + (m− 1) s22 −m

b∑

l=1

klμ
2
l > 0.

Traduisons géométriquement ces différentes relations. Les conditions s2 > 0
et s4 > s22 > 0 ne diffèrent en rien des conditions énoncées pour un modèle
polynomial d’ordre deux classique. Leur interprétation géométrique corre-
spond donc toujours aux situations 1 et 2 de la proposition ci-dessus (voir
la démonstration à la proposition 5.2). Considérons maintenant la condition :

s4 + (m− 1) s22 −m

b∑

l=1

klμ
2
l > 0. (1)

Si du (u = 1, ..., n) désigne la distance du u-ième point du plan à l’origine
alors :

d4u =
m∑

i=1

z4ui +
∑∑

i�=j

z2uiz
2
uj =⇒

n∑

u=1

d4u =
m∑

i=1

n∑

u=1

z4ui +
∑∑

i�=j

n∑

u=1

z2uiz
2
uj .

Mais on sait que :

∀ i, j = 1, ..., m avec i 	= j,
n∑

u=1

z4ui = s4 et
n∑

u=1

z2uiz
2
uj = s22.

Donc :
n∑

u=1

d4u = ms4 + m (m− 1) s22 = m [s4 + (m− 1) s22] .

De même, on a pour tout l = 1, ..., b :
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∑

bloc l

d2u =
∑

bloc l

m∑

i=1

z2ui =
m∑

i=1

∑

bloc l

z2ui =
m∑

i=1

klμl = mklμl.

Ceci permet donc d’affirmer que :

(1) ⇐⇒ m [s4 + (m− 1) s22]−
b∑

l=1

1
kl

(mklμl)
2 > 0

⇐⇒
n∑

u=1

d4u −
b∑

l=1

1
kl

(
∑

bloc l

d2u

)2

> 0

⇐⇒
b∑

l=1

⎡

⎣
∑

bloc l

d4u −
1
kl

(
∑

bloc l

d2u

)2
⎤

⎦> 0.

D’après l’inégalité de Cauchy-Schwarz appliquée aux vecteurs φl =
(
d2u
)

bloc l
et Ikl

on sait de plus que :

∀ l = 1, ..., b ,
∑

bloc l

d4u −
1
kl

(
∑

bloc l

d2u

)2

≥ 0.

Chacune de ces expressions est nulle si et seulement si les vecteurs φl et Ikl

sont colinéaires donc la relation (1) ne sera pas vérifiée uniquement dans le
cas où tous les blocs sont constitués de points équidistants de l’origine �

Proposition 6.3. Soit un plan d’expérience en blocs D = {zu, u = 1, ..., n}
usuel, décomposé en b blocs de tailles respectives k1, k2, ..., kb. Les différents
estimateurs des moindres carrés des paramètres du modèle sont alors
obtenus explicitement par les relations suivantes :

1) γ̂ =

⎛

⎜
⎝

Y B1

...
Y Bb

⎞

⎟
⎠ +

n

φ

[

m

(
b∑

l=1

klY Blμl

)

−
n∑

u=1

‖zu‖2 Yu

]
⎛

⎜
⎝

μ1

...
μb

⎞

⎟
⎠

avec V (γ̂) = diag
(

σ2

k1
, ...,

σ2

kb

)

+
mnσ2

φ
diag (μ1, ..., μb)Jb diag (μ1, ..., μb) ,

2) β̂L =
1
s2

tDLY avec V

(
β̂L

)
=

σ2

s2
Im,

3) β̂Q =
1

s4 − s22
tDQY−n

φ

⎡

⎢
⎢
⎢
⎣

b∑

l=1

klY Blμl +

⎛

⎜
⎜
⎜
⎝

s22 −
b∑

l=1

klμ
2
l

s4 − s22

⎞

⎟
⎟
⎟
⎠

n∑

u=1

‖zu‖2 Yu

⎤

⎥
⎥
⎥
⎦

Im

avec V

(
β̂Q

)
=

σ2

s4 − s22

[

Im − n

φ

(

s22 −
b∑

l=1

klμ
2
l

)

Jm

]

,
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4) β̂I =
1

s22
tDIY avec V

(
β̂I

)
=

σ2

s22
Im(m−1)/2,

avec Y Bl (l = 1, ..., b) valeur moyenne des observations associées au bloc l et

φ = n

[

s4 + (m− 1) s22 −m

b∑

l=1

klμ
2
l

]

.

Démonstration. Posons tout d’abord :
(
tγ | tτ

)
=
(
tγ | tβQ | tβL | tβI

)
.

Les estimateurs des moindres carrés de ces paramètres sont solutions des
équations normales données ci-dessous :
⎡

⎢
⎢
⎣

tBB tBDQ 0 0
tDQB (s4 − s22) Im + s22Jm 0 0

0 0 s2Im 0
0 0 0 s22Im(m−1)/2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

γ̂

β̂Q

β̂L

β̂I

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

tBY
tDQY
tDLY
tDIY

⎤

⎥
⎥
⎦ .

Ceci permet d’obtenir immédiatement les estimateurs β̂L et β̂I ainsi que leurs
dispersions. L’obtention des estimateurs de l’effet moyen général et des effets
quadratiques nécessite maintenant de déterminer la matrice :

[
tBB tBDQ

tDQB (s4 − s22) Im + s22Jm

]−1

=
[

B11 B12
tB12 B22

]

.

Le lemme 5.B permet de déterminer explicitement les blocs B11, B12 et B22

puisqu’en suivant une démarche identique à celle de la proposition 5.3 on
obtient :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B11 = diag
(

1
k1

, ...,
1
kb

)

+
mn

φ
diag (μ1, ..., μb)Jb diag (μ1, ..., μb) ,

B12 = −n

φ
diag (μ1, ..., μb)Jbm,

B22 =
1

s4 − s22

[

Im − n

φ

(

s22 −
b∑

l=1

klμ
2
l

)

Jm

]

,

avec φ = ns4+n (m− 1) s22−mn
∑b

l=1 klμ
2
l . Il en découle les caractéristiques

de dispersion suivantes :

V (γ̂) = σ2B11 et V

(
β̂Q

)
= σ2B22.

Déterminons enfin la forme explicite des estimateurs γ̂ et β̂Q. On a :
[

γ̂

β̂Q

]

=
[

B11 B12
tB12 B22

] [
tBY

tDQY

]

donc :
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γ̂ =
[

diag
(

1
k1

, ...,
1
kb

)

+
mn

φ
diag (μ1, ..., μb)Jb diag (μ1, ..., μb)

]
tBY

−n

φ
diag (μ1, ..., μb)Jbm

tDQY .

Remarquons alors que si l’on désigne par Y Bl la moyenne des observations
associées au bloc l on obtient :

tBY = t
(
k1Y B1, ..., kbY Bb

)
et t

Im
tDQY =

n∑

u=1

‖zu‖2 Yu

En utilisant le fait que Jbm = Ib
t
Im et Jb = Ib

t
Ib il vient immédiatement :

γ̂ =

⎛

⎜
⎝

Y B1

...
Y Bb

⎞

⎟
⎠+

n

φ

[

m

(
b∑

l=1

klY Blμl

)

−
n∑

u=1

‖zu‖2 Yu

]
⎛

⎜
⎝

μ1

...
μb

⎞

⎟
⎠ .

On obtient de même pour β̂Q la valeur suivante :

−n

φ
Jmb diag (μ1, ..., μb) tBY +

1
s4 − s22

[

Im − n

φ

(

s22 −
b∑

l=1

klμ
2
l

)

Jm

]

tDQY.

A l’aide des mêmes arguments que pour le calcul de γ̂ on aboutit alors à la
forme simplifiée donnée ci-dessous :

β̂Q =
1

s4 − s22
tDQY−n

φ

[
b∑

l=1

klY Blμl +

(
s22 −

∑b
l=1 klμ

2
l

s4 − s22

)
n∑

u=1

‖zu‖2 Yu

]

Im

Ceci termine bien la démonstration �

Proposition 6.4. Soit un plan d’expérience en blocs usuel, décomposé en b
blocs de tailles k1, k2, ..., kb. En désignant par ‖.‖ la norme usuelle de R

m, la
dispersion de la réponse prédite en un point x = t (x1, ..., xm) ∈ E associé au
bloc l = 1, ..., b est donnée par :

Var Ŷl (x) = σ2

[

fl (r) +
(

1
s4 − s22

− 1
2s22

) m∑

i=1

x4
i

]

avec :

fl (r) =
(

1
kl

+
mnμ2

l

φ

)

+
(

1
s2

− 2
nμl

φ

)

r2 +

[
1

2s22
+

n
(∑

l klμ
2
l − s22

)

φ (s4 − s22)

]

r4

r = ‖x‖ et φ = n

[

s4 + (m− 1) s22 −m

b∑

l=1

klμ
2
l

]

.
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Démonstration. Ecrivons une nouvelle fois, pour simplifier les calculs, le
vecteur des paramètres inconnus sous la forme :

(
tγ | tτ

)
=
(
tγ | tβQ | tβL | tβI

)
.

On a alors (pour tout x ∈ E et l = 1, ..., b) :

Var Ŷl (x) = σ2tg (x)
(
tXX

)−1
g (x)

avec ici g (x) vecteur de régression tel que :

tg (x) =
(
δl1, ..., δlb, x

2
1, ..., x

2
m, x1, ..., xm, x1x2, ..., xm−1xm

)
.

L’inverse de la matrice tXX est connue explicitement et on a de plus (avec
les notations de la démonstration de la proposition 6.3) :

Var Ŷl (x) = (δl1, ..., δlb)B11
t (δl1, ..., δlb) +

(
x2
1, ..., x

2
m

)
B22

t
(
x2
1, ..., x

2
m

)
+

2 (δl1, ..., δlb)B12
t
(
x2
1, ..., x

2
m

)
+

1
s2

m∑

i=1

x2
i +

1
s22

∑∑

i<j

x2
i x

2
j .

La définition des blocs B11, B12 et B22 entrâıne que :

1) (δl1, ..., δlb)B11
t (δl1, ..., δlb) =

1
kl

+
mn

φ
μ2

l ,

2)
(
x2
1, ..., x

2
m

)
B22

t
(
x2
1, ..., x

2
m

)
=

1
s4 − s22

m∑

i=1

x4
i −

n
(
s22 −

∑b
l=1klμ

2
l

)

(s4 − s22)φ

⎡

⎣
m∑

i=1

x4
i + 2

∑∑

i<j

x2
i x

2
j

⎤

⎦ ,

3) 2 (δl1, ..., δlb)B12
t
(
x2
1, ..., x

2
m

)
=
−2n

φ
(μl, ..., μl)

t(
x2
1, ..., x

2
m

)
=
−2nμl

φ

m∑

i=1

x2
i .

Il vient donc (en posant σ2 = 1 pour simplifier) :

Var Ŷl (x) =
1
kl

+
mn

φ
μ2

l +
(

1
s2

− 2nμl

φ

) m∑

i=1

x2
i

+

⎡

⎣
1

s4 − s22
−

n
(
s22 −

∑b
l=1klμ

2
l

)

(s4 − s22)φ

⎤

⎦
m∑

i=1

x4
i

+

⎡

⎣
1

s22
− 2

n
(
s22 −

∑b
l=1klμ

2
l

)

(s4 − s22) φ

⎤

⎦
∑∑

i<j

x2
i x

2
j .

Remarquons alors (tout comme à la proposition 5.4) que :

r4 =

(
m∑

i=1

x2
i

)2

=
m∑

i=1

x4
i + 2

∑∑

i<j

x2
i x

2
j .
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Ceci permet de supprimer les termes en
∑∑

x2
i x

2
j d’où le résultat �

Proposition 6.5. Soit un plan d’expérience en blocs usuel, décomposé en b
blocs de tailles respectives k1, k2, ..., kb. Un test de l’hypothèse d’égalité des
effets de blocs H0 : ”γi = γj” pour i, j = 1, ..., b avec i 	= j contre l’hypothèse
H1 = H0 peut être réalisé à l’aide de la statistique :

T =
(γ̂i − γ̂j)

2

σ̂2

[
(ki + kj)

kikj
+

mn

φ
(μi − μj)

2

]

avec σ̂2 =
SSE

n− p
= MSE et φ = n

[

S4 + (m− 1)S22 −m

b∑

l=1

klμ
2
l

]

.

La règle de décision est alors donnée par (avec fα,1,n−p fractile de la loi de
Fisher à 1 et (n− p) ddl) :

on rejette H0 au niveau α si t ≥ fα,1,n−p.

Démonstration. L’hypothèse considérée ici est bien une hypothèse linéaire
puisque la relation γi = γj peut encore être écrite Aβ = a avec a = 0 et
A ∈ M (1, p) matrice telle que ses seuls éléments non nuls sont A1i = 1 et
A1j = −1. Remarquons que cette hypothèse est bien vérifiable puisque le plan
d’expérience considéré ici est à matrice des moments généralisée inversible
donc KerX = {0}. D’après le résultat général rappelé ci-dessus l’hypothèse
H0 peut alors être testée à l’aide de la statistique suivante :

T =
t
(
Aβ̂ − a

) [
A (tXX)−1 tA

]−1 (
Aβ̂ − a

)

rσ̂2
=

tβ̂tA
[
A (tXX)−1 tA

]−1

Aβ̂

σ̂2

puisqu’ici a = 0 et r = rg (A) = 1. Or Aβ̂ = γ̂i − γ̂j donc :

T =
(γ̂i − γ̂j)

2

σ̂2

[
A
(
tXX

)−1 tA
]−1

.

L’inverse de la matrice tXX est connue explicitement (voir la démonstration
de la proposition 6.3) et on a (avec les notations de cette démonstration) :

A (tXX)−1 tA = (B11)ii + (B11)jj − 2 (B11)ij

=
(

1
ki

+
mn

φ
μ2

i

)

+
(

1
kj

+
mn

φ
μ2

j

)

− 2
mn

φ
μiμj

=
(

1
ki

+
1
kj

)

+
mn

φ
(μi − μj)

2 .

Ceci démontre bien le résultat énoncé �
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Proposition 6.7. Soit un plan d’expérience en blocs associé à la matrice du
modèle X = [B | W ] . Ce plan d’expérience est bloqué orthogonalement
si et seulement si :

tW

(

In − 1
n

Jn

)

B = 0.

Démonstration. Déterminons au préalable la forme explicite de l’estimateur
des moindres carrés des effets linéaires, quadratiques et d’interaction (i.e. du
vecteur τ). Dans le cas du modèle linéaire d’ordre deux sans bloc X = [In | W ]
et donc :

(
tXX

)
(

β̂0

τ̂1

)

= tXY ⇔
(

n t
InW

tW In
tWW

)(
β̂0

τ̂1

)

=
(

t
InY

tWY

)

.

Par utilisation du lemme 5.B il est possible d’inverser la matrice tXX
et l’estimateur des moindres carrés de τ est donné explicitement par (sA
désignant le complément de Schur de la matrice A) :

τ̂1 = − 1
n

[
s
(
tWW

)]−1 tW In
t
InY +

[
s
(
tWW

)]−1 tWY.

Pour un modèle à effets de blocs on a cette fois X = [B | W ] et il vient :

(
tXX

)
(

γ̂
τ̂2

)

= tXY ⇔
(

tBB tBW
tWB tWW

)(
γ̂
τ̂2

)

=
(

tBY
tWY

)

.

Une nouvelle fois le lemme 5.B entrâıne que :

τ̂2 = − [
s
(
tWW

)]−1 tWB
(
tBB

)−1 tBY +
[
s
(
tWW

)]−1 tWY.

Examinons maintenant sous quelle condition l’estimateur des moindres carrés
τ̂1 obtenu avec un plan sans bloc est égal à l’estimateur des moindres carrés
τ̂2 obtenu avec un plan en blocs. On a :

τ̂1 = τ̂2 ⇔ (1/n) [s (tWW )]−1 tW In
t
InY = [s (tWW )]−1 tWB (tBB)−1 tBY

⇔ (1/n) tW In
t
InY = tWB (tBB)−1 tBY.

Ce résultat devant être vérifié pour tout vecteur des réponses Y on en déduit
que :

τ̂1 = τ̂2 ⇔ (1/n) tW In
t
In = tWB (tBB)−1 tB

⇒ (1/n) tW In
t
InB = tWB (tBB)−1 tBB.

Comme In
t
In = Jn il en découle que :

τ̂1 = τ̂2 ⇒ 1
n

tWJnB = tWB donc τ̂1 = τ̂2 ⇒ tW

(

In − 1
n

Jn

)

B = 0.

Réciproquement, supposons que tW (In − (1/n)Jn)B = 0. Il est donc possible
de remplacer la matrice tWB par (1/n)t

WJnB et ceci entrâıne que :
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τ̂1 − τ̂2 = [s (tWW )]−1
[

tWB (tBB)−1 tB − 1
n

tW In
t
In

]

Y

= [s (tWW )]−1
[

1
n

tWJnB (tBB)−1 tB − 1
n

tW In
t
In

]

Y

=
1
n

[s (tWW )]−1 tW In

[
t
InB (tBB)−1 tBY − t

InY
]
.

Remarquons que :

t
InB (tBB)−1 tBY = (k1, ..., kb) diag

(
1
k1

, ...,
1
kb

)
tBY

= t
Ib

⎛

⎜
⎝

∑
bloc b Yi

...
∑

bloc b Yi

⎞

⎟
⎠ = t

InY.

Ceci prouve donc bien que :

tW

(

In − 1
n

Jn

)

B = 0 ⇒ τ̂1 = τ̂2.

D’où le résultat énoncé �

Proposition 6.8. Un plan d’expérience en blocs usuel est bloqué orthog-
onalement si et seulement si il vérifie la condition supplémentaire suivante
pour ses moments par bloc d’ordre deux :

μ1 = μ2 = ... = μb =
s2
n

.

Démonstration. Considérons un plan d’expérience bloqué orthogonalement.
D’après la proposition 6.7 :

tW

(

In − 1
n

Jn

)

B = 0 ⇔ tWB =
1
n

tWJnB =
1
n

(
tW In

) (
t
InB

)
. (1)

Or, le plan d’expérience étant par hypothèse usuel il vient :

tW In =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n [1]
...

n
[
12
]

...
n [12]

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎣
0Im

S2Im

0I m(m−1)
2

⎤

⎦ , tBIn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1
k2
k3
...

kb−1

kb

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et :
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tWB =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k1 [1]1 . . . kb [1]b
...

...
k1

[
12
]

1
. . . kb

[
12
]

b
...

...
k1 [12]1 . . . kb [12]b

...
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0
...

...
k1μ1 . . . kbμb

...
...

0 . . . 0
...

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎣
0Jmb

Jmb diag (kiμi)
0Jm(m−1)

2 b

⎤

⎦ .

On en déduit que la relation (1) est vérifiée par tout plan en blocs usuel
concernant les moments d’ordre un ainsi que les moments croisés d’ordre deux.
Concernant maintenant les moments pairs d’ordre deux la relation (1) est
équivalente à :

∀ l = 1, ..., b , klμl =
kls2
n

⇐⇒ μl =
s2
n

.

Le résultat est donc bien démontré �
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Plans d’expérience pour mélanges

7.1 Introduction

Les dispositifs expérimentaux considérés jusqu’à présent sont tels que le
niveau de chacun des facteurs est indépendant des niveaux des autres fac-
teurs étudiés. Il existe cependant des situations qui, par nature, ne vérifient
pas une telle hypothèse. Un exemple classique, bien connu des chimistes, est
celui de l’élaboration d’un mélange à partir de m composants. Les propriétés
du mélange dépendent alors couramment des proportions de chacun des
composants et ces proportions ne sont, par définition, pas indépendantes les
unes des autres puisque leur somme est toujours égale à l’unité. Ce chapitre
aborde le problème de l’élaboration de plans d’expérience tenant compte de
ce type de contrainte. Les travaux initiaux concernant cette classe de plans
d’expérience sont dus à Scheffé dont on pourra consulter les deux articles de
référence [85] et [86].

La première partie de ce chapitre a pour objet de présenter des définitions
et généralités relatives à l’utilisation des mélanges ainsi que les techniques
classiques de représentation graphiques de ces mélanges. Une seconde par-
tie est consacrée aux modèles polynomiaux pour mélanges car l’utilisation
des modèles usuels (d’ordre un ou deux complets) n’a pas de sens ici. Les
modèles polynomiaux spécifiques aux mélanges sont présentés et étudiés en
détail jusqu’à l’ordre trois. Les deux grandes classes de plans d’expérience pour
mélanges que sont les réseaux de Scheffé et les réseaux de Scheffé centrés sont
introduites. La partie suivante traite du problème de l’introduction d’effets de
blocs dans les plans pour mélanges. Certaines techniques de blocage partic-
ulièrement simples sont présentées avec principalement pour objectif d’obtenir
la propriété de blocage orthogonal du plan d’expérience.

Comme à l’accoutumée la dernière partie de ce chapitre est ensuite con-
sacrée à la mise en œuvre d’un exemple d’application pratique. Il est illustré
à l’aide de divers codes SAS.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 7,
c© Springer-Verlag Berlin Heidelberg 2010
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7.2 Généralités

7.2.1 Hypothèses fondamentales

Comme cela a été précisé dans l’introduction on considére maintenant un
mélange constitué par m composants. L’objectif principal est d’expliquer et
de modéliser au mieux les caractéristiques du mélange considéré. Supposons
dans la suite que la réponse observée ne dépend que des proportions des com-
posants présents (et non de leurs quantités totales dans le mélange). On note
alors classiquement x1, x2, ..., xm les m proportions associées à tout mélange
(i.e. les niveaux des m facteurs définis comme étant les diverses proportions).
Le fait de considérer uniquement des proportions entrâıne immédiatement les
deux hypothèses fondamentales suivantes :

(H1) : ∀ i = 1, ..., m , 0 ≤ xi ≤ 1 et (H2) :
m∑

i=1

xi = 1.

Notons que la non-indépendance des proportions des m composants découle
clairement de l’hypothèse (H2) (si, par exemple, x1 = 0.6 alors forcément
les proportions des autres composants sont liées à ce résultat puisqu’elles ne
pourront pas dépasser la valeur 0.4). On désigne couramment par mélange
binaire tout mélange obtenu à partir de seulement deux composants (i.e.
seulement deux des xi sont non-nuls). De même un mélange élaboré à partir
de trois composants est qualifié de mélange ternaire. On utilise aussi parfois
le composant i seul (avec donc xi = 1 et xj = 0 pour j 	= i), il s’agit dans ce
cas d’un corps pur.

7.2.2 Représentation graphique d’un mélange

Un mélange de m composants est entièrement défini par la donnée des m
proportions x1, ..., xm. Il est possible de représenter un tel mélange par un
point de R

m ayant pour coordonnées x1, ..., xm dans un repère adéquat.
Cette démarche, utilisée dans tous les chapitres précédents, pose ici problème
dans la mesure où elle ne tient pas compte du fait que les coordonnées sont
liées d’après l’hypothèse (H2). Une technique classique de représentation
graphique des mélanges tenant compte à la fois des hypothèses (H1) et (H2)
est présentée ici.

1) Cas des mélanges binaires. Il s’agit du cas le plus simple où un mélange
est obtenu à partir de deux composants : le composant 1 en proportion x1 et
le composant 2 en proportion x2. D’après l’hypothèse (H2) il est évident qu’il
est inutile de conserver ici ces deux quantités puisqu’une seule suffit (gardons
par exemple x1 et posons x2 = 1 − x1). Un tel mélange, caractérisé par une
seule coordonnée, peut donc être représenté graphiquement dans un espace
de dimension un, c’est-à-dire sur une droite. Considérons alors deux points
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A et B associés respectivement aux composants 1 et 2. Une technique simple
de représentation graphique du mélange consiste à l’identifier au point du
segment [AB] de coordonnée (1− x1) dans le repère d’origine A ayant pour
vecteur unitaire

−−→
AB (voir la figure 7.1).

Mélange

A B

Composant1

(1-x1) x1

Composant2

Fig. 7.1. Représentation graphique d’un mélange binaire.

Cette technique de représentation est intuitivement facile à comprendre car
plus la concentration du composant 1 est élevée plus le point représentant le
mélange est proche de l’extremité du segment associée à ce même composant.
Un mélange à égale proportion des deux composants est situé au milieu du
segment [AB] alors que les deux extrémités correspondent aux deux corps
purs. Plus généralement en désignant par M le point associé au mélange où
le composant 1 est en proportion x1 il vient :

x1
−−→
MA + (1− x1)

−−→
MB =

−→
0 .

En d’autres termes le mélange est donc géométriquement identifié au bary-
centre des points A et B affectés des pondérations x1 et x2 = 1− x1.

2) Cas des mélanges ternaires. Considérons ici le cas où un mélange est
élaboré à partir des composants 1, 2 et 3 en proportions respectives x1, x2 et
x3. L’hypothèse (H2) entrâıne, une nouvelle fois, que seulement deux des trois
proportions sont nécessaires à la caractérisation du mélange. Tout mélange va
donc pouvoir être représenté dans un espace de dimension deux (i.e. un plan)
et il est possible de généraliser la technique vue précédemment. Considérons
pour cela tout d’abord trois points du plan A, B et C associés respectivement
aux corps purs 1, 2 et 3. Ces trois points sont aussi les sommets d’un triangle,
on les dispose conventionnellement de manière à ce que ABC soit un triangle
équilatéral. Tout mélange peut alors être représenté de manière unique comme
barycentre des points A, B et C affectés des pondérations x1, x2 et x3.
D’après l’hypothèse (H1) l’ensemble de tous les mélanges décrit exactement
le triangle ABC (tout point situé à la frontière du triangle est soit un corps pur
soit un mélange binaire alors que tout point situé à l’intérieur est réellement
un mélange ternaire). En pratique la localisation d’un mélange ternaire dans
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le triangle est obtenue aisément d’après la figure 7.2 (schéma de gauche).
Un maillage du triangle à partir de segments parallèles à chacun des cotés
est couramment utilisé afin de pouvoir travailler aisément avec ce type de
coordonnées (figure 7.2 schéma de droite). Remarquons pour terminer que le
mélange où les composants 1, 2 et 3 sont en égales proportions (x1 = x2 =
x3 = 1/3) est représenté par le centre de gravité du triangle ABC.

Mélange

A

CB

Composant1

x3

x1

x2

Composant2 Composant3

A

CB

Composant1

Composant2 Composant3

Fig. 7.2. Représentation graphique d’un mélange ternaire.

3) Cas général. La technique présentée précédemment pour des mélanges
binaires et ternaires peut être généralisée mathématiquement sans la moin-
dre difficulté. Un mélange obtenu à partir de m composants est alors to-
talement déterminé par la connaissance de (m− 1) proportions, il peut donc
être représenté dans un espace à (m− 1) dimensions (du type R

m−1). Con-
sidérons alors m points A1, A2, ..., Am de cet espace associés à chacun des
corps purs. Par souci de simplicité on place ces points de manière à obtenir une
figure géométrique la plus régulière possible de manière à ce que A1A2...Am

soit un simplexe de R
m−1 (voir la section 3.5 pour plus de détails concer-

nant les simplexes). Il s’agit donc de considérer un triangle équilatéral lorsque
m = 3, un tétrahèdre régulier lorsque m = 4, etc... Tout mélange est alors
représenté de manière unique par le barycentre des sommets A1, A2, ..., Am

affectés des pondérations x1, x2, ..., xm égales aux différentes proportions.
Cette technique, très générale, correspond à la représentation d’un mélange à
l’aide des coordonnées x1, x2, ..., xm dites barycentriques. L’utilisation de
telles coordonnées est fréquente dans d’autres branches des mathématiques,
notamment en analyse numérique pour la méthode des éléments finis (voir
par exemple Raviart et Thomas [80]). Remarquons qu’un mélange équilibré
(x1 = x2 = ... = xm = 1/m) est identifié à l’isobarycentre des m sommets,
souvent appelé centröıde du simplexe.
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7.2.3 Notation standard des réponses

Il est classique, dans le cas des plans d’expériences pour mélanges, d’utiliser
une notation standard pour désigner les différentes réponses. Lorsque m com-
posants sont considérés on note Yi (i = 1, ..., m) chacune des réponses obtenues
lorsque le corps pur i est utilisé. De même, Yij (i, j = 1, ..., m avec i < j)
est la réponse observée pour un mélange binaire dans lequel les composants
i et j sont en même proportion. Enfin on désigne, par exemple, par Yiij

(i, j = 1, ..., m avec i < j) la réponse observée pour un mélange binaire où les
composants i et j sont respectivement en proportions 2/3 et 1/3. De manière
générale :

Y11...122...2 ... mm...m

où le symbole i apparâıt ri fois (avec ∀ i = 1, ..., m , ri ∈ N), et r =
∑

ri,
désigne la réponse observée pour le mélange tel que :

le composant i (i = 1, ..., m) est en proportion
ri

r
.

Le nombre de coefficients ri non-nuls est donc égal au nombre de composants
réellement utilisés dans le mélange. Ce type de notation permet de décrire les
réponses observées pour la plupart des plans d’expérience pour mélanges. La
figure 7.3 donne (dans le cas de 3 composants) quelques exemples graphiques.

Composant1

Y112

Y13

Y123

Y12333Y1223

Y3Y2 Y2223

Y1

Composant2 Composant3

Fig. 7.3. Diverses réponses observées.
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7.3 Modèles pour mélanges

Les modèles polynomiaux classiques utilisés jusqu’à présent ne sont pas
adaptés à une étude de mélanges car l’hypothèse (H2) entrâıne une
dépendance entre divers paramètres du modèle qui devient ainsi surparamétré.
Détaillons ici la forme des principaux modèles adaptés aux mélanges.

7.3.1 Modèle d’ordre un

Tout comme dans le cas classique le modèle polynomial le plus simple à mettre
en oeuvre est celui de degré égal à un. Là aussi un tel modèle peut être
intéressant lorsque, par exemple, le nombre de composants est élevé et qu’une
première étude est nécessaire afin d’évaluer quels sont les plus influents sur
la réponse étudiée (technique de criblage). Le modèle statistique classique est
toujours de la forme Y (x) = f (x) + ε (x) . Supposons tout d’abord que la loi
de réponse peut être correctement approchée au voisinage E du centröıde du
simplexe par :

∀ x ∈ E , f (x) = β0 +
m∑

i=1

βixi.

Ce modèle ne tient cependant pas compte de l’hypothèse fondamentale (H2).
On peut l’introduire simplement en remarquant que β0 = β0 × 1 et donc :

∀ x ∈ E , f (x) = β0

(
m∑

i=1

xi

)

+
m∑

i=1

βixi =
m∑

i=1

(β0 + βi)xi.

On constate donc qu’il est donc inutile de conserver l’effet moyen général β0

(qui devient impossible à estimer ici) et en posant bi = β0 + βi (i = 1, ..., m)
il vient :

Proposition 7.1. Le modèle polynomial d’ordre un adapté à l’étude
des mélanges, pour m composants, est donné par :

∀ x ∈ E , f (x) =
m∑

i=1

bixi.

Il en résulte que le nombre de paramètres inconnus d’un tel modèle est :

p = m.

Notons que lorsque ce modèle est mis en oeuvre avec un plan d’expérience
adapté, la matrice du modèle X ∈ M (n, m) est donc identique à la matrice
du plan D.

Interprétation des coefficients. Considérons un mélange binaire obtenu à
partir des composants i et j en proportions respectives xi = p et xj = 1−p. Il
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est clair qu’avec un tel modèle la réponse moyenne (située sur une des arêtes
du simplexe) est donnée par :

f (p, 1− p) = bip + bj (1− p) = bj + (bi − bj) p.

L’interprétation concrête des coefficients du modèle est donc aisée puisque
bi est simplement la réponse obtenue lorsque le corps pur i est utilisé (poser
dans la formule ci-dessus p = 1). Avec ce modèle la réponse pour tout mélange
binaire est de plus affine en p. Attention au fait que le paramètre bi n’est pas
l’effet linéaire du composant i. Il ne peut plus être qualifié de tel puisqu’il est
obtenu par une sommation faisant intervenir à la fois le ”vrai” effet linéaire
βi mais aussi l’effet moyen général β0.

Exemple

Voici un exemple de surface ajustée à l’aide d’un modèle d’ordre un
(source : logiciel Nemrod). Il s’agit de la représentation graphique
du modèle ajusté au sens des moindres carrés obtenu à partir d’un
réseau de Scheffé de type {3, 3} (voir la suite du chapitre). La qualité
de l’ajustement est donnée ici par R2 = 0.636.

Composant1

Composant2 Composant3

X1

X2 X3

2.56

0.92

– 0.72

– 2.36

Fig. 7.4. Modélisation par un polynôme d’ordre un.

7.3.2 Modèle d’ordre deux

Le modèle polynomial d’ordre un présenté précédemment n’est pas assez riche
afin de décrire correctement bon nombre de situations pratiques. Il est alors
naturel d’utiliser un modèle polynomial de degré supérieur. Partant du modèle
classique d’ordre deux on montre (tout comme dans le paragraphe précédent)
que l’hypothèse (H2) entrâıne la suppression de l’effet moyen général β0 mais
aussi (voir la démonstration) celle de tous les effets quadratiques βii. Ceci
entrâıne que :
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Proposition 7.2. [�] Le modèle polynomial d’ordre deux adapté à
l’étude des mélanges, pour m composants, est donné par :

∀ x ∈ E , f (x) =
m∑

i=1

bixi +
∑∑

i<j

bijxixj .

Il en résulte qu’un tel modèle est constitué par m paramètres inconnus (les
bi) auxquels il faut rajouter les C2

m paramètres bij (il y en a autant que de
choix non-ordonnés de 2 éléments parmi m). On a donc :

p = m + C2
m = m +

m (m− 1)
2

=
m (m + 1)

2
.

Interprétation des coefficients. Examinons une nouvelle fois le comporte-
ment d’un tel modèle dans le cas d’un mélange binaire où les composants i et
j sont en proportions respectives xi = p et xj = 1− p. Il est immédiat que :

f (p, 1− p) = bj + (bi − bj + bij) p− bijp
2.

La modélisation ainsi obtenue est donc plus riche que celle du modèle d’ordre
un puisque le paramètre bij permet d’introduire une courbure dans la réponse.
Plus précisemment lorsque le mélange est équilibré la réponse moyenne est :

{
f (0.5, 0.5) = 0.5 (bi + bj) pour le modèle d’ordre un,
f (0.5, 0.5) = 0.5 (bi + bj) + 0.25bij pour le modèle d’ordre deux.

Le coefficient bij peut donc être interprété comme le quadruple de la quantité
à rajouter à une réponse affine afin de modéliser correctement le phénomène
pour un mélange équilibré entre les composants i et j.

Exemple

Voici un exemple de surface ajustée au sens des moindres carrés à
l’aide d’un modèle d’ordre 2 (source : logiciel Nemrod).

Composant1

Composant2 Composant3

X1

X2 X3

3.36

1.73

0.09

–1.55

Fig. 7.5. Modélisation par un polynôme d’ordre deux.
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Cette modélisation utilise les mêmes données que pour l’exemple du
paragraphe 7.3.1. On constate ici une amélioration de l’ajustement par
rapport au cas affine car la surface est maintenant légèrement courbée
mais la qualité de l’ajustement reste insuffisante car R2 = 0.667.

7.3.3 Modèle d’ordre trois complet

Il a été montré précédemment que l’utilisation d’un modèle polynomial d’ordre
deux dans le cas des mélanges entrâıne la disparition de l’effet moyen général
ainsi que des effets quadratiques. Il en résulte que ce modèle est beaucoup
moins riche que le modèle d’ordre deux classique et va dans certaines situations
s’avérer trop pauvre pour décrire correctement le phénomène étudié (voir
par exemple la figure 7.5). Ceci implique donc que l’utilisation d’un modèle
polynomial d’ordre trois est envisageable. La prise en compte de l’hypothèse
fondamentale (H2) conduit alors à considérer la classe de modèles suivante :

Proposition 7.3. [�] Le modèle polynomial d’ordre trois adapté à
l’étude des mélanges, pour m ≥ 3 composants, est donné par :

∀ x ∈ E , f (x) =
m∑

i=1

bixi +
∑∑

i<j

bijxixj +
∑∑

i<j

δijxixj (xi − xj)

+
∑∑∑

i<j<k

bijkxixjxk

Les paramètres inconnus d’un tel modèle sont alors : les bi au nombre de m,
les bij ainsi que les δij au nombre de C2

m et enfin les bijk au nombre de C3
m.

Le nombre total de paramètres inconnus est donc donné par :

p = m + 2C2
m + C3

m =
m (m + 1) (m + 2)

6
.

Interprétation des coefficients. Détaillons le rôle des nouveaux coefficients
δij et bijk de ce modèle. Pour un mélange binaire où xi = p et xj = 1 − p la
réponse obtenue est cubique, donnée explicitement par :

f (p, 1− p) = bj + (bi − bj + bij − δij) p + (3δij − bij) p2 − 2δijp
3.

Il en résulte en particulier que pour un mélange équilibré il vient f (0.5, 0.5) =
0.5 (bi + bj) + 0.25bij. La réponse dans ce cas est donc égale à celle donnée
par le modèle d’ordre deux. Evaluons alors les réponses obtenues pour des
proportions dans le mélange de 1/4 et 3/4 :

{
f (0.25, 0.75) = (0.25bi + 0.75bj + 0.1875bij)− 0.09375δij,
f (0.75, 0.25) = (0.25bi + 0.75bj + 0.1875bij) + 0.09375δij.

Les quantités entre parenthèses ci-dessus sont les réponses obtenues à l’aide du
modèle d’ordre deux. On en déduit que le coefficient δij est lié à la déviation
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introduite par rapport au modèle quadratique. Concernant maintenant le co-
efficient bijk il permet d’affiner l’analyse des mélanges ternaires (et au-delà).
Plus précisemment, la réponse pour un mélange ternaire équilibré est donnée
pour les différents modèles étudiés par (avec de haut en bas les modèles d’ordre
un, deux et trois) :

⎧
⎨

⎩

0.333 (bi + bj + bk) ,
0.333 (bi + bj + bk) + 0.111 (bij + bik + bjk) ,
0.333 (bi + bj + bk) + 0.111 (bij + bik + bjk) + 0.037bijk.

Exemple

Voici un exemple de surface ajustée au sens des moindres carrés à
l’aide d’un modèle d’ordre trois complet (source : logiciel Nemrod).

Composant1

Composant2 Composant3

X1

X2 X3

1.73

3.36

0.09

–1.55

–1.55

– 3.18

Fig. 7.6. Modélisation par un polynôme d’ordre trois.

Cette surface est toujours obtenue à l’aide des mêmes données que
dans les paragraphes précédents. Il est clair ici que l’introduction des
termes cubiques dans le modèle a beaucoup modifié l’allure de la sur-
face ajustée par rapport à ce que l’on avait pour l’ordre un ou deux.
On retrouve bien ce résultat quantitativement puisque le coefficient de
corrélation linéaire multiple est maintenant R2 = 0.917. Ce résultat
est bien entendu lié directement à l’enrichissement du modèle qui a
10 paramètres inconnus au total (contre respectivement 6 et 3 pour
les modélisations de degrés 2 et 1).

7.3.4 Modèle synergique d’ordre trois

Le modèle complet d’ordre trois permet d’effectuer des modélisations relative-
ment complexes (voir la figure 7.6). En contrepartie le nombre de paramètres
inconnus de ce modèle est assez élevé et peut constituer un obstacle au niveau
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du nombre d’expériences à réaliser. C’est pourquoi on s’oriente parfois vers un
modèle d’ordre trois plus simple. Une solution classique consiste à supprimer
les coefficients δij . Ceci conduit alors au modèle d’ordre trois suivant qualifié
de synergique (ou aussi de ”special” dans la littérature anglophone) :

Définition 7.4. Le modèle polynomial synergique d’ordre trois adapté
à l’étude des mélanges, pour m ≥ 3 composants, est donné par :

∀ x ∈ E , f (x) =
m∑

i=1

bixi +
∑∑

i<j

bijxixj +
∑∑∑

i<j<k

bijkxixjxk

Les coefficients inconnus d’un tel modèle sont alors les bi (au nombre de m),
les bij (au nombre de C2

m) ainsi que les bijk (au nombre de C3
m). Ceci donne

pour total :

p = m + C2
m + C3

m =
m
(
m2 + 5

)

6
.

Interprétation des coefficients. Là aussi les coefficients bijk ont pour prin-
cipal intérêt d’introduire une modélisation cubique dès lors qu’un mélange au
moins ternaire est utilisé.

Exemple

Voici une analyse de la même situation qu’aux paragraphes précédents
avec cette fois un ajustement réalisé à l’aide du modèle synergique
d’ordre trois (source : logiciel Nemrod).

3.36

1.73

0.09

–1.55

X3
Composant3Composant2

X2

X1

Composant1

Fig. 7.7. Modélisation par un polynôme synergique d’ordre trois

Concernant la qualité de l’ajustement on obtient ici R2 = 0.791. Ceci
montre donc tout l’intérêt de ce modèle car la qualité de l’ajustement
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est bien supérieure à celle obtenue avec le modèle d’ordre deux alors
qu’un seul paramètre inconnu supplémentaire a été rajouté (pour un
total de 7 paramètres). L’ajustement est par contre moins bon qu’avec
le modèle complet d’ordre trois mais celui-ci nécessite l’utilisation de
trois paramètres δij supplémentaires.

7.3.5 Modèle synergique d’ordre quelconque

Une fois présenté le modèle synergique d’ordre trois il est naturel d’essayer
de le généraliser à un ordre quelconque dès lors que plus de 3 facteurs sont
utilisés. En effet ce modèle a été obtenu en rajoutant au modèle d’ordre deux
les monômes de la forme xixjxk et on peut envisager maintenant de rajouter
aussi ceux de la forme xixjxkxl (à l’ordre 4) on bien xixjxkxlxm (à l’ordre
5), etc... En d’autres termes il est possible d’utiliser la classe des polynômes
affines (comme cela a été fait dans un contexte différent dans le chapitre 3)
et ceci entrâıne la définition suivante :

Définition 7.5. Soit un entier λ et m ≥ λ composants. Le modèle poly-
nomial synergique d’ordre λ est donné par (∀ x ∈ E) :

f (x) =
m∑

i1=1

bi1xi1 +
∑∑

i1<i2

bi1i2xi1xi2 +
∑∑∑

i1<i2<i3

bi1i2i3xi1xi2xi3

+... +
∑∑

...
∑

i1<i2<...<iλ

bi1i2...iλ
xi1xi2 ...xiλ

.

Dans le cas particulier où λ = m le modèle synergique est dit complet.

Les coefficients inconnus d’un tel modèle sont alors les bi1 (au nombre de m),
les bi1i2 (au nombre de C2

m), les bi1i2i3 (au nombre de C3
m), etc... Le nombre

total de paramètres inconnus est donc égal à :

p =
λ∑

i=1

Ci
m.

Dans le cas particulier du modèle synergique complet il vient :

p =
m∑

i=1

Ci
m = 2m − 1 car

m∑

i=0

Ci
m = 2m

d’après la formule du binôme de Newton.

Interprétation des coefficients. L’interprétation faite avec le modèle syn-
ergique d’ordre trois est généralisable ici sans difficulté. Utiliser les coefficients
bi1i2i3i4 permet d’introduire une modélisation de degré égal à 4 dès lors qu’au
moins quatre composants sont utilisés dans le mélange. Utiliser les coefficients
bi1i2i3i4i5 permet d’introduire une modélisation de degré égal à 5 dès lors qu’au
moins cinq composants sont utilisés dans le mélange, etc...
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7.3.6 Résumé

La table 7.1 présente le nombre de paramètres inconnus de tous les modèles
vus précédemment pour un nombre de facteurs compris entre 2 et 10. Les
colonnes sont associées respectivement de gauche à droite au modèle d’ordre
un, au modèle d’ordre deux, au modèle complet d’ordre trois, au modèle
synergique d’ordre trois et enfin au modèle synergique complet. Le nombre de
paramètres inconnus du modèle classique d’ordre deux est présenté aussi (à
droite du tableau) afin de pouvoir réaliser une comparaison avec la situation
des chapitres précédents où il n’y avait pas de mélange. On constate dans
un premier temps le peu de paramètres inconnus du modèle d’ordre deux
pour mélanges (ce qui est logique puisque l’effet moyen général ainsi que les
effets quadratiques ont été supprimés). A contrario l’utilisation du modèle
d’ordre trois complet devient rapidement prohibitive (au delà de 5 facteurs il
nécessite obligatoirement plus du double des expériences du modèle d’ordre
deux classique). Concernant par contre le modèle synergique d’ordre trois, il
s’avère très intéressant lorsque le nombre de facteurs est égal à 3, 4 ou 5.
Enfin le modèle synergique complet, relativement facile à mettre en oeuvre
pour 4 ou 5 facteurs, compte ensuite un nombre de paramètre inconnus en
augmentation très rapide.

Table 7.1. Nombre de paramètres inconnus de différents modèles.

d◦1 d◦2 d◦3 d◦3 syn. Syn com.
2 facteurs 2 3 × × ×
3 facteurs 3 6 10 7 7
4 facteurs 4 10 20 14 15
5 facteurs 5 15 35 25 31
6 facteurs 6 21 56 41 63
7 facteurs 7 28 84 63 127
8 facteurs 8 36 120 92 255
9 facteurs 9 45 165 129 511

10 facteurs 10 55 220 175 1023

d◦2 class
6
10
15
21
28
36
45
55
66

Considérons maintenant la qualité de l’ajustement en terme de richesse du
polynôme utilisé. La table 7.2 résume les différentes possibilités. Divers types
de mélanges figurent en ligne : binaires, ternaires, à 4 composants et le cas
général où m composants sont utilisés. Les colonnes sont associées aux modèles
étudiés précédemment avec, de gauche à droite, les modèles d’ordre un, deux,
trois complet, synergique d’ordre trois, synergique d’ordre quatre et enfin
synergique complet. A l’intersection de chaque couple ligne-colonne figure la
forme du polynôme obtenu qui est soit affine (i.e. de degré un), soit quadra-
tique (i.e. de degré deux), soit cubique (i.e. de degré trois) soit enfin d’un
degré quelconque supérieur à trois.
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Table 7.2. Nature des différentes modélisations.

d◦1 d◦2 d◦3 d◦3 syn. d◦4 syn. Syn com.
Mel. binaire affine quadra. cubique quadra. quadra. quadra.
Mel. ternaire affine quadra. cubique cubique cubique cubique
Mel. 4 comp. affine quadra. cubique cubique d◦4 d◦4
Mel. m comp. affine quadra. cubique cubique d◦4 d◦m

Ce tableau permet de visualiser clairement les avantages et inconvénients
des divers modèles. On retiendra que la principale qualité du modèle com-
plet d’ordre trois est de proposer un ajustement cubique pour les mélanges
binaires. Ce modèle peut donc s’avérer être très intéressant dans les situa-
tions où le comportement des mélanges binaires semble complexe. Par contre
l’utilisation d’un modèle synergique d’ordre λ se distingue par le fait que tous
les mélanges faisant intervenir λ composants (ou plus) vont être modélisés par
un polynôme de degré λ. Un tel modèle sera donc préférable lorsque ce type
de mélanges semblent être plus complexes à modéliser.

7.3.7 Analyse de la variance

Une fois un modèle choisi et ajusté au sens des moindres carrés le problème
de la qualité de l’ajustement réalisé se pose une nouvelle fois. Dans le cas des
modèles pour mélanges la technique d’analyse de la variance reste identique
au cas classique et les formules suivantes (voir la proposition 2.8) sont toujours
utilisables :

SST = SSR + SSE avec :

SST = tY Y − nY
2
, SSE = tY (In − P )Y et SSR = tY PY − nY

2
.

Ce résultat est étonnant au premier abord car il a été prouvé que cette
décomposition est vraie pour les modèles classiques (voir la démonstration
de la proposition 2.8) car il y a toujours dans ces modèles un effet moyen
général (et donc une colonne de la forme In dans la matrice X) ce qui
n’est pourtant plus le cas ici. D’après l’énoncé de la proposition 2.8 il
n’est cependant pas nécessaire d’utiliser un modèle avec une constante pour
que cette décomposition soit valide car la seule hypothèse (moins contraig-
nante) à vérifier est In ⊂ Im X. Cette hypothèse est bien vérifiée par tout
modèle pour mélange d’après l’hypothèse fondamentale (H2) qui impose
que

∑
i xi = 1, donc la somme des colonnes de la matrice du plan d’expérience

D est toujours égale à In (et donc In ⊂ Im X puisque D est toujours une sous-
matrice de X).
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7.4 Réseaux de Scheffé

7.4.1 Définition

Présentons ici une classe de plans d’expérience pour mélanges désignés clas-
siquement par le terme de réseaux et introduits par Scheffé [85].

Définition 7.6. Considérons un mélange élaboré à l’aide de m composants.
On appelle réseau de Scheffé de type {m, q} , avec q ∈ N

∗, le plan
d’expérience D = {zu, u = 1, ..., n} constitué par tous les points dont les co-
ordonnées barycentriques sont des multiples de 1/q.

En d’autres termes on a donc pour tout réseau de Scheffé de type {m, q} :

∀ u = 1, ..., n , ∀ i = 1, ..., m , zui ∈
{

0,
1
q
,
2
q
, ...,

q − 1
q

, 1
}

.

Il découle de cette définition que :

Proposition 7.7. [�] Le nombre d’expériences à réaliser avec un réseau de
Scheffé de type {m, q} est donné par :

n = Cq
m+q−1.

Remarquons que les nombres d’expériences associées aux réseaux de Scheffé
de type {m, 1}, {m, 2} et {m, 3} sont alors :

⎧
⎪⎪⎨

⎪⎪⎩

réseau {m, 1} : n = C1
m = m,

réseau {m, 2} : n = C2
m+1 = m (m + 1) /2,

réseau {m, 3} : n = C3
m+2 = m (m + 1) (m + 2) /6.

On retrouve exactement le nombre de paramètres inconnus des modèles
pour mélanges d’ordre un, d’ordre deux et enfin d’ordre trois complet. Les
trois réseaux de Scheffés présentés ci-dessus sont donc des plans d’expérience
saturés pour ces trois modèles.

Exemple

Voici diverses représentations graphiques de réseaux de Scheffé dans
le cas où m = 3 facteurs sont considérés (source : logiciel Nemrod).
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X2
Composant2

X3
Composant3

X1
Composant1

X2
Composant2

X3
Composant3

X1
Composant1

Fig. 7.8. Fig. 7.9.

Réseau de Scheffé de type {3, 1} . Réseau de Scheffé de type {3, 2}

X2
Composant2

X3
Composant3

X1
Composant1

X2
Composant2

X3
Composant3

X1
Composant1

Fig. 7.10. Fig. 7.11.
Réseau de Scheffé de type {3, 3} . Réseau de Scheffé de type {3, 4} .

7.4.2 Ajustement de divers modèles

Abordons tout d’abord l’ajustement au sens des moindres carrés du modèle
polynomial le plus simple c’est-à-dire d’ordre un. Un plan d’expérience adapté
à l’ajustement d’un tel modèle est alors le réseau de Scheffé de type {m, 1}
utilisé classiquement soit tel quel soit en répétant r fois chacune des expériences
(si le total n’est pas prohibitif) afin de pouvoir réaliser une analyse de la
variance. On montre que l’on a explicitement les résultats suivants (avec les
différentes réponses en notation standard, voir le paragraphe 7.2.3) :
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Proposition 7.8. [�] Soit un réseau de Scheffé de type {m, 1} tel que les
expériences sont répétées r ∈ N

∗ fois et un modèle polynomial d’ordre un. Un
tel plan est constitué par un total de n = rm expériences (il est donc saturé
lorsque r = 1) et les estimateurs des moindres carrés des paramètres du
modèle sont donnés par :

∀ i = 1, ..., m , b̂i = Yi

où Yi désigne la moyenne des r réponses Y
(1)
i , Y

(2)
i , ..., Y

(r)
i obtenues lorsque

le corps pur i est considéré. Tous ces estimateurs sont de plus non-corrélés
et leur dispersion vérifie :

∀ i = 1, ..., m , Var b̂i =
σ2

r
.

Remarque. On démontre aussi sans difficulté (en suivant un cheminement
identique à celui de la démonstration de la proposition 7.8) que les résultats
sont identiques dans le cas général où le nombre de répétitions est de r1 pour
le corps pur 1, ...., rm pour le corps pur m (alors ∀ i = 1, ..., m , b̂i = Yi

et Var b̂i = σ2/ri). Il est cependant courant d’utiliser un nombre identique
de répétitions afin d’obtenir une qualité d’estimation identique pour tous les
facteurs (le plan est dit équilibré).

Remarquons que ce plan d’expérience est satisfaisant d’un point de vue
mathématique mais peut s’avérer très étonnant pour un utilisateur non averti
dans la mesure où il est constitué exclusivement par des corps purs donc ne
contient aucun véritable mélange ! Ceci est dû au modèle très simple utilisé
ici qui, s’il est valide, ne nécessite que la connaissance des diverses réponses
associées aux corps purs puisque tout autre type de réponse est alors obtenue
par une simple relation affine à partir de celles-ci (voir le paragraphe 7.3.1
pour plus de détails).

Considérons maintenant la modélisation plus riche obtenue à l’aide du
modèle polynomial pour mélanges d’ordre deux (voir le paragraphe 7.3.2). Un
plan d’expérience adapté à l’ajustement d’un tel modèle est alors le réseau de
Scheffé de type {m, 2} . Il s’agit donc, par définition, d’un plan d’expérience
pour lequel on teste tous les corps purs ainsi que tous les mélanges binaires
équilibrés (avec xi = xj = 0.5 pour tous les i et j différents). On a alors le
résultat suivant :

Proposition 7.9. [�] Soit un réseau de Scheffé de type {m, 2} tel que les
expériences sont répétées r ∈ N

∗ fois et un modèle polynomial d’ordre deux.
Un tel plan est constitué par un total de n = rm (m + 1) /2 expériences (il
est donc saturé lorsque r = 1) et les estimateurs des moindres carrés des
paramètres du modèle sont donnés par :
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∀ i, j = 1, ..., m avec i < j,

{
b̂i = Yi,

b̂ij = 4Y ij − 2
(
Yi + Yj

)
.

où Y i (resp. Y ij) désigne la moyenne des r réponses de la forme Y
(1)
1 ,

..., Y
(r)
r (resp. Y

(1)
ij , ..., Y

(r)
ij ). La dispersion de ces estimateurs est de plus

donnée par :

∀ i, j = 1, ..., m avec i 	= j, Var b̂i =
σ2

r
et Var b̂ij =

24σ2

r
.

Il n’a pas été précisé ici que les divers estimateurs sont non-corrélés entre
eux car cette propriété n’est pas vérifiée. Les diverses covariances entre es-
timateurs peuvent être déterminées à partir des résultats obtenus lors de la
démonstration de la proposition 7.9.

Si les deux modèles présentés précedemment ne sont pas assez riches il est
alors possible de s’orienter vers le modèle polynomial complet d’ordre trois
(voir le paragraphe 7.3.3). Une nouvelle fois, un plan d’expérience adapté à
l’ajustement d’un tel modèle est le réseau de Scheffé de type {m, 3} . Dans
ce cas là on teste donc tous les corps purs, deux types de mélanges binaires
(en permutant les proportions 1/3 et 2/3) et enfin tous les mélanges ternaires
équilibrés (avec xi = xj = xk = 1/3 pour tous les i,j et k différents). Il est
encore possible d’obtenir explicitement tous les estimateurs des paramètres
du modèle ainsi que leurs dispersions (la démonstration de ces résultat, cal-
culatoire et laborieuse, n’est pas donnée. Le lecteur intéressé pourra se référer
par exemple à l’ouvrage de Cornell [22] pour plus de détails) :

Proposition 7.10. Considérons un réseau de Scheffé de type {m, 3} tel
que les expériences sont répétées r ∈ N

∗ fois et un modèle polynomial
complet d’ordre trois. Un tel plan est constitué par un total de n =
rm (m + 1) (m + 2) /6 expériences (il est donc saturé lorsque r = 1) et les
estimateurs des moindres carrés des paramètres du modèle sont donnés par
(∀ i, j = 1, ..., m avec i < j < k) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b̂i = Yi,

b̂ij = 9/4
(
Y iij + Y ijj − Yi − Yj

)
,

δ̂ij = 9/4
(
3Y iij − 3Y ijj − Yi + Yj

)
,

b̂ijk = 27Y ijk + 9/2
(
Yi + Yj + Yk

)

−27/4
(
Y iij + Y ijj + Y iik + Y ikk + Y jjk + Y jkk

)
.

Y Δ désigne la moyenne des r réponses de la forme Y
(1)
Δ , ..., Y

(r)
Δ .

Les différentes dispersions de ces estimateurs sont données par la proposition
suivante :
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Proposition 7.11. Considérons un modèle complet pour mélanges analysé
à l’aide d’un réseau de Scheffé de type {m, 3} tel que les expériences sont
répétées r ∈ N

∗ fois. Les dispersions des divers paramètres estimés sont
alors données explicitement par (∀ i, j, k = 1, ..., m avec i < j < k) :

Var b̂i =
σ2

r
, Var b̂ij =

81
4r

σ2, Var δ̂ij =
405
4r

σ2 et Var b̂ijk =
8505
8r

σ2.

La forme explicite des diverses covariances n’est pas précisée ici mais il
faut encore prendre garde au fait que les différents estimateurs obtenus ici
sont généralement corrélés entre eux (i.e. le plan d’expérience utilisé n’est pas
un plan orthogonal).

Remarque. L’ordre de grandeur des différentes dispersions obtenues peut
s’avérer étonnant au premier abord. En effet en supposant que σ2 = 1 et que
les expériences ne sont pas répétées (r = 1) il vient :

Var b̂i = 1, Var b̂ij = 20.25, Var δ̂ij = 101.25 et Var b̂ijk = 1063.25.

Considérons le paramètre estimé b̂ijk dont la variance est ici bien plus im-
portante que les autres. Il ne faut pas oublier que dans le modèle étudié
ce paramètre prémultiplie un monôme de la forme xixjxk et que, puisque
les coordonnées utilisées sont barycentriques, la plus grande valeur que peut
prendre un tel monôme est seulement de 1/27 (valeur atteinte si et seulement
si xi = xj = xk = 1/3). Il en résulte que globalement la quantité b̂ijkxixjxk

est telle que sa dispersion est toujours majorée par la valeur suivante d’un
ordre de grandeur beaucoup plus faible :

Var
(
b̂ijkxixjxk

)
= (xixjxk)2 Var b̂ijk ≤ 8505

8 (272)
� 1.458.

7.5 Réseaux de Scheffé centrés

7.5.1 Définition

Les plans d’expérience étudiés jusqu’à présent présentent un inconvénient
au niveau de leur mise en oeuvre séquentielle. En effet, si un réseau de
Scheffé de type {m, 2} est utilisé et si le modèle ajusté (d’ordre deux) s’avère
trop pauvre pour expliquer le phénomène étudié on s’oriente alors souvent
vers l’ajustement d’un modèle de degré supérieur via un réseau de type
{m, 3} . Il peut alors s’avérer génant que certaines expériences réalisées pour le
réseau {m, 2} ne soient pas réutilisées par le réseau {m, 3} (en l’occurence les
mélanges binaires équilibrés). Ceci entrâıne la définition suivante des réseaux
de Scheffé dits centrés :
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Définition 7.12. Soit un mélange élaboré à l’aide de m composants. On
appelle réseau de Scheffé centré de type {m, q}C , avec q ∈ N

∗ tel que
1 ≤ q ≤ m, le plan d’expérience D = {zu, u = 1, ..., n} constitué par la réunion
des q ensembles de points donnés ci-dessous :

1) tous les corps purs (zui = 1) ,
2) tous les mélanges binaires équilibrés (zui = zuj = 1/2) ,

...
q) tous les mélanges équilibrés d’ordre q

(
zui1 = zui2 ... = zuiq = 1/q

)
.

Un réseau de Scheffé centré de type {m, m}C est dit complet.

Cette définition entrâıne bien les relations d’inclusion suivantes permettant
une mise en oeuvre séquentielle de ces plans d’expérience :

{m, 1}C ⊂ {m, 2}C ⊂ {m, 3}C ⊂ . . . ⊂ {m, m}C .

Concernant la taille de ces plans il est clair que l’étape 1 utilise un total de
m = C1

m corps purs, puis C2
m mélanges binaires à l’étape 2, ..., et enfin Cq

m

mélanges équilibrés d’ordre q correspondent à la dernière étape. Le nombre
d’expériences à réaliser avec un réseau de Scheffé centré de type {m, q}C est
donc donné par :

n =
q∑

i=1

Ci
m.

Pour un réseau complet de type {m, m}C il vient donc n = 2m−1. D’après les
résultats du paragraphe 7.3.5 le nombre d’expériences d’un réseau de Scheffé
centré de type {m, q}C est donc exactement égal au nombre de paramètres
inconnus du modèle synergique d’ordre q.

Exemple

Voici pour m = 3 facteurs la représentation graphique du réseau de
Scheffé centré (complet) de type {3, 3}C (comparé au réseau de Scheffé
de type {3, 3}). Par définition, les réseaux de Scheffé de type {3, 1} et
{3, 2} centrés ou non sont identiques (ceci est d’ailleurs vrai quelque
soit le nombre de facteurs).
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Fig. 7.12. Fig. 7.13.

Réseau de Scheffé de type {3, 3} . Réseau de Scheffé centré {3, 3}C .

7.5.2 Ajustement d’un modèle synergique

Table 7.3. Estimateurs des paramètres de divers modèles synergiques.
analysés à l’aide de réseaux de Scheffé centrés.

Plan Modèle Estimateurs

{m, 1}C

Syner.
ordre 1 b̂i = Y i.

{m, 2}C

Syner.
ordre 2

b̂i = Y i,

b̂ij = 4Y ij − 2
(
Yi + Yj

)
.

{m, 3}C

Syner.
ordre 3

b̂i = Y i,

b̂ij = 4Y ij − 2
(
Yi + Yj

)
,

b̂ijk = 27Y ijk − 12
(
Y ij + Y ik + Y jk

)

+3
(
Y i + Y j + Y k

)
.

{m, 4}C

Syner.
ordre 4

b̂i = Y i,

b̂ij = 4Y ij − 2
(
Yi + Yj

)
,

b̂ijk = 27Y ijk − 12
(
Y ij + Y ik + Y jk

)

+3
(
Y i + Y j + Y k

)
,

b̂ijkl = 256Y ijkl

−108
(
Y ijk + Y ijl + Y ikl + Y jkl

)

+32
(
Y ij + Y ik + Y il + Y jk + Y jl + Y kl

)

−4
(
Y i + Y j + Y k + Y l

)
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Il est possible de déterminer la forme des estimateurs de chacun des
paramètres du modèle (ainsi que leur dispersion) à l’aide de formules ex-
plicites. Celles-ci sont cependant relativement complexes, le lecteur intéressé
pourra les trouver dans les compléments de fin de chapitre (paragraphe 7.10.1).
La table 7.3 résume la forme des estimateurs des moindres carrés des modèles
les plus couramment utilisés.

7.6 Autres plans pour mélanges

7.6.1 Réseaux de Scheffé déséquilibrés

Seulement des réseaux de Scheffé équilibrés (dans le sens où toutes les
expériences sont réalisées un même nombre r ∈ N

∗ de fois) ont été considérés.
Ceci permet d’obtenir des résultats relativement simples à écrire, des plans
saturés lorsque r = 1 ainsi que des décompositions en blocs aisées à analyser
(voir la suite). Une telle démarche peut cependant être génante pour obtenir
un plan de petite taille non-saturé afin de mener une analyse de la variance (on
est obligé avec l’approche précédente de considérer alors r = 2 réplications des
expériences et le plan obtenu contient donc deux fois plus d’expériences que
de paramètres à ajuster). Une démarche plus économique consiste à s’orienter
vers des plans d’expérience déséquilibrés où l’expérience i est répétée ri fois
avec les ri non forcément égaux. Lorsque les entiers non-nuls ri sont quelcon-
ques il est laborieux d’obtenir les formules explicites pour les estimateurs du
modèle ainsi que leurs dispersions, un logiciel est indispensable afin d’obtenir
les solution des équations normales. Considérons les deux situations présentées
ci dessous, intéressantes d’un point de vue pratique.

1) Répétiton des expériences associées aux corps purs. Considérons un
modèle polynomial d’ordre deux pour mélanges. On sait qu’il est aisé d’ajuster
ses coefficients à l’aide d’un réseau de Scheffé de type {m, 2}. Lorsqu’une
analyse de la variance est souhaitée une alternative à la répétition de toutes
les expériences du réseau consiste à ne répéter que les expériences associées
aux corps purs. En s’inspirant de la démonstration de la proposition 7.9 on
vérifie que si les expériences associées aux corps purs sont répétées r∗ fois
alors que celles associées aux mélanges binaires ne sont pas répétées il vient :

∀ i, j = 1, ..., m avec i < j , b̂i = Yi et b̂ij = 4Yij − 2
(
Yi + Yj

)
.

Les dispersions de ces estimateurs sont alors :

Var b̂i =
σ2

r∗
et Var b̂ij =

(

16 +
8
r∗

)

σ2.

Ce type de plan déséquilibré est donc d’analyse aisée et peut s’avérer intéres-
sant lorsque la duplication complète du plan initial est trop coûteuse. Concrête-
ment, le nombre minimal d’expériences à réaliser (obtenu pour r∗ = 2) est :
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n = 2C1
m + C2

m = 2m +
m (m− 1)

2
=

m (m + 3)
2

.

Ceci est quantifié dans le tableau ci-dessous où figurent p (nombre de
paramètres inconnus du modèle), la taille de ces divers plans ainsi que
leur taille relative (entre parenthèses) c’est-à-dire le rapport du nombre
d’expériences du plan sur le nombre de paramètres à estimer dans le modèle.

Table 7.4.
Taille (et taille relative) de réseaux de Scheffé {m, 2} déséquilibrés.

p Réseau p Réseau
3 facteurs 6 9 (1.50) 7 facteurs 28 35 (1.25)

4 facteurs 10 14 (1.40) 8 facteurs 36 44 (1.22)

5 facteurs 15 20 (1.33) 9 facteurs 45 54 (1.20)

6 facteurs 21 27 (1.29) 10 facteurs 55 65 (1.18)

2) Répétition des expériences associées au centröıde. Dans le cas des
plans d’expérience classiques il est courant de répéter les expériences au centre
du domaine expérimental afin d’obtenir des informations supplémentaires sur
la qualité de l’ajustement. On peut envisager la même procédure ici en util-
isant cette fois le centröıde du simplexe (i.e. le point associé au mélange tel
que x1 = x2 = ... = xm = 1/m). Considérons, pour m composants, un réseau
de Scheffé complet de type {m, m}C (ce réseau contient bien le centröıde du
simplexe) tel que les expériences faisant intervenir jusqu’à (m− 1) composants
ne sont pas répétées alors que l’expérience au centröıde est répétée rm fois.
On montre alors que les différents estimateurs des paramètres du modèle sont
obtenus de manière quasiment identique au cas classique équilibré (voir la fin
du paragraphe 7.10.1 des compléments de fin de chapitre pour plus de détails).

7.6.2 Autres types de plans d’expérience

Les présentations et analyses ont été limitées ici aux plans pour mélanges très
courants que sont les réseaux de Scheffé. Il existe cependant bien d’autres
configurations utilisables afin de mener des expériences sur des mélanges. Un
des reproches couramment formulé à l’encontre des réseaux de Scheffé (centrés
ou non) est que bon nombre des points expérimentaux sont situés à la frontière
du simplexe et peu de mélanges font réelement intervenir tous les composants.

Afin de pallier ce problème des plans qualifiés de plans axiaux sont parfois
utilisés. Leur construction repose sur l’utilisation des axes de Cox c’est-à-dire
des m segments situés à l’intérieur du simplexe, se coupant au centröıde et
joignant chacun des m sommets. Un plan est alors qualifié d’axial lorsque tous
les points expérimentaux sont situés sur les axes de Cox (avec généralement
des conditions supplémentaires comme un positionnement à égale distance
du centröıde). Le lecteur souhaitant plus de détails sur ce type de plans
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d’expérience pourra se référer à Cornell [21]. Les plans pour mélanges proposés
par Lambrakis [61] ont aussi pour objectif de ne proposer que des expériences
où tous les composants sont réellement utilisés simultanément.

Dans le but de s’affranchir des expériences associées au corps purs
(présentes dans tous les réseaux de Scheffé et n’ayant parfois aucune utilité
pratique) Gammon propose de les supprimer et de les remplacer par les
expériences faisant intervenir (m− 1) des m composants en proportions égales
(ceci va donc entrainer une duplication de ce type d’expériences pour un réseau
centré de Scheffé). Le plan ainsi obtenu a la même taille que le réseau de Scheffé
initial puisque les expériences rajoutées sont au nombre de Cm−1

m = C1
m = m

(consulter l’article de Lambrakis [61] pour plus de détails).

7.7 Introduction d’effets de blocs

7.7.1 Modèle à effets de blocs

Tout comme dans le cas des plans d’expérience classiques il est tout à
fait possible qu’une modélisation faisant intervenir des mélanges présente
des problèmes d’hétérogénéité. Il est alors naturel de regrouper les diverses
expériences en sous-groupes homogènes encore appelés blocs puis d’introduire
pour chacun d’eux un effet mesurant leur influence sur la réponse. Con-
sidérons un plan d’expérience pour mélanges faisant intervenir m composants,
décomposé en b blocs et mis en oeuvre sur le domaine expérimental E . On con-
sidére le modèle statistique Y (x) = fl (x) + ε (x) pour les réponses associées
au bloc l (l = 1, ..., b) avec :

∀ x ∈ E , fl (x) = γl + f (x)

où f est la fonction associée à l’un des modèles classiques pour mélange
présenté dans ce chapitre. Le réel γl (l = 1, ..., b) est l’effet du bloc l. Re-
marquons que le nombre de paramètres d’un tel modèle est égal à (b + δ) où
δ désigne le nombre de paramètres inconnus dans l’expression de f .

Exemple

Considérons un modèle pour mélange d’ordre deux, à m composants,
utilisé avec une configuration décomposée en deux blocs. Il vient :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pour le bloc 1 : f1 (x) = γ1 +
m∑

i=1

bixi +
∑∑

i<j

bijxixj ,

pour le bloc 2 : f2 (x) = γ2 +
m∑

i=1

bixi +
∑∑

i<j

bijxixj .

On a ici b = 2 et δ = m + C2
m = m (m + 1) /2 donc le nombre total

de paramètres inconnus est égal à :
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p =
m (m + 1)

2
+ 2 =

m2 + m + 4
2

.

D’après l’hypothèse fondamentale (H2) on peut dire que :

γ1 = γ1

(
m∑

i=1

xi

)

et γ2 = γ2

(
m∑

i=1

xi

)

et donc le modèle à effets de blocs peut aussi parfois être écrit sous la
forme suivante, similaire à celle du modèle sans bloc (avec l = 1, 2):

fl (x) =
m∑

i=1

bl
ixi +

∑∑

i<j

bijxixj où bl
i = bi + γl.

Lorsqu’il n’y a qu’un seul bloc alors b1i = bi et on retrouve ainsi le
modèle classique sans bloc précédemment étudié.

Remarque. Prenons garde tout au long de cette section à ne pas confondre
le nombre b de blocs considérés avec le vecteur b des paramètres inconnus du
modèle pour mélange. La même lettre est utilisée pour ces deux notions mais
en pratique peu de confusion est possible puisqu’elle représente deux élements
très différents.

7.7.2 Singularité liée au modèle

Remarquons au préalable que le modèle pour mélange tel qu’il vient d’être
écrit entrâıne que tout plan d’expérience est singulier. En effet, matricielle-
ment :

Y = [B | X ]
(

γ
b

)

+ ε = Bγ + Xb + ε.

avec B ∈ M (n, b) matrice des indicatrices des blocs (voir l’exemple du para-
graphe 6.2.1 pour la construction d’une telle matrice), X ∈ M (n, δ) matrice
du modèle sans bloc (avec δ nombre de paramètres inconnus), γ ∈ R

b vecteur
des effets de blocs et b ∈ R

δ vecteur des paramètres inconnus du modèle. On
supposera toujours dans la suite que la matrice X a été choisie de manière à
être de plein rang (c’est le cas notamment lorsqu’elle découle d’un des plans
d’expériences présentés dans ce chapitre). Malgré cette précaution il est cepen-
dant impossible que la matrice [B | X ] du modèle à effets de blocs soit de
plein rang puisque :

1) la somme des b colonnes de B est toujours égale à In,

2) la somme des m colonnes de X associées aux effets linéaires est toujours
égale à In d’après l’hypothèse fondamentale (H2) .



274 7 Plans d’expérience pour mélanges

Exemple

Considérons un modèle pour mélanges d’ordre deux, à 3 composants,
mis en oeuvre sur un réseau de Scheffé de type {3, 2} . Supposons
que les trois corps purs sont dans le premier bloc alors que les trois
mélanges binaires sont dans le second bloc. La matrice [B | X ] du
modèle à effets de blocs est alors donnée par :

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
1 0
1 0
0 1
0 1
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

et X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1/2 1/2 0 1/4 0 0
1/2 0 1/2 0 1/4 0
0 1/2 1/2 0 0 1/4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

La somme des deux colonnes de B ainsi que la somme des trois
premières colonnes de X valent I6. En d’autres termes le noyau de la
matrice du modèle [B | X ] contient le sous-espace vectoriel engendré
par t (1, 1,−1,−1,−1, 0, 0, 0), cette matrice n’est donc pas de plein
rang.

Il résulte de tout ceci que pour tout plan pour mélange il sera toujours
impossible d’estimer tous les paramètres du modèle proposé (car X n’est
pas de plein rang donc tXX n’est pas inversible, les équations normales
n’admettent pas une solution unique). Il est donc naturel d’utiliser des condi-
tions d’identifiabilité c’est-à-dire des conditions imposées aux paramètres
inconnus du modèle afin de le rendre régulier. On ne s’étend pas ici sur la
théorie liée à ce type de contraintes (le lecteur désirant en savoir plus pourra
consulter le paragraphe 8.2.5 du chapitre relatif aux plans d’expérience pour
facteurs qualitatifs) et on retient la contrainte très classique imposant au
vecteur des effets de blocs d’être un contraste de R

b. En d’autres termes la
contrainte (C) suivante sera désormais utilisée systématiquement :

b∑

i=1

γi = 0 (C)

Cette contrainte implique que seulement (b− 1) des effets de blocs sont à
estimer. Attention à ne pas confondre dans la suite le nombre total de
paramètres p∗ = (b + δ) du modèle (selon les notations du paragraphe 7.7.1)
avec le nombre p de paramètres inconnus donné ici par (puisqu’un des effets
de bloc n’est pas à estimer) :

p = b + δ − 1.

7.7.3 Plans bloqués orthogonalement

Il convient de déterminer maintenant des plans d’expérience adaptés à la
structure en blocs. On considére ici uniquement le cas le plus simple à analyser
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où les divers blocs vérifient la propriété de blocage orthogonal définie au
chapitre 6. En d’autres termes un plan pour mélanges en blocs est bloqué
orthogonalement si et seulement si les estimateurs des paramètres du modèle
considéré sont identiques à ceux obtenus avec le même plan d’expérience sans
bloc. Diverses études ont été menées concernant le problème de la construction
de tels plans suite aux premiers travaux de Nigam [67] (le lecteur pourra se
référer au chapitre 8 de l’ouvrage de Cornell [22]). Sachant que tous les plans
d’expérience étudiés dans ce chapitre sont de petite taille (la plupart d’entre
eux étant saturés) on propose ici de répliquer le plan pour mélange choisi
autant de fois qu’il y a de blocs à considérer. Ceci entrâıne le résultat suivant
(identique à celui énoncé au chapitre 6 pour des plans en blocs usuels) :

Proposition 7.13. [�] Soit un plan d’expérience pour mélanges D adapté au
modèle linéaire choisi. Le plan d’expérience D′ constitué des b blocs D1, ...,Db

obtenus à la suite de b réplications du plan initial (i.e. ∀ l = 1, ..., b, Dl = D)
est alors bloqué orthogonalement.

L’estimation au sens des moindres carrés des différents paramètres du modèle
utilisé est donc obtenue ici immédiatement en utilisant les divers résultats
relatifs aux réseaux de Scheffés (ou bien aux réseaux de Scheffé centrés) sans
bloc.

7.7.4 Estimation des effets de blocs

L’estimation des divers effets des blocs est souvent souhaitée lorsqu’un tel
modèle est utilisé. Pour un plan bloqué orthogonalement on obtient :

Proposition 7.14. [�] Soit un plan d’expérience pour mélanges D, constitué
par k expériences, adapté au modèle linéaire choisi. Pour le plan d’expérience
bloqué orthogonalement D′ constitué des b blocs D1, ...,Db obtenus à la suite
de b réplications du plan initial (i.e. ∀ l = 1, ..., b , Dl = D) les estimateurs
des moindres carrés des effets des blocs sont donnés par :

∀ l = 1, ..., b , γ̂l = Y Bl − Y .

Concernant la dispersion de ces estimateurs il vient :

∀ l = 1, ..., b , Var γ̂l = σ2

(
b− 1
bk

)

.

Le résultat suivant permet de réaliser un test d’hypothèse sur les effets des
différents blocs. Il s’agit donc d’une extension au cas des plans pour mélanges
de la proposition 6.5 des plans en blocs usuels.

Proposition 7.15. [�] Soit un plan d’expérience pour mélanges D, constitué
par k expériences, adapté au modèle linéaire choisi. Pour le plan d’expérience
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bloqué orthogonalement D′ constitué des b blocs D1, ...,Db obtenus à la suite
de b réplications du plan initial (i.e. ∀ l = 1, ..., b , Dl = D) un test de
l’hypothèse d’égalité des effets de blocs H0 : ”γi = γj” pour i, j = 1, ..., b
avec i 	= j contre l’hypothèse H1 = H0 peut être réalisé à l’aide de la statistique
suivante :

T =
k (γ̂i − γ̂j)

2

2σ̂2

où σ̂2 = SSE/ (n− p) = MSE. La règle de décision est alors donnée par
(avec fα,1,n−p fractile de la loi de Fisher à 1 et (n− p) ddl) :

on rejette H0 au niveau α si t ≥ fα,1,n−p.

7.8 Exemple d’application

Considérons ici une entreprise souhaitant mélanger ”au mieux” trois lubrifi-
ants différents pour un moteur à explosion (qualifiés de lubrifiant 1, 2 et 3 par
la suite). Le problème est donc de quantifier la qualité de chacun des lubrifi-
ants et de savoir si un mélange de deux ou trois d’entre eux peut s’avérer plus
intéressant. La procédure expérimentale mise en oeuvre ici consiste simple-
ment à tester un moteur sur un banc d’essai à l’aide de chacun des mélanges
proposés. La réponse obtenue traduit le rendement du moteur, il faut donc
la maximiser. Un autre problème soulevé par les spécialistes est l’origine des
lubrifiants utilisés. En effet, les diverses compositions élaborées proviennent
de deux fournisseurs (appelés fournisseur A et B par la suite) et ils craignent
que la qualité des produit livrés ne soit pas la même.

Au vu de la problématique présentée on peut s’orienter vers la mise en oeu-
vre d’un réseau de Scheffé centré, de type {3, 3}C , afin de tester tous les corps
purs, mais aussi divers mélanges binaires et ternaires. La recommandation
d’effectuer des expériences issues des deux fournisseurs conduit à dupliquer
ce plan d’expérience (pour un total, très raisonnable, de 14 expériences). En
d’autres termes il faut donc réaliser, pour les mélanges associés aux four-
nisseurs A et B, le plan d’expérience donné par la matrice suivante :

D =
[

D1

D2

]

avec D1 = D2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

1/3 1/3 1/3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Ceci est équivalent au protocole expérimental donné ci-après. Une colonne
”Four.” permet de distinguer les mélanges issus du fournisseur A ou bien B.
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Le plan d’expérience utilisé ici peut être mis en oeuvre séquentiellement en
partant des modèles les plus simples vers les modèles les plus complexes (par
exemple la réalisation des expériences 1, 2, 3 puis 8, 9 et 10 est suffisante afin
d’ajuster un modèle pour mélanges d’ordre un).

Four. Lubri. 1 Lubri. 2 Lubri. 3
Exp 1 A 100% 0 0
Exp 2 A 0 100% 0
Exp 3 A 0 0 100%
Exp 4 A 50% 50% 0
Exp 5 A 50% 0 50%
Exp 6 A 0 50% 50%
Exp 7 A 33.3% 33.3% 33.3%
Exp 8 B 100% 0 0
Exp 9 B 0 100% 0
Exp 10 B 0 0 100%
Exp 11 B 50% 50% 0
Exp 12 B 50% 0 50%
Exp 13 B 0 50% 50%
Exp 14 B 33.3% 33.3% 33.3%

Y
512
644
632
455
489
698
692
508
632
635
430
455
675
664

Voici un programme SAS permettant d’entrer ces données. La table ”donnees”
contient ici la matrice du plan d’expérience avec une première colonne repérant
le bloc à l’aide de la variable qualitative ”blc” (modalités A et B), trois
colonnes relatives aux concentrations des trois lubrifiants puis une dernière
colonne avec les réponses observées.

Data Donnees;
Input blc$ lu1 lu2 lu3 y;
Cards;
A 1.000 0.000 0.000 512
A 0.000 1.000 0.000 644

...
expérience i et réponse i

...
B 0.000 0.500 0.500 675
B 0.333 0.333 0.333 664

Run;

Considérons tout d’abord l’ajustement d’un modèle synergique d’ordre trois
sans introduire de bloc. Le tableau d’analyse de la variance est :
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Source ddl S. carrés M. Carrés St. Test Proba.
Régression 6 125285.4 20880.9 89.59 0.0001 •••

Erreur 7 1631.5 233.07
Total 13 126916.9

L’analyse de la variance peut être, par exemple, obtenue à l’aide du logiciel
SAS en utilisant une nouvelle fois la procédure de régression GLM ci-dessous.

Proc Glm data=Donnees;
Model y = lu1 lu2 lu3 lu1*lu2 lu1*lu3

lu2*lu3 lu1*lu2*lu3 / noint;
Run;

L’option ”noint” (no intercept) indique au logiciel de ne pas introduire d’effet
moyen général dans le modèle. Attention au fait que cette commande entrâıne
que SAS construit alors un tableau d’analyse de la variance avec des valeurs
différentes de celles proposées ici. En effet, la suppression de l’effet moyen
général implique automatiquement pour ce logiciel la réalisation d’une analyse
de la variance à l’aide des sommes de carrés non-centrées (voir la remarque
à la fin du paragraphe 2.5.1). Le recours a de telles techniques est cependant
inutile d’après les résultats de ce chapitre (paragraphe 7.3.7). Les valeurs
correctes pour l’analyse de la variance peuvent cependant être obtenues en
exécutant la procédure GLM sans l’option ”noint” (mais il ne faut pas alors
tenir compte des paramètres estimés qui sont différents de ceux proposés ici
puisqu’un effet moyen général est ajouté dans ce cas).

Le modèle utilisé est donc bien valide puisqu’il est possible de rejeter
clairement l’hypothèse ”tous les paramètres du modèle sont nuls”. La qualité
de l’ajustement par rapport aux expériences réalisées semble de plus être très
correcte puisque la quantité SSE est faible devant SST. Plus précisemment,
le coefficient de corrélation linéaire multiple vaut ici (valeur ”R-Square” de la
sortie SAS) :

R2 = 1− SSE

SST
� 0.987.

La dispersion des résidus est estimée par (valeur ”Root MSE” de la sortie
SAS) :

σ̂2 = MSE = 233.07 (donc σ̂ � 15.27).

Les divers estimateurs des moindres carrés des coefficients du modèle syn-
ergique ainsi que leurs dispersions sont résumés dans le tableau ci-dessous
(voir le paragraphe 7.10.1 pour les formules explicites). Ces résultats sont
disponibles à la fin de la sortie SAS de la procédure GLM (sans oublier ici
l’option ”noint” garantissant la non prise en compte de l’effet moyen général).
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Param. Estimat. Ec. type St. Test Proba.
b1 510.0 10.8 47.24 0.0001 •••

b2 638.0 10.8 59.10 0.0001 •••

b3 633.5 10.8 58.68 0.0001 •••

b12 −526.0 52.9 −9.95 0.0001 •••

b13 −399.0 52.9 −7.54 0.0002 •••

b23 203.0 52.9 3.84 0.0065 ••◦

b123 4438.5 372.1 11.93 0.0001 •••

On constate que tous les paramètres du modèle sont significativement
différents de zéro. Ceci conduit donc à prédire la réponse moyenne pour un
mélange de proportions x = (x1, x2, x3) à l’aide de la relation :

Ŷ (x) = 510.0x1 + 638.0x2 + 633.5x3 − 526.0x1x2

−399.0x1x3 + 203.0x2x3 + 4438.5x1x2x3.

La figure 7.14 donne une représentation graphique de ce modèle (source :
logiciel Nemrod).

Lubrifiant 1

Lubrifiant 2 Lubrifiant 3

X1
503

503

552
601

698

649

454

X2 X3

Fig. 7.14. Surface de réponse ajustée.

Voici enfin une comparaison entre les réponses et les réponses moyennes
prédites. Les deux dernière colonnes donnent les divers résidus ainsi que la
dispersion associée à chacune des prédictions (ces résultats sont obtenus di-
rectement en rajoutant l’option ”clm” à la suite de ”noint”).
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Y obs. Ŷ pred. Y − Ŷ Ec. type
Exp 1 512.0 510.0 2.0 10.8
Exp 2 644.0 638.0 6.0 10.8
Exp 3 632.0 633.5 −1.5 10.8
Exp 4 455.0 442.5 12.5 10.8
Exp 5 489.0 472.0 17.0 10.8
Exp 6 698.0 686.5 11.5 10.8
Exp 7 692.0 678.0 14.0 10.8
Exp 8 508.0 510.0 −2.0 10.8
Exp 9 632.0 638.0 −6.0 10.8
Exp 10 635.0 633.5 1.5 10.8
Exp 11 430.0 442.5 −12.5 10.8
Exp 12 455.0 472.0 −17.0 10.8
Exp 13 675.0 686.5 −11.5 10.8
Exp 14 664.0 678.0 −14.0 10.8

La figure 7.15 donne une représentation graphique de la variance de prédiction
au sein du domaine expérimental (source : logiciel Nemrod). Il existe une
symétrie de la variance de prédiction par rapport au centröıde. C’est pourquoi
les dispersions obtenues pour les diverses expériences du réseau de Scheffé
centré sont égales. Les dispersions les plus importantes sont rencontrées à la
fois au niveau des trois sommets (i.e. des corps purs) et du contröıde (i.e.
du mélange équilibré). On vérifie que (tout comme avec les plans classiques)
rajouter des expériences au centröıde diminue la variance de prédiction au
voisinage du centre du domaine et permet de se rapprocher d’une situation
de ”dispersion uniforme”.

Lubrifiant 1

Lubrifiant 2 Lubrifiant 3

X1

X20.5040

0.40

0.40
0.20

0.40
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0.30

0.40

0.40
0.400.50

0.50

0.50

0.30
0.200.20

0.50

Fig. 7.15. Représentation de Var Ŷ (avec σ2 = 1)

Intéressons-nous maintenant au deuxième aspect du problème concer-
nant les substances livrées par les deux fournisseurs. Il est alors possible de
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considérer un modèle à effets de blocs à partir des deux répétitions présentées
précédemment dans le protocole expérimental (associées aux valeurs A et B
de la variable ”Four.”). L’analyse de la variance pour un tel modèle conduit
au tableau suivant :

Source ddl S. carrés M. Carrés St. Test Proba.
Régression 7 126366.0 18052.3 196.6 0.0001 •••

Erreur 6 550.9 91.8
Total 13 126916.9

Ces résultats peuvent être obtenus à l’aide de la procédure suivante (la com-
mande ”Class” indique au logiciel que la variable ”blc” est qualitative).

Proc Glm data=Donnees;
Class blc;
Model y = blc lu1 lu2 lu3 lu1*lu2 lu1*lu3

lu2*lu3 lu1*lu2*lu3;
Run;

La qualité de l’ajustement est donc maintenant meilleure, elle est quantifiée
par (valeur ”R-Square” de la sortie SAS) :

R2 = 1− SSE

SST
� 0.996.

L’estimateur sans biais de la dispersion des résidus est maintenant égal à
(valeur ”Root MSE” de la sortie SAS) :

σ̂2 = MSE = 91.8 (donc σ̂ � 9.58).

D’après les résultats de la section 7.7 les estimateurs des divers coefficients
du modèle sont identiques à ceux obtenus dans le cas sans bloc (propriété de
blocage orthogonal) et les estimateurs des effets des blocs (sous la contrainte
classique (C)) sont alors donnés par d’après la proposition 7.14 (avec γ1 associé
au fournisseur A et γ2 au fournisseur B) :

Param. Estimat. Ec. type
γ1 8.79 2.56
γ2 −8.79 2.56

Le tableau des diverses prédictions découlant de ces résultats est donné ci-
dessous. La colonne ”Ŷl pred.” présente cette fois les prédictions associées
au bloc 1 pour les 7 premières expériences puis associées au bloc 2 pour les
dernières (ces résultats sont encore obtenus en rajoutant l’option ”clm” après
le modèle).
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Y obs. Ŷl pred. Y − Ŷl Ec. type
Exp 1 512.0 518.8 −6.8 6.3
Exp 2 644.0 646.8 −2.8 6.3
Exp 3 632.0 642.3 −10.3 6.3
Exp 4 455.0 451.3 3.7 6.3
Exp 5 489.0 480.8 8.2 6.3
Exp 6 698.0 695.3 2.7 6.3
Exp 7 692.0 686.8 5.2 6.3
Exp 8 508.0 501.2 6.8 6.3
Exp 9 632.0 629.2 2.8 6.3
Exp 10 635.0 624.7 10.3 6.3
Exp 11 430.0 433.7 −3.7 6.3
Exp 12 455.0 463.2 −8.2 6.3
Exp 13 675.0 677.7 −2.7 6.3
Exp 14 664.0 669.2 −5.2 6.3

Un test d’hypothèse peut ensuite être réalisé à l’aide de la propostion 7.15
afin de juger si les effets des blocs sont significativement différents ou non. Il
vient :

St. Test Proba.
Hypothèse ”γ1 = γ2” 11.77 0.0140 •◦◦

On constate que l’on peut admettre ici, avec un coefficient de sécurité de
l’ordre de 1% que les effets des deux blocs sont bien différents. Il semble donc
bien y avoir une différence entre les matières premières livrées. Ceci est bien
en accord avec les résultats précédents qui montrent que l’utilisation d’un
modèle à effets de blocs apporte bien un gain de qualité non-négligeable.

Terminons par la recherche du mélange optimal maximisant la réponse
prédite. D’après les résultats obtenus précédemment (voir la figure 7.14) le
modèle ajusté semble prédire une réponse maximale pour un mélange défini
par les proportions suivantes :

x1 = 0.143 , x2 = 0.420 et x3 = 0.437.

La réponse moyenne prédite (arrondie) lorsque le modèle sans bloc est utilisé
est donnée en ce point par (avec son écart-type associé entre parenthèses) :

Ŷmax = 715 (8.98).

Remarquons qu’en dehors d’une lecture directe (souvent peu précise) issue
des représentations graphiques du logiciel il est possible de déterminer cet
extremum à l’aide de la démarche suivante. On peut au préalable réécrire le
modèle ajusté uniquement en fonction de deux proportions non-liées par la
contrainte fondamentale (H1) . En posant ici x3 = 1− x1 − x2 il vient donc :
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Ŷ (x1, x2) = 633.5− 522.5x1 + 207.5x2 + 4108.5x1x2

+399.0x2
1 − 203.0x2

2 − 4438.5x2
1x2 − 4438.5x1x

2
2.

Il ne reste plus maintenant qu’à déterminer le maximum de cette fonction à
deux variables sur le domaine de R

2 défini par :

D =
{
(x1, x2) ∈ R

2 / x1 ≥ 0 , x2 ≥ 0 et x1 + x2 ≤ 1
}

.

Si le maximum cherché est atteint à l’intérieur de ce domaine il annulle donc
les deux dérivées partielles de Ŷ c’est-à-dire qu’il vérifie le système d’équations
suivant :

{
4108.5x1 + 798.0x1 − 8877.0x1x2 − 4438.5x2

2 = 522.5
4108.5x1 − 406.0x2 − 4438.5x2

1 − 8877.0x1x2 = −207.5

Il n’est pas aisé de résoudre un tel système de deux équations à deux incon-
nues à cause des non-linéarités présentes. Ceci est d’autant plus complexe
qu’un modèle polynomial de degré égal à trois a été choisi ici. Divers logiciels
de calcul scientifique permettent cependant d’obtenir une solution approchée
pour ce type de système d’équations. Plusieurs solutions sont proposées ici, il
convient de ne garder que celle qui correspond à une réponse maximale.

Conclusion

Tous les résultats vus précédemment entrâınent les constatations suivantes :

1) Le phénomène étudié ici est correctement modélisé à l’aide d’un modèle
synergique d’ordre trois. Il était bien nécessaire ici d’aller jusqu’au degré trois
puisque l’effet cubique b123 estimé est significativement différent de zéro.

2) La structure en blocs du réseau de Scheffé permet de quantifier l’effet lié
aux deux fournisseurs. Il en ressort que le fournisseur A semble livrer des
produits de meilleure qualité que le fournisseur B.

3) L’ajustement étant effectué au sens des moindres carrés, le modèle prédit
une réponse maximale lorsque le mélange est constitué des proportions suiv-
antes :

Facteur Proportion
Lubrifiant 1 13.8%
Lubrifiant 2 42.1%
Lubrifiant 3 44.1%

Le rendement moyen prédit est alors de :
{

724 si le mélange provient du fournisseur 1,

706 si le mélange provient du fournisseur 2.
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7.9 Résumé

Il a été montré dans ce chapitre que deux grandes classes de plans d’exérience
peuvent être utilisées pour aborder le problème des mélanges :

1) les réseaux de Scheffés de type {m, q} adaptés à l’ajustement d’un modèle
complet d’ordre q,

2) les réseaux de Scheffés centrés de type {m, q}C adaptés à l’ajustement d’un
modèle synergique d’ordre q.

Les tableaux ci-dessous résument les tailles de ces différentes configuations
pour un nombre de composants m variant entre 3 et 10 et un ordre q égal
à 1, 2, 3 (situations classiques) ainsi que 4. Les tailles relatives ne sont pas
précisées car tous ces plans sont saturés par rapport au modèle adapté.

Taille des réseaux de Scheffé de type {m, q} :

q = 1 q = 2 q = 3 q = 4
m = 3 3 6 10 15
m = 4 4 10 20 35
m = 5 5 15 35 70
m = 6 6 21 56 126
m = 7 7 28 84 210
m = 8 8 36 120 330
m = 9 9 45 165 495

m = 10 10 55 220 715

Taille des réseaux de Scheffé centrés de type {m, q}C :

q = 1 q = 2 q = 3 q = 4
m = 3 3 6 7 ×
m = 4 4 10 14 15
m = 5 5 15 25 30
m = 6 6 21 41 56
m = 7 7 28 63 98
m = 8 8 36 92 162
m = 9 9 45 129 255

m = 10 10 55 175 385
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COMPLEMENTS



286
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7.10 (Compléments) Résultats théoriques

7.10.1 Ajustement d’un modèle synergique

La proposition suivante permet de déterminer explicitement les divers estima-
teurs des moindres carrés des paramètres de tout modèle synergique ajusté
à l’aide d’un réseau de Scheffé centré. La démonstration de cette proposi-
tion, relativement longue, n’est pas proposée (elle est réalisable à l’aide d’un
raisonnement par récurrence sur l’ordre du modèle).

Proposition 7.A. Soit un réseau de Scheffé centré de type {m, q}C tel que
les expériences sont répétées r ∈ N

∗ fois et un modèle polynomial synergique
d’ordre q. Un tel plan est constitué par un total de n = r

∑q
i=1 Ci

m expériences
(il est donc saturé lorsque r = 1). En désignant par Δt = {i1, i2, ..., it} un
ensemble de t ≤ q indices distincts de {1, 2, ..., m} les estimateurs des moin-
dres carrés des paramètres du modèle sont donnés par :

b̂Δt =

(

t

t∑

i=1

(−1)t−i
it−1Li (Δt)

)

où Li (Δt) =
∑

Δi⊂Δt

Y Δi.

La notation Y Δi désigne toujours ici la moyenne des r réponses de la forme
Y

(1)
Δi , ..., Y

(r)
Δi .

Remarquons que, par définition des notations standard (voir le paragraphe
7.2.3), la quantité Li (Δt) est la somme de toutes les réponses moyennes con-
stituées par i composants, en égale proportion, de l’ensemble Δt. La somme
intervenant dans la détermination de Li (Δt) porte donc sur un total de Ci

t

réponses moyennes.

Exemple

Déterminons la forme de l’estimateur des moindres carrés b̂12 obtenu
à l’aide d’un réseau de Scheffé centré de type {m, 2}C . En posant ici
Δ2 = {1, 2} il vient :

b̂12 = b̂Δ2 = 2
2∑

i=1

(−1)2−i
iLi (Δ2) = −2L1 (Δ2) + 4L2 (Δ2) .

avec :

L1 (Δ2) =
∑

Δ1⊂Δ2

Y Δi = Y 1 + Y 2 et L2 (Δ2) =
∑

Δ2⊂Δ2

Y Δi = Y 12.

On en déduit que : b̂12 = 4Y 12 − 2
(
Y 1 + Y 2

)
.

Ce résultat était prévisible puisqu’il a déjà été constaté que les réseaux
de Scheffé de type {m, 2}C ou {m, 2} sont identiques.
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Il est aussi possible de connâıtre explicitement la forme de la dispersion de
ces divers estimateurs à l’aide du résultat suivant :

Proposition 7.B. Soit un modèle synergique d’ordre q analysé à l’aide d’un
réseau de Scheffé centré de type {m, q}C tel que les expériences sont répétées
r ∈ N

∗ fois. Les dispersions des divers paramètres estimés sont alors données
explicitement par (avec Δt = {i1, i2, ..., it} un ensemble de t ≤ q indices
distincts de {1, 2, ..., m}) :

Var b̂Δt =
t2

r

(
t∑

i=1

Ci
t i

2(t−1)

)

σ2.

Le tableau suivant résume les dispersions associées aux estimateurs les plus
couramment utilisés lorsqu’il n’y a pas de répétitions (r = 1) :

Δt Var b̂Δt

{i} σ2

{i, j} 24σ2

{i, j, k} 1 188σ2

{i, j, k, l} 118 400σ2

{i, j, k, l, m} 19 660 000σ2

Tout comme au paragraphe 7.4.2, les variances obtenues sont fortement crois-
santes en t (cardinal de Δt). La raison en est toujours la même : il s’agit de
variances de coefficients prémultipliant des monômes du modèle qui prennent
des valeurs d’autant plus faible que t est grand.

Remarque. Au paragraphe 7.6.1 a été présenté un réseau de Scheffé centré
complet de type {m, m}C tel que seulement l’expérience située au centröıde
est répétée rm fois. On vérifie dans ce cas que les différents estimateurs b̂Δt

sont encore obtenus à l’aide de la proposition 7.A. Lorsqu’un nombre de com-
posants inférieur ou égal à (m− 1) est utilisé (i.e. i < m dans Δi) alors Y Δi

est simplement égal à YΔi puisque aucune répétition n’a été effectuée. Par con-
tre lorsque i = m alors Y Δm est bien la moyenne des rm réponses observées
au centröıde du domaine. En généralisant les résultats de la proposition 7.B
on vérifie aussi que la dispersion des estimateurs obtenus est donnée par :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pour t ≤ m− 1 : Var b̂Δt = t2

(
t∑

i=1

Ci
t i

2(t−1)

)

σ2,

Pour t = m : Var b̂Δm = m2

(
m−1∑

i=1

Ci
mi2m−2 +

m2(m−1)

rm

)

σ2.
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Proposition 7.2. Le modèle polynomial d’ordre deux adapté à l’étude
des mélanges, pour m composants, est donné par :

∀ x ∈ E , f (x) =
m∑

i=1

bixi +
∑∑

i<j

bijxixj .

Démonstration. Soit le modèle polynomial classique d’ordre deux :

∀ x ∈ E , f (x) = β0 +
m∑

i=1

βixi +
m∑

i=1

βiix
2
i +

∑∑

i<j

βijxixj .

D’après la relation (H2) il vient
∑m

i=1xi = 1 donc xi = 1−∑
j �=ixj . En tenant

compte de cette hypothèse on peut donc réécrire ce modèle en :

f (x) = β0

(
m∑

i=1

xi

)

+
m∑

i=1

βixi +
m∑

i=1

βiixi

⎛

⎝1−
∑

j �=i

xj

⎞

⎠+
∑∑

i<j

βijxixj

=
m∑

i=1

(β0 + βi)xi +
m∑

i=1

βiixi −
m∑

i=1

βiixi

∑

j �=i

xj +
∑∑

i<j

βijxixj

=
m∑

i=1

(β0 + βi + βii)xi +
∑∑

i<j

(βij − βii − βjj)xixj .

Pour obtenir le modèle proposé il suffit maintenant de poser :

bi = β0 + βi + βii et bij = βij − βii − βjj �

Proposition 7.3. Le modèle polynomial d’ordre trois adapté à l’étude
des mélanges, pour m ≥ 3 composants, est donné par :

∀ x ∈ E , f (x) =
m∑

i=1

bixi +
∑∑

i<j

bijxixj +
∑∑

i<j

δijxixj (xi − xj)

+
∑∑∑

i<j<k

bijkxixjxk

Démonstration. Réalisons ici la démonstration pour m = 3 facteurs (la
démonstration dans le cas général est en tout point identique). Le modèle
classique d’ordre trois est donné par (∀ x = (x1, x2, x3) ∈ E):

f (x) = β0 + β1x1 + β2x2 + β3x3

+β11x
2
1 + β22x

2
2 + β33x

2
3 + β12x1x2 + β13x1x3 + β23x2x3

+β111x
3
1 + β222x

3
2 + β333x

3
3 + β122x1x

2
2 + β112x

2
1x2 + β133x1x

2
3

+β113x
2
1x3 + β233x2x

2
3 + β223x

2
2x3 + β123x1x2x3.
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La technique présentée à la proposition 7.2 permet encore d’éliminer l’effet
moyen général ainsi que les effets quadratiques. Le modèle obtenu devient
(avec ai = β0 + βi + βii et aij = βij − βii − βjj) :

f (x) = a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3

+β111x
3
1+β222x

3
2 + β333x

3
3 +

(
β122x1x

2
2 + β112x

2
1x2

)

+
(
β133x1x

2
3 + β113x

2
1x3

)
+
(
β233x2x

2
3 + β223x

2
2x3

)
+ β123x1x2x3.

On peut supprimer les termes de la forme x3
i en remarquant que :

x1 = 1− x2 − x3 donc x3
1 = x2

1x1 = x2
1 − x2

1x2 − x2
1x3.

Ce raisonnement peut aussi être tenu avec x3
2 et x3

3 et on obtient :

f (x) = a1x1 + a2x2 + a3x3 + a12x1x2 + a13x1x3 + a23x2x3

+β111x
2
1 + β222x

2
2 + β333x

2
3 + (β122 − β222)x1x

2
2 + (β112 − β111)x2

1x2

+ (β133 − β333) x1x
2
3 + (β113 − β111)x2

1x3 + (β233 − β333) x2x
2
3

+ (β223 − β222) x2
2x3 + β123x1x2x3.

Il est possible de supprimer une nouvelle fois les termes en x2
i puisque :

x2
1 = x1x1 = x1 (1− x2 − x3) .

On obtient alors (avec bi = ai + βiii et ãij = aij − βiii − βjjj) :

f (x) = b1x1 + b2x2 + b3x3 + ã12x1x2 + ã13x1x3 + ã23x2x3

+ (β122 − β222)x1x
2
2 + (β112 − β111) x2

1x2 + (β133 − β333)x1x
2
3

+ (β113 − β111)x2
1x3 + (β233 − β333) x2x

2
3 + (β223 − β222)x2

2x3

+β123x1x2x3.

(1)

On peut ramener tous les termes de la forme xix
2
j (i < j) en x2

i xj puisque :

x1x
2
2 = (x1x2)x2 = x1x2 (1− x1 − x3) = x1x2 − x2

1x2 − x1x2x3.

Ceci conduit donc à une expression du modèle sous la forme suivante (avec
a∗

ij = ãij + βijj − βjjj , c∗ij = βiij − βiii − βijj + βjjj et a∗
123 = β123 − β122 +

β222 − β233 + β333 − β133 + β333):

f (x) = b1x1 + b2x2 + b3x3 + a∗
12x1x2 + a∗

13x1x3 + a∗
23x2x3

+c∗12x
2
1x2 + c∗13x

2
1x3 + c∗23x

2
2x3+a∗

123x1x2x3.
(2)

Il est maintenant possible de repartir de l’expression (1) du modèle et de
supprimer cette fois les termes en x2

i xj à partir de la relation :

x2
1x2 = x1 (x1x2) = (1− x2 − x3)x1x2 = x1x2 − x1x

2
2 − x1x2x3.
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Le modèle obtenu est alors (avec a∗∗
ij = ãij + βiij − βiii, c∗ij = βiij − βiii −

βijj + βjjj et a∗∗
123 = β123 − β112 + β111 − β113 + β111 − β223 + β222):

f (x) = b1x1 + b2x2 + b3x3 + a∗∗
12x1x2 + a∗∗

13x1x3 + a∗∗
23x2x3

−c∗12x1x
2
2 − c∗13x1x

2
3 − c∗23x2x

2
3+a∗

123x1x2x3.
(3)

Considérons maintenant le modèle obtenu à partir des deux résultats précé-
dents en évaluant la quantité ((2) + (3)) /2. Il vient :

f (x) = b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3

+δ12x1x2 (x1 − x2) + δ13x1x3 (x1 − x3) + δ23x2x3 (x2 − x3)+
+b123x1x2x3.

avec : bij =
(
a∗

ij + a∗∗
ij

)
/2, δij = c∗ij/2 et b123 = (a∗

123 + a∗∗
123) /2 �

Proposition 7.7. Le nombre d’expériences à réaliser avec un réseau de
Scheffé de type {m, q} est donné par :

n = Cq
m+q−1.

Démonstration. Considérons un point zu (u = 1, ..., n) du réseau de Scheffé
de type {m, q}. D’après la définition 7.6 les coordonnées barycentriques de ce
point ont la forme suivante :

(zu1, zu2, ..., zum) =
(

au1

q
,
au2

q
, ...,

aum

q

)

où au1, au2, ... , aum sont des entiers tels que :

m∑

i=1

aui

q
= 1 ⇔

m∑

i=1

aui = q.

En d’autres termes il existe dans le réseau de Scheffé autant d’expériences qu’il
y a de solutions entières à l’équation ci-dessus. Or ce nombre de solutions
entières est un résultat de dénombrement classique, donné par (se référer
par exemple à l’ouvrage de Comtet [20] et consulter la partie relative aux
combinaisons avec répétitions) :

Kq
m = Cq

m+q−1

Le résultats énoncé est donc bien démontré �

Proposition 7.8. Soit un réseau de Scheffé de type {m, 1} tel que les
expériences sont répétées r ∈ N

∗ fois et un modèle polynomial d’ordre un.
Un tel plan est constitué par un total de n = rm expériences (il est donc
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saturé lorsque r = 1) et les estimateurs des moindres carrés des paramètres
du modèle sont donnés par :

∀ i = 1, ..., m , b̂i = Yi

où Yi désigne la moyenne des r réponses Y
(1)
i , Y

(2)
i , ..., Y

(r)
i obtenues lorsque

le corps pur i est considéré. Tous ces estimateurs sont de plus non-corrélés
et leur dispersion vérifie :

∀ i = 1, ..., m , Var b̂i =
σ2

r
.

Démonstration. Soit un réseau de Scheffé de type {m, 1} tel que chacune
des expériences a été répetée r fois. Un tel plan étant constitué exclusivement
par les m corps purs le modèle statistique s’écrit donc Y = Xb + ε où :

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0
...

...
...

1 0 . . . 0
...

...
...

0 0 . . . 1
...

...
...

0 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎣

b1
...

bm

⎤

⎥
⎦ et Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y
(1)
1
...

Y
(r)
1
...

Y
(1)
m

...
Y

(r)
m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On constate immédiatement que tXX = diag (r, ..., r) = rIm donc ces m
estimateurs sont non-corrélés entre eux et leur dispersion est donnée par :

V

(
b̂
)

= σ2
(
tXX

)−1 =
σ2

r
Im.

Concernant maintenant les estimateurs eux-mêmes, il vient :

b̂ =
(
tXX

)−1 tXY =
1
r

tXY

Or :

tXY =

⎡

⎢
⎢
⎣

Y
(1)
1 + Y

(2)
1 + ... + Y

(r)
1

...
Y

(1)
m + Y

(2)
m + ... + Y

(r)
m

⎤

⎥
⎥
⎦ donc ∀ i = 1, ..., m , b̂i = Yi �

Proposition 7.9. Soit un réseau de Scheffé de type {m, 2} tel que les
expériences sont répétées r ∈ N

∗ fois et un modèle polynomial d’ordre deux.
Un tel plan est constitué par un total de n = rm (m + 1) /2 expériences (il
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est donc saturé lorsque r = 1) et les estimateurs des moindres carrés des
paramètres du modèle sont donnés par :

∀ i, j = 1, ..., m avec i < j,

{
b̂i = Yi,

b̂ij = 4Y ij − 2
(
Yi + Yj

)
.

où Y i (resp. Y ij) désigne la moyenne des r réponses de la forme Y
(1)
1 ,

..., Y
(r)
r (resp. Y

(1)
ij , ..., Y

(r)
ij ). La dispersion de ces estimateurs est de plus

donnée par :

∀ i, j = 1, ..., m avec i 	= j, Var b̂i =
σ2

r
et Var b̂ij =

24σ2

r
.

Démonstration. Effectuons dans un premier temps la démonstration des
résultats énoncés ci-dessus lorsque les expériences ne sont pas répétées (r = 1).
Par définition des réseaux de Scheffé la matrice X ∈ M (n, m (m + 1) /2) du
modèle est alors :

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 1 0 0 . . . 0

1/2 1/2 . . . 0 1/4 0 . . . 0
...

...
...

...
...

...
0 0 . . . 1/2 0 0 . . . 1/4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

La séparation verticale distingue les coefficients des termes bi (à gauche) des
coefficients des termes bij (à droite). L’ordre des colonnes associées aux bij

est l’ordre lexicographique (b12, b13, b14, ..., b(m−1)m). De même, la séparation
horizontale distingue les corps purs (en haut) des mélanges binaires (en bas).
En d’autres termes, le modèle statistique est Y = Xb + ε avec :

X =

[
Im 0
D2 (1/4) Im(m−1)

2

]

, Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y1

...
Ym

Y12

...
Y(m−1)m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1
...
bm

b12
...
b(m−1)m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

où D2 désigne donc la partie de la matrice du plan d’expérience relative aux
mélanges binaires effectués. Déterminons maintenant la forme de la matrice
tXX :

X =

[
Im 0
D2 (1/4) Im(m−1)

2

]

⇒ tXX =

[
Im + tD2D2 (1/4) tD2

(1/4)D2 (1/16) Im(m−1)
2

]

.
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La matrice D2 est, par construction, telle que chacune de ses colonnes contient
(m− 1) fois la valeur 1/2 et le produit scalaire de chaque couple de colonnes
est toujours égal à 1/4. Il en résulte immédiatement que tD2D2 est une matrice
complètement symétrique donnée explicitement par :

tD2D2 =
(m− 2)

4
Im +

1
4
Jm.

On peut donc écrire la matrice tXX sous la forme :

tXX =

[
((m + 2) /4) Im + (1/4)Jm (1/4) tD2

(1/4)D2 (1/16) Im(m−1)
2

]

=
[

A11 A12
tA12 A22

]

.

L’inverse d’une telle matrice peut maintenant être obtenue facilement à l’aide
du lemme 5.B (en l’appliquant non pas à partir du bloc A11 comme énoncé
mais à partir du bloc A22 très facile à manier) :

(
tXX

)−1 =
[

0 0
0 A−1

22

]

+
[

Id
−A−1

22
tA12

]

(sA11)
−1 [

Id −A12A
−1
22

]

où sA11 est le complément de Schur du bloc A11. On a ensuite :

1) A−1
22 = 16Im(m−1)

2
donc A12A

−1
22 = 4tD2 et A−1

22
tA12 = 4D2,

2) sA11 = A11 −A12A
−1
22

tA12 = Im + tD2D2 − tD2D2 = Im.

On en déduit que :

(tXX)−1 =

[
Im −A12A

−1
22

−A−1
22

tA12 A−1
22 + A−1

22
tA12A12A

−1
22

]

=

⎡

⎣
Im −4tD2

−4D2 16
(
Im(m−1)

2
+ D2

tD2

)

⎤

⎦ .

Sachant que les éléments diagonaux de la matrice D2
tD2 sont tous égaux à

1/2 (puisque chacune de ses lignes a pour seuls éléments non nuls deux fois
la valeur 1/2) et que V

(
b̂
)

= σ2 (tXX)−1 ce résultat entrâıne donc que :

∀ i, j = 1, ..., m avec i 	= j, Var b̂i = σ2 et Var b̂ij = 24σ2.

Déterminons maintenant la forme des estimateurs des moindres carrés des
divers paramètres du modèle sachant que b̂ = (tXX)−1 tXY . Posons :

Y =
[

Y (1)

Y (2)

]

et b =
[

b(1)

b(2)

]
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où Y (1) ∈ R
m désigne les réponses observées avec les corps purs, Y (2) ∈

R
m(m−1)/2 les réponses observées avec les mélanges binaires, b(1) ∈ R

m les
effets des corps purs et enfin b(2) ∈ R

m(m−1)/2 les effets des mélanges binaires.
Il vient :

b̂ =
(
tXX

)−1 tXY =
(
tXX

)−1
[

Y (1) + tD2Y
(2)

(1/4)Y (2)

]

.

D’après la forme de la matrice (tXX)−1 on a donc :

b̂ =
(
tXX

)−1 tXY ⇔
{

b̂(1) = Y (1)

b̂(2) = 4Y (2) − 4D2Y
(1)

.

On a donc prouvé que :
{

b̂(1) = Y (1) ⇔ ∀ i = 1, ..., m , b̂i = Yi,

b̂(2) = 4Y (2) − 4D2Y
(1) ⇔ ∀ i, j = 1, ..., m, i 	= j ,̂bij = 4Yij − 2 (Yi + Yj) .

La proposition est bien démontrée dans la cas sans répétition (r = 1). Lorsque
toutes les expériences sont répétées r ∈ N

∗ fois il suffit de noter que la matrice
du modèle, notée Xr, est simplement obtenue en répétant r fois chacune des
lignes de la matrice X utilisée ici. Il en résulte que tXrXr = rtXX , le cas
avec répétitions des expériences se déduit donc facilement de la démonstration
précédente �

Proposition 7.13. Soit un plan d’expérience pour mélanges D adapté au
modèle linéaire choisi. Le plan d’expérience D′ constitué des b blocs D1, ...,Db

obtenus à la suite de b réplications du plan initial (i.e. ∀ l = 1, ..., b, Dl = D)
est alors bloqué orthogonalement.

Démonstration. Désignons par X0 ∈ M (k, p) la matrice du modèle choisi,
relativement au plan d’expérience initial D (constitué par k expériences).
Lorsque ce plan est répliqué b fois la matrice du modèle est alors donnée,
dans le cas sans bloc, par X ∈ M (n, p) avec n = bk et :

tX =
[

tX0
tX0 ... tX0

]
.

En notant le vecteur des réponses tY =
(

tY (1) tY (2) ... tY (b)
)

où Y (i) ∈
R

k contient les réponses observées lors de la i-ème réplication du plan (1 ≤
i ≤ b) on en déduit que les équations normales sont données dans le cas sans
bloc par :

(
tXX

)
b̂ = tXY ⇔ (

tX0X0

)
b̂ =

1
b

b∑

i=1

tX0Y
(i). (1)
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Considérons maintenant le modèle à effets de blocs. Comme b effets de blocs
γ1, ..., γb ont été introduits le modèle peut être maintenant écrit :

Y =
[
B X

]
(

γ
b

)

+ ε avec B =

⎡

⎢
⎢
⎢
⎣

Ik 0 ... 0
0 Ik ... 0
...

...
...

0 0 ... Ik

⎤

⎥
⎥
⎥
⎦

où γ ∈ R
b est le vecteur des effets de blocs. On a déjà constaté qu’un tel

modèle est toujours singulier. Utilisons donc la contrainte (C) afin de le rendre
régulier :

b∑

i=1

γi = 0 ⇔ γb = −
b−1∑

i=1

γi.

Il est possible de tenir compte de la contrainte (C) en supprimant à l’aide de
cette dernière relation la colonne de la matrice B associée à l’effet de bloc γb.
Après une telle transformation le modèle devient :

Y =
[
B∗ X

]
(

γ∗

b

)

+ ε avec B∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ik 0 ... 0
0 Ik ... 0
...

...
...

0 0 ... Ik

−Ik −Ik ... −Ik

⎤

⎥
⎥
⎥
⎥
⎥
⎦

où B∗ ∈M (n, b− 1) (la matrice B∗ est parfois qualifiée de matrice ”centrée”)
et tγ∗ = (γ1, ..., γb−1) . Remarquons alors que :

[
tB∗
tX

]
[
B∗ X

]
=
[

tB∗B∗ tB∗X
tXB∗ tXX

]

=
[

kI(b−1) + kJ(b−1) 0
0 btX0X0

]

.

Les équations normales du modèle à effets de blocs sont donc :
[

kI(b−1) + kJ(b−1) 0
0 btX0X0

](
γ̂∗

b̂

)

=
[

tB∗Y
tXY

]

. (2)

On constate bien que l’estimateur des moindres carrés b̂ des paramètres du
modèle est le même dans les équations (1) et (2). La configuration proposée
est donc bien bloquée orthogonalement �

Proposition 7.14. Soit un plan d’expérience pour mélanges D, constitué par
k expériences, adapté au modèle linéaire choisi. Pour le plan d’expérience
bloqué orthogonalement D′ constitué des b blocs D1, ...,Db obtenus à la suite
de b réplications du plan initial (i.e. ∀ l = 1, ..., b , Dl = D) les estimateurs
des moindres carrés des effets des blocs sont donnés par :
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∀ l = 1, ..., b , γ̂l = Y Bl − Y .

Concernant la dispersion de ces estimateurs il vient :

∀ l = 1, ..., b , Var γ̂l = σ2

(
b− 1
bk

)

.

Démonstration. Utilisons les résultats déjà obtenus lors de la démonstration
de la proposition 7.13. Les équations normales ont alors été déterminées et
d’après la structure en blocs orthogonaux on a pour l’estimation des effets des
blocs :

k
(
I(b−1) + J(b−1)

)
γ̂∗ = tB∗Y

avec toujours B∗ ∈ M (n, b− 1) matrice ”centrée”, k la taille de chacun des
blocs et tγ∗ = (γ1, ..., γb−1) . D’après le lemme 5.A relatif à l’inversion des
matrices complètement symétriques il vient :

(
I(b−1) + J(b−1)

)−1 = I(b−1) − 1
b
J(b−1).

Il en découle dans un premier temps que :

V (γ̂∗) =
σ2

k

(

I(b−1) − 1
b
J(b−1)

)

.

Les variances des estimateurs γ̂i pour i = 1, ..., b− 1 sont donc bien égales à
σ2/k (1− 1/b) . Concernant maintenant les estimateurs eux-mêmes il vient :

γ̂∗ =
1
k

(

I(b−1) − 1
b
J(b−1)

)
tB∗Y

Déterminons alors la forme de γ̂i (i = 1, ..., b− 1). Il vient :

tB∗ =

⎡

⎢
⎣

t
Ik 0 . . . 0 −t

Ik

...
...

...
...

0 0 . . . t
Ik −t

Ik

⎤

⎥
⎦ donc tB∗Y =

⎡

⎢
⎣

t
IkY (1) − t

IkY (b)

...
t
IkY (b−1) − t

IkY (b)

⎤

⎥
⎦ .

où Y (i) ∈ R
k contient les réponses observées lors de la i-ème réplication du

plan (1 ≤ i ≤ b). Il en découle que :

γ̂i =
1
k

[

t
IkY (i) − t

IkY (b) − 1
b

b−1∑

i=1

(
t
IkY (i) − t

IkY (b)
)
]

.

Or, t
IkY (i) = kY Bi donc :

γ̂i = Y Bi − Y Bb − 1
b

b−1∑

i=1

(
Y Bi − Y Bb

)

= Y Bi − Y Bb − 1
b

b−1∑

i=1

Y Bi −
(

b− 1
b

)

Y Bb

= Y Bi − 1
b

b∑

i=1

Y Bi = Y Bi − Y .
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Concernant maintenant la valeur γ̂b on pose, d’après la contrainte (C) :

γ̂b = −
b−1∑

i=1

γ̂i.

On montre sans difficulté que ceci entrâıne que γ̂b vérifie lui aussi les diverses
relations proposées précedemment pour les termes γ̂i avec i = 1, ..., b− 1 �

Proposition 7.15. Soit un plan d’expérience pour mélanges D, constitué par
k expériences, adapté au modèle linéaire choisi. Pour le plan d’expérience
bloqué orthogonalement D′ constitué des b blocs D1, ...,Db obtenus à la suite
de b réplications du plan initial (i.e. ∀ l = 1, ..., b , Dl = D) un test de
l’hypothèse d’égalité des effets de blocs H0 : ”γi = γj” pour i, j = 1, ..., b
avec i 	= j contre l’hypothèse H1 = H0 peut être réalisé à l’aide de la statis-
tique :

T =
k (γ̂i − γ̂j)

2

2σ̂2

où σ̂2 = SSE/ (n− p) = MSE. La règle de décision est alors donnée par
(avec fα,1,n−p fractile de la loi de Fisher à 1 et (n− p) ddl) :

on rejette H0 au niveau α si t ≥ fα,1,n−p.

Démonstration. Utilisons ici les résultats généraux du paragraphe 6.2.5 re-
latifs aux hypothèse de la forme ”Aβ = a”. Sous la contrainte (C) du para-
graphe 7.7.2 la matrice du modèle considéré est X∗ = [B∗ | X ] (avec B∗

matrice ”centrée” construite selon la démonstration de la proposition 7.13)
et donc l’hypothèse H0 considérée ici a bien cette forme générale avec a = 0,
tβ = (tγ∗ | tb) et enfin A matrice à une seule ligne avec pour seuls éléments
non nuls A1i = 1 et A1j = −1. On vérifie aisément que cette hypothèse est
bien vérifiable (car KerX∗ = {0}). Il en découle que l’hypothèse H0 peut être
testée à l’aide de la statistique suivante :

T =
t
(
Aβ̂ − a

) [
A (tX∗X∗)−1 tA

]−1 (
Aβ̂ − a

)

rσ̂2

=
tβ̂tA

[
A (tX∗X∗)−1 tA

]−1

Aβ̂

σ̂2

puisque r = rg (A) = 1. Or Aβ̂ = γ̂i − γ̂j donc :

T =
(γ̂i − γ̂j)

2

σ̂2

[
A
(

tX∗X∗)−1 tA
]−1

.

L’inverse de la matrice tX∗X∗ est connue explicitement (voir la démonstration
de la proposition 7.14) et donc :
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A
(
tX∗X∗)−1 tA =

1
k

[

2
(

b− 1
b

)

− 2
(−1

b

)]

=
2
k
.

Ceci démontre bien le résultat énoncé pour tout couple d’effets de blocs de
γ∗. On étend sans difficulté ce résultat lorsque l’effet γb du dernier bloc est
utilisé dans l’hypothèse �



Partie III

Plans d’expérience pour facteurs qualitatifs
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Plans d’expérience pour facteurs qualitatifs

8.1 Introduction

Les plans présentés dans les chapitres précédents utilisent des facteurs quan-
titatifs c’est-à-dire directement mesurables à l’aide d’une grandeur physique
(température, masse, concentration, etc...). L’objet de ce chapitre est de
s’intéresser maintenant aux problèmes faisant intervenir des facteurs qual-
itatifs donc non directement quantifiables (couleur d’une peinture, variété de
blé, catégorie socio-professionelle, sexe, etc...). Le type de plan d’expérience
mis en œuvre dans un tel contexte est fondamentalement différent des diverses
configurations étudiées jusqu’à présent.

Le modèle principal de ce chapitre est le modèle additif classique. Divers
plans d’expérience adaptés à l’analyse de ce modèle sont présentés : plans
factoriels complets, plans fractionnaires obtenus à l’aide de la généralisation
de la notion de fraction régulière, tables de Taguchi, etc... L’objectif principal
est, une nouvelle fois, d’obtenir des plans d’expérience de petite taille d’analyse
la plus simple possible. Ce dernier point entrâıne la définition naturelle de la
notion d’orthogonalité d’un plan d’expérience pour facteurs qualitatifs.

Ce chapitre est structuré de la manière suivante. Une première partie est
consacrée à des généralités pour l’utilisation de facteurs qualitatifs telles que la
notion de codage, de contrainte d’identification ou bien encore d’orthogonalité
d’un plan d’expérience. Le modèle additif est ensuite présenté ainsi que les
contraintes d’identification qui lui sont associées. Les plans d’expérience facto-
riels complets sont ensuite définis et analysés. La généralisation de la théorie
des fraction régulières au cas des plans pour facteurs qualitatifs est introduite
dans la section suivante. Enfin, divers cas plus généraux sont étudiés (nombre
de modalités des facteurs différents, non-premiers, etc...) et le modèle à effets
d’interactions est présenté brièvement. Un exemple d’application, illustré par
des codes SAS, est proposé en conclusion.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 8,
c© Springer-Verlag Berlin Heidelberg 2010
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8.2 Généralités

8.2.1 Codage des facteurs qualitatifs

Considérons ici un phénomène aléatoire dépendant de m facteurs qualitatifs et
supposons que le facteur i (i = 1, ..., m) peut prendre hi niveaux différents. On
dit alors que ce facteur a hi modalités. Afin de pouvoir uniformiser le traite-
ment mathématique des expériences réalisées il est nécessaire d’avoir recours
à un codage pour chacune des modalités utilisées. Deux techniques, présentées
ci-dessous, sont retenues tout au long de cet ouvrage afin d’atteindre cet ob-
jectif.

1) Codage naturel. Afin de quantifier chacune des modalités il est na-
turel d’affecter chacune d’elle à un entier naturel. Lorsque hi modalités sont
présentes on peut les coder à l’aide de l’ensemble {0, 1, 2, ..., hi − 1} . Il n’y a
pas de façon unique pour réaliser un tel codage, il convient donc de choisir
arbitrairement quelle modalité est affectée à chacun des entiers de l’ensemble
précédent (le nombre total de choix possibles est donc égal à hi!).

2) Codage binaire. Le codage naturel est très pratique pour décrire de façon
simple et précise un plan d’expérience. Il s’avére cependant plus problématique
dans une optique de modélisation. En effet, chacune des modalités est alors
affectée à un entier naturel plus ou moins grand et ceci de façon tout à fait
arbitraire (dans l’exemple donné à la suite la couleur rouge est affectée à une
valeur ”deux fois plus grande” que la couleur blanche ce qui, bien entendu, n’a
pas de sens concret). Afin de pallier cet inconvénient et de pouvoir comparer
les effets des différentes modalités entre elles il est alors classique d’utiliser un
codage binaire : la valeur 1 est affectée à la modalité lorsqu’elle est présente
dans l’expérience considérée, la valeur 0 lui est affectée sinon. Ceci conduit
donc à résumer toutes les expériences effectuées dans un tableau contenant
uniquement les valeurs 0 et 1 appelé matrice des indicatrices des modalités
(on parle aussi de tableau disjonctif).

Exemple

Une étude médicale est menée afin de mesurer l’impact psychologique
de la couleur d’un médicament sur l’amélioration de la santé du
malade. Deux facteurs qualitatifs sont étudiés : la couleur du médica-
ment avec les modalités dans l’ensemble {blanc, bleu, rouge} (h1 = 3)
et le sexe du patient avec les modalités cette fois dans l’ensemble
{homme, femme} (h2 = 2). Les trois premières expériences sont
réalisées de la manière suivante :

Couleur Sexe
Expérience 1 blanc homme
Expérience 2 blanc femme
Expérience 3 rouge femme



8.2 Généralités 305

Un codage naturel peut être, par exemple, le suivant :

blanc (0) homme (0)
bleu (1) femme (1)
rouge (2)

Les trois expériences réalisées sont alors associées à la matrice du plan
d’expérience ci-dessous (la première colonne étant celle des modalités
de la couleur et la seconde celle des modalités du sexe) :

D =

⎡

⎣
0 0
0 1
2 1

⎤

⎦ .

Dans l’optique d’un codage binaire les expériences réalisées sont
représentées à l’aide de la matrice des indicatrices des modalités. Cette
matrice a toujours 3 lignes (pour les trois expériences) mais main-
tenant autant de colonnes que de modalités c’est-à-dire 5 au total. La
matrice du plan d’expérience est donnée ci-dessous, en affectant les
colonnes aux indicatrices des modalités suivantes (de gauche à droite)
: blanc, bleu, rouge, homme et femme.

D =
[
X1 X2

]
=

⎡

⎣
1 0 0 1 0
1 0 0 0 1
0 0 1 0 1

⎤

⎦ .

Les sous-matrices X1 et X2 sont les matrices d’indicatrices des modalités
des facteurs 1 et 2.

Remarque. Il existe des ouvrages et des logiciels où les hi modalités du fac-
teur i sont codées naturellement à l’aide de l’ensemble {1, 2, 3, ..., hi} (i.e. le
niveau zéro n’est pas utilisé). On considère cependant ici l’ensemble de la
forme {0, 1, 2, ..., hi − 1} car, comme il sera montré par la suite, il peut être
identifié au groupe Z/hiZ lorsqu’il est muni de la loi d’addition modulo hi.
Dans le cas particulier où seulement deux modalités interviennent alors les
groupes ({0, 1} , +) et ({−1, 1} ,×) sont isomorphes. Ceci justifie l’utilisation
alternative des niveaux −1 et +1 pour coder les modalités (dans le cas quali-
tatif) ou les niveaux extrêmes (dans le cas quantitatif) d’un tel facteur comme
cela a déjà été fait, par exemple, avec les plans factoriels à deux niveaux.

8.2.2 Notation standard des réponses

Dans le cas de m facteurs qualitatifs toute expérience peut être repérée
par un vecteur de N

m contenant les divers codages naturels associés aux
modalités utilisées. Plus précisemment le vecteur en question est élément
du domaine expérimental E = {0, 1, 2, ..., h1 − 1} × {0, 1, 2, ..., h2 − 1} × ... ×
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{0, 1, 2, ..., hm − 1}. Lorsque i1, i2,..., im désignent les m codages naturels des
modalités de l’expérience réalisée, la réponse mesurée est alors notée :

Y (i1, i2, ..., im) ou bien Yi1i2...im.

Si la seconde notation abrégée est utilisée on prendra garde à ne pas la con-
fondre avec la notation standard pour les réponses d’un plan pour mélanges
(voir le paragraphe 7.2.3). Lorsque r répétitions sont réalisées on distinguera
encore les différentes réponses mesurées à l’aide des valeurs (1) , (2) ,...,(r)
placées en exposant de Y . Remarquons qu’un plan d’expérience D va être à
présent identifié à un sous-ensemble du domaine expérimental E . L’ensemble
I désignant tous les indices utilisés par le plan considéré on note alors :

D = {(i1, i2, ..., im) ∈ I / I ⊂ E} .

Si l’expérience repérée par le vecteur (i1, i2, ..., im) est répétée r > 1 fois on le
signifiera dans l’ensemble D en la notant (i1, i2, ..., im)r

.

Exemple

En reprenant l’exemple de la section précédente, les diverses réponses
mesurées sont repérées ici par :

Couleur Sexe Réponse
Exp. 1 blanc (0) homme (0) Y (0, 0) ou Y00

Exp. 2 blanc (0) femme (1) Y (0, 1) ou Y01

Exp. 3 rouge (2) femme (1) Y (2, 1) ou Y21

Le plan d’expérience est : D = {(0, 0), (0, 1), (2, 1)}. Si la première
expérience a été réalisée deux fois alors l’ensemble I = {(0, 0), (0, 1),
(2, 1)} est toujours le même (i.e. aucune nouvelle expérience n’a été
réalisée) mais le plan d’expérience est maintenant : D = {(0, 0)2, (0, 1),
(2, 1)}.

8.2.3 Matrice d’incidence

Introduisons ici la notion de matrice d’incidence issue du croisement des
deux facteurs qualitatifs i et j (i, j = 1, ..., m avec i < j ). Une telle matrice,
notée Nij , est définie par :

Nij = tXiXj

où Xi est la matrice des indicatrices des modalités du facteur i. On désigne
dans la suite par λij (l, c) le terme général de la matrice Nij ∈M (hi, hj) situé
à l’intersection de la ligne l et de la colonne c. Voici alors un certain nombre
de propriétés, immédiates à démontrer, pour toute matrice d’incidence :

1) l’entier naturel λij (l, c) représente le nombre de fois où la l-ième modalité
du facteur i et la c-ième modalité du facteur j apparaissent simultanément
dans le plan d’expérience utilisé,
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2) la somme de tous les éléments de la matrice Nij donne le nombre
d’expériences :

n =
hi∑

l=1

hj∑

c=1

λij (l, c) ,

3) les sommes marginales (i.e. par ligne et par colonne) donnent les nombres
d’apparitions de chacunes des modalités des facteurs du plan utilisé. Si ri (l)
est le nombre d’occurences de la modalité l du facteur i alors :

ri (l) =
hj∑

c=1

λij (l, c) et rj (c) =
hi∑

l=1

λij (l, c) .

Remarque. On note aussi, de manière plus condensée :

n = λij (•, •) et ri (l) = λij (l, •) , rj (c) = λij (•, c) .

Chaque point indique une sommation à réaliser par rapport à l’indice corre-
spondant.

Exemple

Reprenons l’exemple du paragraphe précédent. En considérant que le
premier facteur est la couleur et le second est le sexe il vient alors :

N12 =

⎡

⎣
1 1
0 0
0 1

⎤

⎦

On en déduit que les seuls éléments non-nuls sont :

λ12 (1, 1) = λ12 (1, 2) = λ12 (3, 2) = 1.

Ceci montre bien que, par exemple, la troisième modalité du facteur un
et la seconde modalité du facteur deux (i.e. comprimé rouge et patient
femme) apparaissent simultanément une seule fois dans le protocole
expérimental (il s’agit bien de la troisième expérience). Concernant
maintenant les marges du tableau N12 il vient :

1 1 r1 (1) = 2
N12 0 0 r1 (2) = 0

0 1 r1 (3) = 1
r2 (1) = 1 r2 (2) = 2 n = 3

Ceci montre, par exemple, que r2 (2) = 2 individus de sexe féminin
ont participé à l’expérimentation.
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8.2.4 Modèle additif

Considérons ici un modèle très souvent utilisé lorsque m facteurs qualitat-
ifs avec respectivement h1, h2, ..., hm modalités interviennent. Un tel modèle
postule que les effets des différents facteurs s’ajoutent les uns aux autres
de manière indépendante. Ce modèle statistique peut toujours être écrit
mathématiquement sous la forme générale Y (x) = f (x) + ε (x) avec ici
x = (i1, i2, ..., im) ∈ E vecteur associé aux différents codages naturels de
l’expérience réalisée (voir le paragraphe 8.2.2). On dit que l’on utilise un
modèle additif si et seulement si :

f(i1, i2, ..., im) = β0 + β
[i1]
1 + β

[i2]
2 + ... + β

[im]
m .

On peut encore écrire ce modèle sous la forme complète donnée ci-dessous :

f(i1, i2, ..., im) = β0+
h1−1∑

j1=0

β
[j1]
1 δi1j1+

h2−1∑

j2=0

β
[j2]
2 δi2j2+...+

hm−1∑

jm=0

β
[jm]
m δimjm

où δij est le symbole de Kronecker (i.e. δij = 1 si i = j, δij = 0 sinon). Pour
un tel modèle on dit aussi que (avec j = 1, ..., m et i = 0, ..., hj − 1) :

{
β0 (i.e. la constante) est l’effet moyen général,

β
[i]
j est l’effet de la modalité i du facteur j.

Le nombre total de paramètres (noté p∗ pour le distinguer du nombre de
paramètres inconnus à estimer p ≤ p∗) de ce modèle est donné par :

p∗ = 1 +
m∑

i=1

hi.

Notons enfin que matriciellement l’écriture du modèle additif est Y = Xβ + ε
avec :

X =
[
In D

]
=
[
In X1 ... Xm

]

où Xi (i = 1, ..., m) est la matrice des indicatrices des modalités du facteur i.
Le vecteur β ∈ R

p∗
contient tous les paramètres du modèle, il peut naturelle-

ment être partitionné en :

tβ = t
(
β0

tβ1 ... tβm

)

où le vecteur βi ∈ R
hi (i = 1, ..., m) regroupe tous les effets relatifs au fac-

teur i (attention à ne pas confondre le vecteur des effets des modalités βi

pour facteurs qualitatifs et le réel βi traduisant l’effet linéaire d’un facteur
quantitatif).
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Exemple

Toujours pour l’exemple utilisé depuis le début de ce chapitre, le
modèle additif est donné par la relation :

f (i1, i2) = β0 +
2∑

j1=0

β
[j1]
1 δi1j1 +

1∑

j2=0

β
[j2]
2 δi2j2 = β0 + β

[i1]
1 + β

[i2]
2

avec (i1, i2) ∈ E = {0, 1, 2} × {0, 1}, β
[i1]
1 étant l’effet de la couleur i1

sur la réponse et β
[i2]
2 l’effet du sexe i2 sur la réponse. Matricellement

il vient donc:

X =

⎡

⎣
1 1 0 0 1 0
1 1 0 0 0 1
1 0 0 1 0 1

⎤

⎦ , β =

⎛

⎝
β0

β1

β2

⎞

⎠ , β1 =

⎛

⎜
⎝

β
[0]
1

β
[1]
1

β
[2]
1

⎞

⎟
⎠ , β2 =

(
β
[0]
2

β
[1]
2

)

.

8.2.5 Contraintes d’identification

Il sera prouvé par la suite que l’utilisation de facteurs qualitatifs entrâıne
automatiquement une surparamétrisation des modèles utilisés. En d’autres
termes la matrice du modèle X ∈ M (n, p∗) n’est jamais de plein rang.
Il en résulte que sous cette forme les équations normales n’admettent pas
une unique solution. Plusieurs techniques sont utilisables afin de rendre un
tel modèle régulier. L’une d’elle consiste tout simplement à supprimer des
modalités (c’est-à-dire des colonnes de la matrice du modèle) jusqu’à ce que
X soit de plein rang (tout comme au chapitre 6 où l’introduction d’effets de
blocs a été faite tout en supprimant l’effet moyen général β0). On s’oriente
plutôt dans ce chapitre vers des contraintes d’identifications identiques à celles
déjà utilisées avec les plans pour mélanges en blocs. Considérons alors, de
manière générale, un modèle statistique surparamétré sous la forme matricielle
Y = Xβ+ε avec donc X ∈M (n, p∗) telle que rg (X) < p∗. Afin de rendre un
tel modèle régulier on impose w contraintes linéaires supplémentaires données
matriciellement par :

Cβ = 0 avec C ∈ M (w, p∗) .

On dit qu’il s’agit de contraintes d’identification (on parle aussi de con-
traintes d’identification minimales) pour β dès lors que :

KerC ⊕KerX = R
p∗

où ⊕ désigne classiquement l’opérateur de somme directe de deux sous-espaces
vectoriels. On montre ensuite (voir par exemple l’ouvrage de Searle [88]) que
l’unique estimateur des moindres carrés de β sous cette contrainte est solution
du système d’équations normales suivant :

(S) ,

{
tXXβ̂ = tXY

Cβ̂ = 0
.
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8.2.6 Application au modèle additif

Il a déjà été montré que la matrice du modèle additif est :

X =
[
In X1 ... Xm

]

avec Xi (i = 1, ..., m) matrice des indicatrices des modalités du facteur i.
Il en résulte immédiatement qu’un tel modèle est toujours surparamétré
puisque la somme des colonnes de chacune des matrices d’indicatrices Xi est
égale à In. Donc, quel que soit le plan d’expérience mis en oeuvre, le rang
de la matrice X est toujours inférieur à (p∗ −m) puisqu’il existe autant de
groupes de colonnes liées par la relation présentée ci-dessus que de matrices
d’indicatrices Xi. On supposera toujours par la suite que l’on utilise un plan
d’expérience tel que la matrice du modèle X ne présente aucun autre lien
entre ses colonnes, donc :

rg (X) = p∗ −m.

Déterminons maintenant des contraintes d’identification permettant de rendre
ce modèle régulier. Une solution classique consiste à utiliser m contraintes
linéaires telles que Cβ = 0 avec C ∈M (m, p∗) donnée par :

C =

⎡

⎢
⎢
⎢
⎣

0 t
Ih1

t0h2 ... t0hm

0 t0h1
t
Ih2 ... t0hm

...
...

...
...

0 t0h1
t0h2 ... t

Ihm

⎤

⎥
⎥
⎥
⎦

On vérifie alors sans difficulté que KerC ⊕ KerX = R
p∗

, d’où le résultat
suivant :

Proposition 8.1. Une contrainte d’identification pour le vecteur β des
paramètres du modèle additif à m facteurs consiste à imposer à chaque sous-
vecteur βi (i = 1, ..., m) des effets du facteur i d’être un contraste de R

hi ,
c’est-à-dire que :

∀ i = 1, ..., m ,
hi−1∑

j=0

β
[j]
i = 0

Ces contraintes seront dites contraintes d’identification classiques. Il en
résulte que le nombre de paramètres inconnus du modèle est alors :

p = p∗ −m = 1 +
m∑

i=1

(hi − 1) .

On dit parfois, concernant le nombre de paramètres à estimer, qu’un facteur
à hi modalités est associé à (hi − 1) degrés de liberté. La somme de tous
les degrés de liberté (avec la constante β0 associée à un ddl) donne ainsi la
valeur de p. Attention à ne pas confondre le nombre total de paramètres p∗

du modèle utilisé avec le nombre p < p∗ de paramètres du modèle régulier
sous la contrainte Cβ = 0.
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8.2.7 Plan d’expérience orthogonal

L’étude des plans d’expérience pour facteurs quantitatifs a montré qu’un ob-
jectif naturel est la recherche de configurations les plus simples possibles (au
sens des équations normales) c’est-à-dire telles que la matrice tXX soit diago-
nale. De tels plans d’expérience ont été qualifiés d’orthogonaux. Le problème
est exactement le même ici mais la forme particulière de la matrice du modèle
entrâıne qu’il est impossible d’atteindre un tel objectif (principalement à cause
du fait que X est une matrice d’indicatrices donc tous ses éléments sont posi-
tifs ou nuls). Afin d’obtenir cependant la matrice tXX la plus simple possible
il est possible de s’orienter vers la notion d’orthogonalité définie de la manière
suivante.

Définition 8.2. Deux facteurs qualitatifs utilisés dans un plan d’expérience
sont orthogonaux si et seulement si tous les couples de modalités de ces fac-
teurs apparaissent un même nombre de fois dans le plan d’expérience. Un
plan d’expérience à m facteurs qualitatifs est dit orthogonal si et seulement
si tous les facteurs sont orthogonaux deux-à-deux.

D’après les résultats du paragraphe 8.2.3 relatifs à l’interprétation des ma-
trices d’incidence il est posible de donner une définition équivalente de
l’orthogonalité :

Corollaire 8.3. Un plan d’expérience à m facteurs qualitatifs est orthogo-
nal si et seulement si chacune des matrices d’incidence vérifie :

∀ i, j = 1, ..., m avec i 	= j , Nij = tXiXj = λijJhihj

avec donc λij ∈ N nombre de fois où chacune des modalités des facteurs
i et j apparaissent simultanément dans le plan et Jq1q2 = Iq1

t
Iq2 matrice

constituée par l’unique valeur 1. Le plan d’expérience sera de plus qualifié
d’uniformément orthogonal si et seulement si :

∀ i, j = 1, ..., m avec i 	= j , Nij = tXiXj = λJhihj .

Ce corollaire montre bien que l’objectif de simplification des équations nor-
males est atteint puisque les diverses matrices d’incidences (intervenant dans
l’écriture de tXX) ont donc ici la forme la plus simple possible.
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8.2.8 Propriétés des plans orthogonaux

Détaillons ici les principales propriétés d’un plan d’expérience orthogonal. En
appliquant directement les résultats énoncés au paragraphe 8.2.3 dans le cas
particulier des plans orthogonaux il vient :

Proposition 8.4. Soit un plan d’expérience orthogonal pour m facteurs
qualitatifs à h1, ..., hm modalités.

1) La somme de tous les termes de Nij entrâıne que :

∀ i, j = 1, ..., m avec i 	= j , n = hihjλij .

Il en découle que lorsque le plan est orthogonal le nombre d’expérience doit
forcément être un multiple de tous les produits de la forme hihj . Le nombre
d’expérience d’un plan orthogonal vérifie donc :

n ≥ PPCM (hihj / i, j = 1, ..., m avec i 	= j) .

2) La somme des termes de Nij par ligne (ou par colonne) entrâıne que les
nombres d’occurences de chacune des modalités du facteur i sont constantes
données par :

∀ i = 1, ..., m , ri = hjλij =
n

hi
.

Remarquons que, puisque Xi est par définition la matrice des indicatrices
des modalités du facteur i, la proposition 8.4 entrâıne aussi les relations ma-
tricielles suivantes (∀ i, j = 1, ..., m avec i 	= j) :

tXiXi = riIhi = hjλijIhi et t
InXi = ri

t
Ihi = hjλij

t
Ihi .

Comme X =
[
In X1 ... Xm

]
il en découle la forme générale simplifiée donnée

ci-dessous concernant la matrice tXX relative à tout plan d’expérience or-
thogonal :

tXX =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n r1
t
Ih1 r2

t
Ih2 . . . rm

t
Ihm

r1Ih1 r1Ih1 λ12Jh1h2 . . . λ1mJh1hm

r2Ih2 λ12Jh2h1 r2Ih2 . . . λ2mJh2hm

...
...

...
...

rmIhm λ1mJhmh1 λ2mJhmh2 . . . rmIhm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

On vérifie ensuite que le fait de tenir compte des contraintes d’identification
classiques transforme tXX en une matrice diagonale par blocs facilement in-
versible. Ceci entrâıne le résultat principal ci-dessous concernant l’estimation
des paramètres du modèle. La notation classique Y est utilisée pour désigner
la moyenne générale relative à toutes les réponses observées et on pose :
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⎧
⎨

⎩

Y
[j]
i : somme des réponses où seule la modalité j du facteur i intervient,

Y
[j]

i : moyenne des réponses où seule la modalité j du facteur i intervient.

Remarquons que lorsque le plan est orthogonal la somme Y
[j]
i est constituée

par ri éléments.

Proposition 8.5. [�] Soit un plan d’expérience orthogonal pour m facteurs
qualitatifs à h1, ..., hm modalités, analysé à l’aide du modèle additif. Les es-
timateurs des moindres carrés de l’effet moyen général β0 ainsi que de
chacun des paramètres β

[j]
i (∀ i = 1, ..., m et ∀ j = 0, ..., hi − 1) sont donnés

par :
β̂0 = Y et β̂

[j]
i = Y

[j]

i − Y .

Concernant la dispersion de ces estimateurs il vient :

Var β̂0 =
σ2

n
et Var β̂

[j]
i =

σ2

n
(hi − 1) .

Lorsque le nombre de facteurs étudiés est faible on utilise parfois les no-
tations simplifiées ci-dessous (ici pour deux facteurs qualitatifs ayant 2 et 3
modalités) :

{
β̂
[0]
1 = Y 0• − Y , β̂

[1]
1 = Y 1• − Y ,

β̂
[0]
2 = Y •0 − Y , β̂

[1]
2 = Y •1 − Y , β̂

[2]
2 = Y •2 − Y .

Le résultat général de la proposition 8.5 permet maintenant d’obtenir facile-
ment les diverses réponses (moyennes) prédites par le modèle puisque la
réponse prédite au point x = (i1, i2, ..., im) ∈ E associé aux codages naturels
i1, ..., im est donnée par :

Ŷ (x) = β̂0 + β̂
[i1]
1 + β̂

[i2]
2 + ... + β̂[im]

m .

Pour quantifier la qualité des diverses prédictions il vient :

Proposition 8.6. [�] Soit un plan d’expérience orthogonal pour m fac-
teurs qualitatifs à h1, ..., hm modalités, analysé à l’aide du modèle additif. La
dispersion de la réponse prédite au point x = (i1, i2, ..., im) ∈ E est :

Var Ŷ (x) =
σ2

n

(

1 +
m∑

i=1

(hi − 1)

)

.

8.2.9 Analyse de la variance

Un modèle pour facteurs qualitatifs ayant été ajusté, le problème de la qualité
de l’ajustement réalisé se pose naturellement. Les techniques d’analyse de
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la variance présentées dans le chapitre 2 sont toujours utilisables puisque
l’analyse de la variance est basée sur des décompositions adéquates de réponses
numériques (toujours considérées ici). Il en résulte que toutes les techniques
utilisées précédemment (y compris la décomposition plus fine de la somme des
carrés due à l’erreur à l’aide d’expériences répétées) restent valables.

8.3 Plans factoriels complets

8.3.1 Définition

Généralisons ici la notion de plan d’expérience factoriel complet déjà vue
au chapitre 3 dans le cas de facteurs quantitatifs ramenés à deux niveaux
(codés alors par ±1). Dans ce cas un plan factoriel complet était défini comme
l’ensemble de tous les sommets du cube [−1, 1]m , c’est-à-dire l’ensemble
obtenu à l’aide des produits cartésiens {−1, 1} × ... × {−1, 1} = {−1, 1}m

.
Cette définition est généralisable sans la moindre difficulté au cas où plus de
deux modalités interviennent.

Définition 8.7. Soit un phénomène aléatoire dépendant de m facteurs quali-
tatifs à h1, ..., hm modalités. On appelle plan d’expérience factoriel complet
toute configuration D constituée par l’ensemble des codages naturels :

D = {0, ..., h1 − 1} × {0, ..., h2 − 1} × ...× {0, ..., hm − 1} .

Le nombre d’expériences d’un tel plan est donc : n =
m∏

k=1

hk.

Un plan factoriel complet pour m facteur qualitatifs à h1, ..., hm modalités sera
désigné plus rapidement dans la suite par la notation suivante généralisant
celle introduite au chapitre 3 (FD venant toujours de Factorial Design) :

FD (h1 × h2 × ...× hm) .

Si tous les facteur ont le même nombre h de modalités on dit que le plan
d’expérience est symétrique (le nombre d’expériences à réaliser est donc
hm).

Lorsque h = 2 on retrouve bien, à un codage près, les plans factoriels complets
du chapitre 3 mais alors la notion de rajout d’expériences ”centrales” n’a plus
de sens. Concernant maintenant l’écriture de la matrice du plan d’expérience
on généralise ici l’ordre standard proposé par Yates (voir le paragraphe
3.3.1) en procédant de la manière suivante :

1) la première ligne de D n’est constituée que des valeurs 0 (i.e. la première
expérience est réalisée en utilisant la modalité 0 pour tous les facteurs),
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2) la première colonne de D est obtenue en répétant la séquence 0, 1, ..., h1−1
autant de fois que nécessaire. La seconde colonne est obtenue de manière
identique mais chacune des modalités est répétée h1 fois. La troisième colonne
est obtenue de manière identique mais chacune des modalités est répétée h1h2

fois, etc...

Exemple

Considérons un phénomène aléatoire dépendant de 3 facteurs tels que
deux sont à 2 modalités et un est à 3 modalités. Le plan factoriel
complet adapté à ce phénomène est de type FD

(
223

)
. Il est constitué

par les n = 12 expériences décrites ci-dessous dans l’ordre standard
(associées au vecteur Y des réponses écrit parallèlement) :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1
0 0 2
1 0 2
0 1 2
1 1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Y000

Y100

Y010

Y110

Y001

Y101

Y011

Y111

Y002

Y102

Y012

Y112

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

8.3.2 Propriétés

Il a été montré au paragraphe 8.2.8 tout l’intérêt qu’il y a à considérer des
structures orthogonales. Soit alors un plan d’expérience factoriel complet sous
la forme la plus générale possible, c’est-à-dire pour m facteurs qualitatifs
à h1, ..., hm modalités. Considérons les facteurs i et j (i 	= j) de ce plan.
Comme le plan factoriel complet contient toutes les expériences possibles il
est clair que le nombre d’expériences faisant intervenir la modalité l du facteur
i (0 ≤ l ≤ hi − 1) ainsi que la modalité c du facteur j (0 ≤ c ≤ hj − 1) est :

λij (l, c) =
m∏

k=1
k �=i et k �=j

hk =
1

hihj

m∏

k=1

hk =
n

hihj
.

Le résultat obtenu est indépendant des modalités l et c choisies et permet
donc de dire que tout plan factoriel complet pour m facteurs qualitatifs à
h1, ..., hm modalités est un plan d’expérience orthogonal tel que :

∀ i, j = 1, ..., m avec i 	= j , λij =
n

hihj
où n =

m∏

k=1

hk.
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Il découle aussi de la proposition 8.4 que le nombre d’occurences de chacune
des modalités du facteur i est donc égal à :

∀ i = 1, ..., m , ri =
n

hi
=

m∏

k=1
k �=i

hk.

D’après la proposition 8.5 ce type de plan d’expérience permet d’estimer
les paramètres du modèle additif ainsi que leurs dispersions de manière
extrêmement simple.

Exemple

Reprenons l’exemple du plan factoriel complet FD
(
223

)
du para-

graphe 8.3.1. Un tel plan est donc orthogonal tel que (puisque n =
223 = 12, h1 = h2 = 2 et h3 = 3) :

λ12 =
n

h1h2
= 3 , λ13 =

n

h1h3
= 2 et λ23 =

n

h2h3
= 2.

Le nombre d’occurences de chacunes des modalités des facteurs est :

r1 =
n

h1
= 6 , r2 =

n

h2
= 6 et r3 =

n

h3
= 4.

Les estimateurs des moindres carrés des paramètres du modèle sont
alors au nombre de p∗ = 8. Ils sont donnés par :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β̂0 = Y ,

β̂
[0]
1 = Y

[0]

1 − Y , β̂
[1]
1 = Y

[1]

1 − Y ,

β̂
[0]
2 = Y

[0]

2 − Y , β̂
[1]
2 = Y

[1]

2 − Y ,

β̂
[0]
3 = Y

[0]

3 − Y , β̂
[1]
3 = Y

[1]

3 − Y , β̂
[2]
3 = Y

[2]

3 − Y .

avec, par exemple, sous forme détaillée :

Y
[0]

3 = Y ••0 =
1
4

(Y000 + Y100 + Y010 + Y110) .

Les dispersions de ces estimateurs sont enfin :

Var β̂0 =
σ2

12
, Var β̂

[j]
1 = Var β̂

[j]
2 =

σ2

12
et Var β̂

[j]
3 =

σ2

6
.

8.4 Fractions régulières de plans factoriels

Les résultats de la section précédente conduisent toujours à la même con-
clusion concernant les plans complets. En l’occurence leur principale qualité
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est liée à la facilité d’analyse puisque les estimateurs des moindres carrés du
modèle sont toujours obtenus très facilement. En contrepartie leur principal
défaut est encore leur taille qui, sauf cas particulier où peu de facteurs sont
utilisés, est généralement bien supérieure au nombre de paramètres à estimer
dans le modèle additif, i.e. :

p = 1 +
m∑

i=1

(hi − 1) � n =
m∏

k=1

hk.

Détaillons les méthodes permettant de garder qu’une partie des expériences
du plan complet tout en conservant d’intéressantes propriétés telles que
l’orthogonalité. Un tel sous-ensemble est encore qualifié de fraction régulière
du plan complet et généralise la théorie présentée à la section 3.4. Les pre-
miers travaux relatifs aux fractions régulières à plus de deux niveaux sont dus
à Bose [6]. De multiples auteurs ont ensuite continué dans cette voie. Citons
les chercheurs francophones Kobilinsky [59], Kobilinsky et Monod [60] ou bien
encore El Mossadeq et al. [38].

Les résultats les plus généraux présentés dans cette section sont relatifs
à m facteurs qualitatifs tels que chacun d’eux a toujours le même nombre
de modalités (noté h). Le cas où les nombres de modalités sont différents
(on parle alors de fractions asymétriques) sera brièvement présenté dans la
section suivante. L’introduction ci-dessous fait le lien avec ce qui a déjà été
vu dans le cas de deux niveaux.

8.4.1 Cas particulier des facteurs à deux modalités

Revenons ici à la théorie des fractions régulières de plans factoriels dans le
cadre de facteurs quantitatifs où seulement les deux niveaux extrêmes sont
considérés. Il est alors possible de réutiliser tous les résultats obtenus et de
les adapter à des facteurs qualitatifs à h = 2 modalités via la correspondance
des codages donnée par l’application ϕ telle que :

Facteurs quantitatifs :
−1
+1 Facteurs qualitatifs :

ϕ (−1) = 1
ϕ (+1) = 0 .

La transformation des codages doit obligatoirement être effectuée comme pro-
posé ici afin d’obtenir un isomorphisme entre les groupes ({−1, 1} ,×) et
(Z/2Z, +). Contrairement au cas des facteurs quantitatifs, le rajout d’une ou
plusieurs expériences centrales n’a aucun sens maintenant puisque seulement
deux modalités sont, par hypothèse, disponibles. Transposons sur un exemple
simple, avec seulement m = 3 facteurs, la notion de fraction régulière. Le plan
factoriel complet a ici pour matrice (avec à gauche les codages {−1, 1} et à
droite les codages {0, 1}).
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D{−1,1} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1
1 −1 −1

−1 1 −1
1 1 −1

−1 −1 1
1 −1 1

−1 1 1
1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D{0,1} =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Il a été montré que pour des facteurs quantitatifs il est nécessaire que la
fraction régulière soit de résolution au moins égale à III afin de pouvoir ajuster
un modèle polynomial d’ordre un. Soit alors la fraction régulière de type 23−1

III

définie par la relation I =123. La matrice du plan est donnée ci-dessous (avec
les mêmes conventions pour les codages) :

D{−1,1} =

⎡

⎢
⎢
⎣

1 1 1
−1 −1 1
−1 1 −1

1 −1 −1

⎤

⎥
⎥
⎦ , D{0,1} =

⎡

⎢
⎢
⎣

0 0 0
1 1 0
1 0 1
0 1 1

⎤

⎥
⎥
⎦ .

Le plan d’expérience pour facteurs qualitatifs obtenu est bien orthogonal
puisque :

N12 = N13 = N23 =
[

1 1
1 1

]

.

Avec les codages {0, 1} la sélection des expériences de la fraction régulière a
été réalisée en ne gardant que les lignes de la matrice du plan complet dont
la somme des codages des modalités est multiple de 2. En d’autres termes,
en désignant respectivement par x1, x2 et x3 les codages des modalités des
facteurs 1, 2 et 3 on a conservé ici uniquement les expériences telles que la
somme de ces trois quantités donne toujours un reste nul lors de la division
euclidienne par 2 :

x1 + x2 + x3 ≡ 0 [2] .

Considérons maintenant la fraction régulière de résolution I définie (pour des
facteurs quantitatifs) par la relation I =1. Elle est donc associée à la matrice
suivante pour facteurs qualitatifs :

D{0,1} =

⎡

⎢
⎢
⎣

0 0 0
0 1 0
0 0 1
0 1 1

⎤

⎥
⎥
⎦ .

Il en découle immédiatement qu’un tel plan n’est pas orthogonal car la
proposition 8.4 n’est pas vérifiée dans la mesure où le nombre d’occurences
des modalités de chacun des facteurs n’est pas constante (en effet r1 (0) = 4
mais r1 (1) = 0).
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Considérons ensuite la fraction régulière de résolution II définie (pour des
facteurs quantitatifs) par la relation I =12. Elle est donc associée à la matrice
suivante pour facteurs qualitatifs :

D{0,1} =

⎡

⎢
⎢
⎣

0 0 0
0 0 1
1 1 0
1 1 1

⎤

⎥
⎥
⎦ .

Une nouvelle fois un tel plan n’est pas orthogonal car N12 = 2I2 	= λ12J2. On
constate donc sur cet exemple que, tout comme pour des facteurs quantitatifs,
il semble nécessaire d’utiliser encore une fraction régulière de résolution III
afin de conserver la propriété d’orthogonalité.

8.4.2 Cas général

Considérons ici de manière générale m facteurs qualitatifs ayant chacun h
modalités. Généralisons l’addition présentée au paragraphe 8.4.1 (toujours
notée simplement +) en considérant que la somme de deux entiers s’entend
maintenant modulo h (i.e. on ne conserve donc que le reste de la division
euclidienne par l’entier h). L’exemple ci-dessous présente la matrice du plan D
associée à la fraction régulière obtenue pour m = 3 facteurs qualitatifs à h = 3
modalités en ne conservant que les expériences du plan factoriel vérifiant la
relation x1 + x2 + x3 ≡ 0 [3] :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 2
0 2 1
1 2 0
1 0 2
1 1 1
2 1 0
2 0 1
2 2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Le plan d’expérience ainsi défini est bien orthogonal puisque :

N12 = N13 = N23 =

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ .

Il est dans certains cas plus facile d’écrire le plan d’expérience sous forme
complexe. Il s’agit alors d’utiliser non pas la matrice du plan D en codage
naturel mais de manière équivalente la matrice complexe DC selon la règle
suivante : la modalité i de D est représentée dans DC par ωi où ω est un
nombre complexe tel que ωh = 1. On a donc ici :
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DC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω0 ω0 ω0

ω0 ω1 ω2

ω0 ω2 ω1

ω1 ω2 ω0

ω1 ω0 ω2

ω1 ω1 ω1

ω2 ω1 ω0

ω2 ω0 ω1

ω2 ω2 ω2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

En d’autres termes on désigne alors par ω toute racine h-ième de l’unité
(par exemple ω = exp (i2π/h)). Le lecteur pourra se référer à l’annexe A
pour plus d’informations concernant ces matrices. L’utilisation de la forme
complexe du plan d’expérience rend alors plus aisée la définition de la fraction
régulière utilisée car en désignant les colonnes de la matrice complexe du
plan factoriel complet par 1, 2 et 3 la matrice DC de la fraction régulière
présentée ci-dessus correspond a la sélection des expériences telles que I =123
(en désignant toujours multiplicativement le produit d’Hadamard de deux
vecteurs). On a donc la correspondance suivante :

x1 + x2 + x3 ≡ 0 [3] dans D ⇔ I =123 dans DC.

Que la matrice de la fraction régulière soit écrite sous forme de codage na-
turel ou bien sous forme complexe on la décrira toujours dans la suite par
une relation mutliplicative de la forme I =123 et on dit encore que 123 est
un générateur de la fraction. L’intérêt d’utiliser ce type d’écriture est lié à
sa simplicité mais aussi au fait qu’elle généralise naturellement les notations
introduites à la section 3.4 pour des facteurs quantitatifs. Deux autres exem-
ples de fractions régulières sont présentés ci-dessous toujours dans le cas de
m = 3 facteurs à h = 3 modalités.

Exemple

La fraction régulière définie par :
I =1223

(i.e. x1 + 2x2 + x3 ≡ 0 [3]) a
pour matrice :

La fraction régulière définie par :
ωI =12223

(i.e. 2x1 + 2x2 + x3 ≡ 1 [3]) a
pour matrice :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 1
0 2 2
1 0 2
1 1 0
1 2 1
2 0 1
2 1 2
2 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1
0 1 2
0 2 0
1 0 2
1 1 0
1 2 1
2 0 0
2 1 1
2 2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

On obtient encore dans ces deux cas des plans orthogonaux.
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8.4.3 Générateurs d’une fraction régulière

Formalisons le type de constructions présentées précédemment à l’aide de la
notion de générateur. Dans le cas de m facteurs qualitatifs à h modalités
on considère toutes les quantités de la forme suivante (avec 1, 2,..., m les
colonnes de la matrice du plan factoriel complet et le produit d’Hadamard
noté multiplicativement) :

M = 1α12α23α3 ... (m− 1)αm−1 mαm

avec α1, ..., αm entiers naturels tels que (∀ i = 1, ..., m) 0 ≤ αi < h puisque,
par hypothèse, ih = I. On dit toujours que M est un mot de longueur
k où l’entier k désigne le nombre des entiers αi non-nuls. Etant donné un
ensemble de mots on définit alors la notion de famille indépendante à l’aide
de la définition suivante :

Définition 8.8. Soit l’ensemble {M1, M2, ..., Mq} de q mots relatifs à m
facteurs qualitatifs à h modalités. Cette famille est liée si et seulement si :

∃ i ∈ {1, ..., q} / Mi = �
j∈J

M
βj

j

avec J ⊂ {1, ..., q}− {i} et ∀ j ∈ J , 0 ≤ βj < h. Une famille qui n’est pas liée
est une famille indépendante.

Illustrons ceci à l’aide d’un exemple :

Exemple

Dans le cas où h = 5 modalités sont considérées la famille{
12232, 122433, 132

}
est une famille liée car :

(
12232

) (
122433

)
= 132635 = 132 puisque 35 = I et 26 = 2

(
25
)
.

A partir de ceci une fraction régulière est une nouvelle fois définie par :

Définition 8.9. Une fraction régulière de plan factoriel complet est
déterminée par la donnée d’une famille de q mots indépendants
{M1, M2, ..., Mq} appelés générateurs. On note alors :

I =M1 = M2 = ... = Mq.

On désigne de même dans la suite par G le groupe engendré par les q
générateurs de la fraction régulière.

Remarque. La définition 8.9 introduit une fraction régulière en ne conservant
que les expériences telles que le produit d’Hadamard des diverses colonnes
considérées du plan complet soit toujours égal au vecteur I. Seulement ce type
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de fraction, parfois qualifiée de fraction principale, sera considéré dans la
suite. Il ne faut cependant pas oublier que lorsque h modalités interviennent
on peut utiliser la fraction régulière principale définie par I =123 mais aussi
les fractions régulières telles que (avec toujours ω = exp (i2π/h)) :

ωI =123 , ω2
I =123 , ... , ωh−1

I =123.

A partir d’un même générateur on peut donc utiliser h fractions régulières
différentes.

Connaissant les générateurs d’une fraction régulière le problème de la
détermination complète du groupe G se pose ensuite. On a alors le résultat
suivant :

Proposition 8.10. [�] Soit m facteurs qualitatifs tels que chacun d’eux a un
nombre premier h de modalités. Le groupe G engendré par les q générateurs
d’une fraction régulière est un groupe fini constitué par hq éléments.

Illustrons ceci à l’aide d’un exemple :

Exemple

Considérons la fraction régulière du plan factoriel complet pour m = 4
facteurs à h = 3 modalités définie par :

I =123 = 2324.

D’après la démonstration de la proposition 8.10 on obtient les 32 = 9
éléments du groupe G en considérant l’élément neutre I, toutes les
puissances successives de chacun des générateurs (i.e. 123 et 122232

puis 2324 et 22342) et enfin tous les produits possibles deux à deux
(i.e. (123)

(
2324

)
= 1224,

(
122232

) (
2324

)
= 1234, (123)

(
22342

)
=

13242 et
(
122232

) (
22342

)
= 12242). Le groupe G est donc :

G =
{
I, 123, 2324, 122232, 22342, 1224, 1234, 13242, 12242

}
.

Le problème se pose ensuite de savoir sous quelles conditions une frac-
tion régulière va générer un plan d’expérience orthogonal. On généralise alors
naturellement la notion de résolution d’une fraction régulière à plus de deux
modalités (avec la définition de longueur d’un mot proposée au début de cette
section) :

Définition 8.11. On appelle résolution d’une fraction régulière l’entier R
égal à la plus petite longueur des éléments de G.

Il est prouvé dans la section suivante que l’on a tout intérêt en pratique à
utiliser des fractions régulières associées à la résolution la plus élevée possible.
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Exemple

Reprenons l’exemple précédent pour m = 4 facteurs à h = 3 modalités
et la fraction régulière définie par :

I =123 = 2324.

La structure du groupe G des générateurs de la fraction a été déterminé
et ce groupe n’est constitué que par des éléments de longueur égale à
3 (l’élément neutre I étant exclu). Il en résulte donc que la fraction
régulière considérée ici est de résolution III.

Tout comme dans le cas où seulement deux niveaux étaient considérés le
nombre d’expériences d’une fraction régulière est lié au nombre de générateurs
par :

Proposition 8.12. [� (Annexe A) ] Soit m facteurs qualitatifs à h modalités
avec h nombre premier. Le nombre d’expériences de toute fraction régulière
obtenue à l’aide de q générateurs est donné par :

n = hm−q.

Ceci conduit dans la suite à noter Ihm−q au lieu de I dans la définition
des générateurs afin de préciser le nombre d’expériences à réaliser. De même
on notera hm−q

R pour désigner une fraction régulière de résolution R pour m
facteurs à h modalités obtenue à l’aide de q générateurs.

8.4.4 Fractions régulières de résolution III

Il a été montré au chapitre 3 (pour un modèle d’ordre un) qu’il faut obliga-
toirement des fractions régulières de résolution III afin d’obtenir la propriété
d’orthogonalité. On a maintenant le résultat similaire suivant :

Proposition 8.13. [� (Annexe A) ] Soit m facteurs qualitatifs à h modalités
avec h nombre premier. Toute fraction régulière de plan factoriel complet de
résolution égale à III (ou plus) est un plan d’expérience orthogonal.

Illustrons ceci à l’aide d’un exemple.

Exemple

Reprenons l’exemple de la fraction régulière définie dans la section
précédente (pour m = 4 facteurs à h = 3 modalités) avec :

I =123 = 2324.

Il a été montré qu’il s’agit d’une fraction régulière de type 34−2
III . Elle

est donnée en codage naturel par :
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 1 2 1
0 2 1 2
1 0 2 2
1 2 0 1
1 1 1 0
2 0 1 1
2 1 0 2
2 2 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On obtient donc bien ici un plan d’expérience orthogonal. Ce plan est
de plus uniformément orthogonal puisque :

∀ i, j = 1, ..., 4 avec i 	= j , Nij = J3 (donc λ = 1).

Remarquons de plus que ce plan d’expérience est saturé puisqu’il est
constitué par n = 9 expériences et le modèle additif considéré a aussi
p = 9 paramètres inconnus à estimer.

8.5 Autres types de plans fractionnaires

Abordons dans cette section le vaste problème de la recherche d’un plan
d’expérience, de préférence orthogonal, dans le cas général où les nombres
de modalités de chacun des facteurs ne sont plus tous égaux à un nombre
premier comme dans la théorie développée pour les fractions régulières.

8.5.1 Existence de plans orthogonaux de petite taille

Dans le cas général le problème de l’existence éventuelle d’un plan d’expérience
orthogonal de petite taille se pose immédiatement. En effet, il a déjà été
montré (voir le paragraphe 8.3.2) qu’il est toujours possible d’obtenir un
plan d’expérience orthogonal par le biais du plan factoriel complet. Le nom-
bre d’expériences de celui-ci étant souvent prohibitif une condition nécessaire
d’existence d’un plan orthogonal de plus petite taille peut être utile. Une telle
condition nécessaire (mais pas suffisante) a déjà été donnée à la proposition 8.4
puisque si un plan d’expérience est orthogonal alors le nombre d’expériences
vérifie (avec h1, ..., hm nombre de modalités de chacun des facteurs) :

n ≥ PPCM (hihj / i, j = 1, ..., m avec i 	= j) .

Cette relation permet de déterminer la taille minimale théorique d’un plan
orthogonal. Elle est particulièrement utile dans tous les cas où il est impossible
de réduire la taille du plan factoriel complet. Ceci est illustré dans l’exemple
suivant.
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Exemple

Considérons un phénomène aléatoire dépendant de m = 3 facteurs à
h1 = 2, h2 = 3 et h3 = 4 modalités. Le nombre d’expérience de tout
plan orthogonal vérifie alors :

n ≥ PPCM (6, 8, 12) = 24.

On en déduit qu’il est ici impossible d’obtenir un plan d’expérience
orthogonal plus petit que le plan d’expérience factoriel complet à n =
2× 3× 4 = 24 expériences.

De manière plus générale la table 8.1 détaille toutes les situations pouvant
se présenter lorsque 2, 3 ou 4 modalités interviennent (cas très courant en
pratique).

Table 8.1. Tailles minimales des plans orthogonaux.

Rep. Fact. Taille PC. Taille PO. Reduc. Impossible
(m2, 0, 0) 2m2 4 si m2 = 2
(0, m3, 0) 3m3 9 si m3 = 2
(0, 0, m4) 4m4 16 si m4 = 2
(m2, 1, 0) 2m23 12 si m2 = 2
(m2, 0, 1) 2m24 8 -
(1, m3, 0) 2.3m3 18 si m3 = 2
(0, m3, 1) 3m34 36 si m3 = 2
(1, 0, m4) 2.4m4 16 -
(0, 1, m4) 3.4m4 48 si m4 = 2

(m2, m3, 0) 2m23m3 36 si (m2, m3) = (2, 2)
(m2, 0, m4) 2m24m4 16 -
(0, m3, m4) 3m34m4 144 si (m3, m4) = (2, 2)

(m1, 1, 1) 12.2m1 12 -
(1, m2, 1) 8.3m2 72 si m2 = 2
(1, 1, m3) 6.4m4 48 -

(m2, m3, 1) 2m23m34 72 -
(m2, 1, m4) 2m23.4m4 48 -
(1, m3, m4) 2.3m34m4 144 -

(m2, m3, m4) 2m23m34m4 144 -

La colonne ”Rep. Fact.” permet de repérer la répartition des différents fac-
teurs de la manière suivante : le triplet (m2, m3, m4) signifie que m2 facteurs à
2 modalités, m3 facteurs à 3 modalités et enfin m4 facteurs à 4 modalités sont
utilisés. Remarquons que les lettres m2, m3 et m4 sont utilisées dans le tableau
uniquement pour désigner des nombres de facteurs strictement supérieurs à un
(i.e. mi ≥ 2). La colonne ”Taille PC.” donne la taille du plan factoriel complet
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alors que la colonne ”PO.” donne la taille du plus petit plan orthogonal pos-
sible (mais son existence n’est pas assurée !). Une dernière colonne intitulée
”Réduc. Impossible” résume les résultats précédents en précisant dans quelles
conditions il apparait impossible de réduire la taille du plan factoriel com-
plet tout en conservant la propriété d’orthogonalité. On constate alors qu’il
est impossible de réduire la taille des plans factoriels complets principalement
lorsque peu de facteurs sont utilisés.

8.5.2 Fractions pour nombre de modalités non premier

La plupart des résultats de la section 8.4 relatifs aux fractions régulières ont
été énoncés et démontrés uniquement dans le cas où tous les facteurs quali-
tatifs considérés ont un même nombre de modalités h avec obligatoirement h
nombre premier. Une telle hypothèse peut bien entendu s’avérer très con-
traignante lors d’une étude pratique où, par exemple, tous les facteurs étudiés
ont 4 ou bien 6 modalités.

Rappelons que dans la section 8.4 l’hypothèse ”h est un nombre premier”
a été principalement utilisée afin de démontrer la proposition 8.10 disant que
le groupe G engendré par les q générateurs d’une fraction régulière est de
cardinal hq. Ce résultat est basé en effet, entre autre (voir la démonstration de
cette proposition), sur le fait que puisque h est premier alors tout générateur
engendre un groupe de cardinal h (i.e. par analogie lorsque h est premier
alors tout élément de Z/hZ est bien un générateur du groupe). Lorsque le
nombre de modalités h n’est plus premier il faut prendre garde au fait que
cette propriété n’est plus vraie (i.e. par analogie lorsque h est quelconque
alors un élement z de Z/hZ est bien un générateur du groupe si et seulement
si z et h sont premiers entre eux). Deux situations peuvent alors se présenter.

1) Soit le groupe G engendré par les q générateurs est bien un groupe de
cardinal égal à hq. La proposition 8.10 est alors bien vérifiée dans ce cas.

2) Soit le groupe G engendré par les q générateurs est un groupe de cardinal
strictement inférieur à hq. La proposition 8.10 n’est alors pas vérifiée dans ce
cas et on ne peut plus affirmer que la fraction régulière obtenue est constituée
par n = hm−q expériences.

L’exemple présenté ci-dessous illustre ces deux cas de figure.

Exemple

Considérons ici m = 3 facteurs qualitatifs à h = 4 modalités. La
matrice D1 est celle de la fraction régulière définie par I =123, la
matrice D2 est celle de la fraction régulière définie par I =122232.
La fraction régulière de matrice D1 ne pose pas de problème par-
ticulier, elle est bien constituée par n = 43−1 expériences. Ceci est
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dû au fait que le groupe G =
{
I, 123, 122232, 132333

}
comporte 4

éléments et permet donc bien de réduire la taille du plan factoriel
complet par 4. La fraction régulière de matrice D2 comporte par con-
tre n = 43/2 = 32 expériences. Ceci est dû au fait qu’elle est définie
par la relation I =122232 mais 122232 engendre un groupe de cardi-
nal seulement égal à 2 (i.e. G =

{
I, 122232

}
). Il en résulte donc que

cette fraction régulière ne permet de diviser que par 2 le nombre total
d’expériences du plan factoriel complet.

D1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 3
0 2 2
0 3 1
1 0 3
1 1 2
1 2 1
1 3 0
2 0 2
2 1 1
2 2 0
2 3 3
3 0 1
3 1 0
3 2 3
3 3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et D2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 2
0 1 1
0 1 3
0 2 0
0 2 2
0 3 1
0 1 3
1 0 1
1 0 3
1 1 0
1 1 2
1 2 1
1 2 3
1 3 0
1 3 2
2 0 0
2 0 2
2 1 1
2 1 3
2 2 0
2 2 2
2 3 1
2 3 3
3 0 1
3 0 3
3 1 0
3 1 2
3 2 1
3 2 3
3 3 0
3 3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Un certain nombre de théories mathématiques (initiées par Bose [6]) perme-
ttent d’obtenir des résultats sur les fractions régulières non pas lorsque le
nombre de modalités h est premier mais, de manière plus générale, lorsque le
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nombre de modalités est une puissance de nombre premier (donc de la forme
hk avec h premier). Ceci permet, par exemple, d’obtenir des résultats pour le
cas, courant en pratique, où h = 4 modalités sont considérées.

8.5.3 Fractions asymétriques

Intéressons-nous maintenant au cas le plus général possible où l’on cherche
à réduire la taille d’un plan factoriel complet à m facteurs qualitatifs pour
h1, h2, ..., hm modalités, ces nombres de modalités n’étant plus identiques
(on dit alors que l’on a un plan asymétrique). Afin de réduire la taille du plan
factoriel complet il est encore possible de ne sélectionner qu’un sous-ensemble
d’expériences à l’aide de la technique utilisée tout au long de ce chapitre, c’est-
à-dire à partir de la somme x1 + ...+xm où xi est la valeur du codage naturel
du facteur i pour chacune des expériences. Lorsque tous les facteurs sont à h
modalités on a naturellement considéré cette somme modulo h. La difficulté
provient ici du fait qu’il n’existe pas une quantité h unique. Ceci amène donc
à définir une fraction asymétrique à l’aide d’un des hi (i = 1, ..., m) en ne
gardant que l’ensemble des expériences vérifiant la relation suivante :

x1 + ... + xm ≡ 0 [hi] .

Par analogie avec les notations multiplicatives utilisées dans les sections
précédentes on désigne dorénavant une telle fraction en notant :

I =123...m [hi] .

Les théories présentées précédemment pour des fractions régulières symétri-
ques ne s’appliquent plus à ce type de constructions. C’est pourquoi il n’est
pas possible d’énoncer ici des résultats généraux concernant l’orthogonalité
ou bien encore le nombre d’expériences obtenues. L’exemple suivant illustre
ces diverses situations.

Exemple

Considérons le cas où m = 3 facteurs qualitatifs à h1 = 3, h2 = 4
et h3 = 5 modalités interviennent. Le plan factoriel complet de type
FD (3× 4× 5) comporte un total de n = 60 expériences. Réduisons
alors ce nombre d’expériences en construisant toutes les fractions pos-
sibles obtenues à l’aide du générateur 123. Elles sont données ci-
dessous (en codage naturel) par les matrices D1, D2 et D3 obtenues
respectivement à l’aide des relations :

I =123 [3] , I =123 [4] et I =123 [5] .

Remarquons au préalable que toute réduction de la taille du plan fac-
toriel complet conduit ici forcément à une structure qui n’est pas or-
thogonale puisque, d’après la proposition 8.4, le nombre d’expériences
d’un plan orthogonal doit vérifier :
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n ≥ PPCM (12, 15, 20) = 60.

On a alors les résultats suivants.

1) Concernant la fraction définie par I =123 [5] (matrice D3) le fait
d’utiliser une égalité modulo 5 entrâıne bien ici que la fraction est
constituée par 5 fois moins d’expériences que le plan complet (n = 12).
Le plan obtenu n’est pas orthogonal car, par exemple, les nombres
d’occurences de chacunes des modalités du facteur 3 ne sont pas égales
puisque :

r3 (0) = r3 (1) = r3 (4) = 2 et r3 (2) = r3 (3) = 3.

On peut aussi remarquer que :

N13 =

⎡

⎣
1 0 1 1 1
0 1 1 1 1
1 1 1 1 0

⎤

⎦ 	= J35.

2) Concernant la fraction définie par I =123 [4] (matrice D2) les con-
statations sont identiques sauf que cette fois la taille du plan factoriel
complet a été divisée par 4 pour donner un total de n = 15 expériences.

3) Concernant la fraction définie par I =123 [3] (matrice D1) les con-
statations sont identiques sauf que cette fois la taille du plan factoriel
complet a été divisée par 3 pour donner un total de n = 20 expériences.

D1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 3
0 1 2
0 2 1
0 2 4
0 3 0
0 3 3
1 0 2
1 1 1
1 1 4
1 2 0
1 2 3
1 3 2
2 0 1
2 0 4
2 1 0
2 1 3
2 2 2
2 3 1
2 3 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 4
0 1 3
0 2 2
0 3 1
1 0 3
1 1 2
1 2 1
1 3 0
1 3 4
2 0 2
2 1 1
2 2 0
2 2 4
2 3 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 4
0 2 3
0 3 2
1 0 4
1 1 3
1 2 2
1 3 1
2 0 3
2 1 2
2 2 1
2 3 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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8.6 Plans en carrés latins

8.6.1 Utilisation de carrés latins

Le concept de carré latin (ou carré magique dans certaines applications
ludiques) remonte à la nuit des temps. Certains documents de l’époque mon-
gole (XIIème siècle) représentent des carrés latins de petite taille. Au XVIIème
siècle les carrés latins apparaissent dans des documents en Europe, principale-
ment liés à des jeux ou ”énigmes mathématiques”. Ils étaient alors définis de
la manière suivante. A partir d’un ensemble E à h éléments distincts on ap-
pelle carré latin d’ordre h une grille de h2 cases dans laquelle ”toute ligne et
toute colonne contient une fois et une fois seulement chaque élément de E”.
Pour l’ensemble E = {�, �, �, �} la grille suivante (à gauche) est un carré
latin d’ordre quatre :

� � � �
� � � �
� � � �
� � � �

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

D’un point de vue algébrique maintenant il est clair que l’on peut toujours
identifier l’ensemble E à celui des h premiers entiers et on appelle alors carré
latin d’ordre h toute matrice carrée d’ordre h telle que ses lignes et ses
colonnes sont des permutations différentes de l’ensemble {0, 1, ..., h− 1}. On
construit classiquement une telle matrice par permutations circulaires de sa
première ligne. L’exemple ci-dessus (à droite) en donne un exemple toujours
pour h = 4 (et évidemment les deux carrés latins présentés sont équivalents).
Nous garderons par la suite cette présentation standard des carrés latins qui
peut être identifiée algébriquement à la table d’addition (table de Cayley)
du groupe additif Z/hZ. Il en découle qu’il est toujours possible de construire
un carré latin quelle que soit la valeur de h. Remarquons enfin que pour tout
carré latin les sommes par ligne et par colonne sont donc égales, c’est cette
propriété qui est généralement recherchée dans les problèmes faisant intervenir
des ”carrés magiques”.

Ce type de structure a été utilisée initialement dans un cadre statistique
par Fisher. L’objectif était alors de résoudre des problèmes agronomiques à
l’aide d’un petit nombre d’expériences lorsque trois facteurs (à h modalités)
interviennent. Le protocole expérimental se déduit d’un carré latin de la
manière suivante : le numéro de la ligne donne la modalité du facteur 1, le
numéro de la colonne donne la modalité du facteur 2 et enfin la valeur figurant
dans le carré à l’intersection de la ligne et de la colonne donne la modalité
du facteur 3 (toujours avec la convention habituelle pour des numérotations
allant de 0 à h − 1). En d’autres termes pour trois facteurs qualitatifs à h
modalités et un carré latin C d’ordre h on propose d’ajuster le modèle additif
à l’aide d’un plan d’expérience D en h2 expériences tel que :
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D = {(i, j, Cij) / 0 ≤ i ≤ h− 1 et 0 ≤ j ≤ h− 1}

où i et j repèrent respectivement (en codage naturel) les lignes et les colonnes
du carré latin de terme général Cij . Pour l’exemple précédant la matrice du
plan D est donc donnée par :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 1
0 2 2
0 3 3
1 0 1
1 1 2
1 2 3
1 3 0
2 0 2
2 1 3
2 2 0
2 3 1
3 0 3
3 1 0
3 2 1
3 3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

pour le carré latin

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

.

Il découle immédiatement de la définition d’un carré latin que pour tout choix
de deux facteur (parmi les trois utilisés) tout couple de modalités va apparâıtre
une fois et une seule. Il en résulte que tout carré latin est un plan d’expérience
orthogonal (et même uniformément orthogonal).

Remarquons aussi qu’un carré latin peut toujours être identifié à une frac-
tion régulière d’un plan factoriel complet. En effet, si le carré latin est construit
selon une table de Cayley on peut donc dire que son terme général (dans le
cas général où les trois facteurs sont à h modalités) est Cij = (i + j) [h] . Il
en résulte donc que l’on ne conserve que les expériences (x1, x2, x3) du plan
factoriel complet telles que :

x1 = i , x2 = j et x3 = Cij donc (h− 1)x1 + (h− 1)x2 + x3 ≡ 0 [h] .

En d’autres termes un tel carré latin n’est autre que la fraction régulière du
plan factoriel complet définie par la relation :

Ih2 = 1h−12h−13.

Pour l’exemple présenté ci-dessus seules les expériences vérifiant la relation
3x1 + 3x2 + x3 ≡ 0 [4] ont été sélectionnées.
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Exemple

Considérons une application en agronomie où l’objectif est de max-
imiser le rendement à l’hectare d’une variété de blé. On veut tout
particulièrement tester ici l’efficacité de trois engrais. On sait aussi
que le rendement est directement influencé par l’ensoleillement du
champ ainsi que par sa pente. Supposons alors que ces trois facteurs
prennent les h = 3 modalités distinctes suivantes :

Modalité 0 Modalité 1 Modalité 2
Ensoleil. Fort Moyen Faible
Pente Nulle Légère Forte
Engrais Type I Type II Type III

Il est alors possible de réaliser seulement n = 9 expériences selon le
carré latin donné ci-desous (qui n’est autre que la fraction régulière
définie par la relation I9 = 12223). Les réponses mesurées (c’est-à-
dire les diverses masses récoltées par unité de surface) sont données
parallèlement.

0 1 2
1 2 0
2 0 1

Réponses :
162 110 89
108 91 134
65 102 50

D’après la proposition 8.5 les estimateurs des effets des modalités des
engrais vérifient alors :

β̂
[0]
3 = Y

[0]

3 −Y � 31.4, β̂
[1]
3 = Y

[1]

3 −Y � −11.9, β̂
[2]
3 = Y

[2]

3 −Y � −19.6

Il apparait donc clairement que l’engrais de type I semble nettement
préférable aux deux autres.

8.6.2 Utilisation de carrés gréco-latins

Le concept de carré gréco-latin est plus complexe que celui de carré
latin présenté précédemment. Il trouve aussi son origine dans des problèmes
ludiques du XVIIIème siècle. Dès 1725 le problème suivant est posé : comment
placer dans une grille 4 × 4 des cartes à jouer telles que chaque colonne et
chaque ligne contienne à la fois toutes les hauteurs supérieures (valet, dame,
roi et as) ainsi que toutes les couleurs (coeur, carreau, pique et trèfle) ? Ce
type de structure a été étudiée et formalisée plus tard par Euler (les carré
gréco-latins sont aussi parfois appelés carrés eulériens) qui avait présenté de
son coté le célèbre problème des ”36 officiers” identique au problème présenté
ci-dessus mais avec cette fois une grille 6×6 sur laquelle on cherche à position-
ner 36 officiers de 6 grades distincts appartenant à 6 corps d’armes différents.
Voici une solution pour le premier problème des cartes à jouer :
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A♠ R♥ D♦ V♣
D♣ V♦ A♥ R♠
V♥ D♠ R♣ A♦
R♦ A♣ V♠ D♥

Dans ce tableau les 16 cartes sont bien toutes utilisées une fois et une seule (i.e.
chaque couple de modalités ”hauteur / couleur” apparait un même nombre
de fois).

La construction mathématique de ce type de structure n’est plus aussi
aisée que dans le cas des carrés latins. On pourrait en effet penser qu’il suf-
fit de ”superposer” deux carrés latins de même taille afin d’obtenir un carré
gréco-latin mais ceci n’est pas systématiquement vrai (car alors rien ne nous
assure que dans chaque cellule tous les couples de modalités seront représentés
une fois et une seule). Lorsque le fait de superposer deux carrés latins con-
duit bien à un carré gréco-latin alors les carrés latins initiaux sont qualifiés
d’orthogonaux. Les techniques de construction de carrés latins orthogonaux
dépassent le cadre de cet ouvrage, précisons seulement qu’il a été montré qu’il
existe toujours au moins un carré gréco-latin d’ordre h ≥ 3 sauf pour h = 6
(i.e. le problème des 36 officiers d’Euler n’a pas de solution). Présentons une
technique simple de construction utilisable lorsque h est un nombre premier
(voir Dugue [37]). Utilisons encore l’ensemble {0, 1, ..., h− 1} afin de noter de
manière standard les éléments distincts du carré. Cet ensemble peut une nou-
velle fois être identifié à Z/hZ et lorsque h est un nombre premier (Z/hZ, +,×)
a cette fois une structure de corps (les deux opérations étant toujours définies
modulo h). Un tel corps est fini, il est aussi parfois qualifié de corps de Ga-
lois. Une méthode afin d’obtenir des carrés latins orthogonaux deux-à-deux
consiste alors à construire les carrés latins C[α] (pour 1 ≤ α ≤ h−1) de terme
général donné par :

C
[α]
ij = (αi + j) [h] .

En d’autres termes ce type de construction généralise la méthode d’obtention
d’un carré latin par la table de Cayley qui n’est autre que C [1] ici. Superposer
deux carrés latins ainsi construits amène à un carré gréco-latin. Considérons
à titre d’exemple le cas où h = 5 et les deux carrés latins suivants :

C[1] :

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

et C[3] :

0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

Le carré gréco-latin suivant est obtenu en superposant C [1] et C [3] :



334 8 Plans d’expérience pour facteurs qualitatifs

00 11 22 33 44
13 24 30 41 02
21 32 43 04 10
34 40 01 12 23
42 03 14 20 31

Dans un cadre statistique les carrés gréco-latins sont adaptés à des situa-
tions où quatre facteurs (à h modalités) interviennent. Ils induisent alors la
réalisation de h2 expériences. Le protocole expérimental se déduit d’un carré
gréco-latin de la manière suivante : le numéro de la ligne donne la modalité
du facteur 1, le numéro de la colonne donne la modalité du facteur 2 et en-
fin les deux valeurs figurant dans le carré à l’intersection de la ligne et de
la colonne donnent les modalités des facteurs 3 et 4 (toujours avec la con-
vention habituelle pour des numérotations allant de 0 à h − 1). Il découle
immédiatement de la définition d’un carré gréco-latin que pour tout choix
de deux facteur (parmi les quatre utilisés) tout couple de modalités va ap-
parâıtre une fois et une seule. Il en résulte que tout carré gréco-latin est un
plan d’expérience orthogonal (et même uniformément orthogonal).

Remarquons enfin que si le carré gréco-latin est obtenu par superposition
de deux carrés latins orthogonaux C [α1] et C[α2] (α1 	= α2) obtenus par la
méthode présentée ci-dessus alors il correspond en fait à la réalisation des
expériences (x1, x2, x3, x4) du plan factoriel complet telles que :

{
x1 = i , x2 = j et x3 = (α1i + j) [h] d’après le premier carré latin,
x1 = i , x2 = j et x4 = (α2i + j) [h] d’après le second carré latin.

Il en découle donc que :

(h− α1)x1 + (h− 1)x2 + x3 ≡ 0 [h] et (h− α2)x1 + (h− 1)x2 + x4 ≡ 0 [h] .

En d’autres termes un tel carré gréco-latin n’est autre que la fraction régulière
du plan factoriel complet définie par les deux relations suivantes :

Ih2 = 1h−α12h−13 = 1h−α22h−14.

Exemple

Reprenons l’exemple de culture du blé du paragraphe 8.6.1 mais sup-
posons maintenant qu’un quatrième facteur (toujours à 3 modalités)
intervienne maintenant : la type d’arrosage effectué. Il est nécessaire
ici de construire tout d’abord deux carrés latins orthogonaux. A par-
tir de l’ensemble Z/3Z et de la méthode présentée ci-dessus on peut
proposer les structures suivantes :

C[1] :
0 1 2
1 2 0
2 0 1

et C[2] :
0 1 2
2 0 1
1 2 0
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En combinant ces deux carrés latins orthogonaux on obtient ainsi le
plan d’expérience suivant :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

pour le carré gréco-latin
00 11 22
12 20 01
21 02 10

Remarquons que ce plan d’expérience est aussi la fraction régulière
du plan factoriel complet définie par la relation I9 = 12223 = 1224 (il
s’agit bien d’une fraction régulière de résolution égale à III). Ce plan
d’expérience étant orthogonal l’estimation des paramètres du modèle
peut être réalisée de manière très simple à l’aide la proposition 8.5.

8.6.3 Utilisation de carrés hyper-gréco-latins

Le passage des carrés latins aux carrés gréco-latins s’est traduit par le fait
que chaque cellule du carré contenait non plus un unique élément mais deux.
La généralisation de ceci conduit naturellement aux carrés hyper-gréco-
latins qui vont donc contenir cette fois trois éléments par cellule en imposant
toujours que chaque couple de modalités apparaisse une fois et une seule.
Nous allons nous limiter ici à la présentation d’un exemple (classique) d’un
carré hyper-gréco-latin d’ordre h = 4 donné ci-dessous (en utilisant encore
l’ensemble {0, 1, ..., h− 1} afin de désigner ses éléments) :

000 111 222 333
231 320 013 102
312 203 130 021
123 032 301 210

On remarquera que ce carré hyper-gréco-latin n’est autre que la superposition
de trois carrés latins orthogonaux.

D’un point de vue statistique les carrés hyper-gréco-latins sont adaptés à
des situations où cinq facteurs (à h modalités) interviennent. Ils induisent
alors la réalisation de h2 expériences. Le protocole expérimental se déduit d’un
carré hyper-gréco-latin de la manière suivante : le numéro de la ligne donne la
modalité du facteur 1, le numéro de la colonne donne la modalité du facteur
2 et enfin les trois valeurs figurant dans le carré à l’intersection de la ligne et
de la colonne donnent les modalités des facteurs 3, 4 et 5 (toujours avec la
convention habituelle pour des numérotations allant de 0 à h− 1). Il découle
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immédiatement de la définition d’un carré hyper-gréco-latin que pour tout
choix de deux facteurs (parmi les cinq utilisés) tout couple de modalités va
apparâıtre une fois et une seule. Il en résulte que tout carré hyper-gréco-latin
est un plan d’expérience orthogonal (et même uniformément orthogonal).
L’exemple présenté ci-dessus correspond alors au plan d’expérience suivant :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 1 1 1 1
0 2 2 2 2
0 3 3 3 3
1 0 2 3 1
1 1 3 2 0
1 2 0 1 3
1 3 1 0 2
2 0 3 1 2
2 1 2 0 3
2 2 1 3 0
2 3 0 2 1
3 0 1 2 3
3 1 0 3 2
3 2 3 0 1
3 3 2 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

pour le carré hyper-gréco-latin

000 111 222 333
231 320 013 102
312 203 130 021
123 032 301 210

8.7 Autres types de plans d’expérience

La propriété d’orthogonalité a été jusqu’à présent le fil conducteur pour
les constructions de plans d’expérience. Lorsque les expériences sont parti-
culièrement coûteuses et qu’un plan orthogonal de petite taille n’existe pas
il est courant que l’objectif d’orthogonalité soit alors secondaire par rapport
à l’objectif de réduction du nombre des expériences. Un grand nombre de
méthodes ont été développées afin de construire de tels plans d’expérience,
nous présentons brièvement ci-dessous certaines d’entre elles. Le lecteur
désireux d’approfondir ce sujet pourra consulter l’ouvrage de Benoist et al. [3]
qui propose la construction explicite d’un grand nombre de configurations à
l’aide de méthodes variées. Remarquons que lorsque le plan d’expérience utilisé
n’est pas orthogonal il est, bien entendu, impossible d’estimer les paramètres
du modèle additif à l’aide des formules explicites de la proposition 8.5. Il faut
alors résoudre les équations normales sous forme générale (le plus souvent
de manière numérique) sans oublier d’utiliser les contraintes classiques de la
proposition 8.1 afin de garantir l’unicité de la solution.

8.7.1 Tables de Taguchi

Lorsque l’expérimentateur recherche un plan d’expérience pour facteurs qual-
itatifs de petite taille il est possible de se référer à des catalogues de plans
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classiques appelés tables de Taguchi. La plupart de ces tables ont été proposées
par le professeur G. Taguchi [96] dont les travaux ont eu pour principal objec-
tif de populariser l’utilisation des plans d’expérience dans le milieu industriel.
La spécificité d’une table de Taguchi est d’être associée à un graphe perme-
ttant de sélectionner les différents facteurs selon leur facilité ou non à être
modifiés. Cette problèmatique n’est pas abordée ici (voir l’ouvrage de Pillet
[72] pour plus de détails ou de manière plus succinte l’ouvrage de Souvay [92]).
Concernant maintenant le choix d’une table, Benoist et al. [3] en proposent un
grand nombre en annexe. Avec les notations de Taguchi elles sont désignées
par Lnha1

1 hα2
2 ...hαm

m où n est le nombre d’expériences à réaliser et αi est le
nombre de facteurs à hi modalités.

Exemple

Voici la table de Taguchi L122331 permettant d’étudier trois facteurs à
2 modalités ainsi qu’un facteur à 3 modalités à l’aide de 12 expériences.
Le plan d’expérience proposé ici est orthogonal et de taille minimale
d’après la proposition 8.4.

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
2 0 0 1
2 0 1 0
2 1 0 1
2 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

8.7.2 Transformations conservant l’orthogonalité

Lorsque la situation étudiée ne figure pas de manière exacte dans les tables
classiques il est alors courant de combiner celles-ci de diverses manières afin
d’obtenir de nouveaux plans d’expérience conservant l’orthogonalité des plans
initiaux. Deux techniques sont principalement utilisées, elles consistent (con-
sulter l’ouvrage de Benoist et al. [3] pour plus de détails) :

1) soit à remplacer un facteur par un plan,
2) soit, réciproquement, à remplacer un sous-plan par un facteur.

Ces techniques conservent l’orthogonalité lorsqu’elles sont appliquées à des
plans eux-mêmes orthogonaux et conservent aussi le nombre d’expériences.



338 8 Plans d’expérience pour facteurs qualitatifs

La méthode 1 conduit à une augmentation du nombre des facteurs con-
sidérés alors que la méthode 2 entrâıne une réduction du nombre des facteurs.
L’exemple ci-dessous détaille l’utilisation d’une de ces méthodes.

Exemple

Considérons ici 3 facteurs qualitatifs à 4 modalités. Ces différents fac-
teurs peuvent être analysés en 16 expériences à l’aide de la fraction
régulière définie par I =123 de matrice D1 (on a bien un plan orthog-
onal). Remplaçons alors la colonne du facteur trois (en gras) par un
plan. Ce facteur ayant 4 modalités il est nécessaire d’utiliser un plan
en 4 expériences. Utilisons alors le plan factoriel complet (orthogonal)
pour 2 facteurs à 2 modalités de matrice D2.

D1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 3
0 2 2
0 3 1
1 0 3
1 1 2
1 2 1
1 3 0
2 0 2
2 1 1
2 2 0
2 3 3
3 0 1
3 1 0
3 2 3
3 3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et D2 =

⎡

⎢
⎢
⎣

0 0
0 1
1 0
1 1

⎤

⎥
⎥
⎦ .

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 1 1 1
0 2 1 0
0 3 0 1
1 0 1 1
1 1 1 0
1 2 0 1
1 3 0 0
2 0 1 0
2 1 0 1
2 2 0 0
2 3 1 1
3 0 0 1
3 1 0 0
3 2 1 1
3 3 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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A partir de ces deux plans on construit le plan de matrice D de la
manière suivante : on remplace toute modalité i (en codage naturel)
du facteur 3 sélectionné ici par la (i + 1)-ième ligne complète de la
matrice D2. Le plan d’expérience de matrice D est un plan orthogonal
en 16 expériences pour 4 facteurs qualitatifs, deux d’entre eux étant
à 4 modalités et les deux autres à 2 modalités (on a donc un plan de
type L162242).

8.7.3 Plans produit

Afin d’obtenir de nouveaux plans orthogonaux il est aussi possible d’utiliser la
technique suivante, dite des plans produit. Considérons deux plans orthogo-
naux de matrices D1 et D2 ayant respectivement m1 facteurs et n1 expériences
pour le premier, m2 facteurs et n2 expériences pour le second. Le plan pro-
duit construit à partir de ces deux plans est de matrice D telle que chaque
ligne de D1 est répétée n2 fois en lui adjoignant toutes les expériences possibles
de D2.

Exemple

Considérons le plan de type L242431 de matrice D ci-dessous :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
0 2 0 0 0
0 2 0 1 1
0 2 1 0 1
0 2 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
1 2 0 0 0
1 2 0 1 1
1 2 1 0 1
1 2 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Ce plan d’expérience n’est autre que le plan produit obtenu à partir
du plan factoriel complet de type L62131 (décrit par la matrice D1

donnée ci-dessous) et de la fraction régulière de type L423 définie par
I =123 (matrice D2 donnée ci-dessous).

D1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 1
0 2
1 0
1 1
1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D2 =

⎡

⎢
⎢
⎣

0 0 0
0 1 1
1 0 1
1 1 0

⎤

⎥
⎥
⎦ .

Deux traits horizontaux dans la matrice D encadrent les lignes obten-
ues à partir du développement de la deuxième ligne de la matrice D1.
Ces deux plans étant orthogonaux il en résulte que le plan produit
est lui-même orthogonal. Remarquons cependant qu’il existe peut-
être un plan d’expérience orthogonal de plus petite taille car d’après
la proposition 8.4 le nombre d’expériences d’un tel plan doit vérifier :

n ≥ PPCM (4, 6) = 12.

Il en résulte que le plan produit est un plan d’expérience pour m1 + m2

facteurs en n1n2 expériences (voir l’exemple). Lorsque les deux plans initiaux
sont orthogonaux le plan produit est alors lui-aussi orthogonal (il est même
orthogonal pour des modèles plus complexes que le modèle additif étudié ici,
voir l’ouvrage de Benoist et al. [3]).

8.7.4 Tableaux orthogonaux

Une méthode classique afin d’obtenir la matrice d’un plan d’expérience con-
siste à rechercher celle-ci dans la classe des tableaux orthogonaux. D’un
point de vue théorique un tableau D ∈ M (n, m) à éléments dans un groupe
abélien fini G est qualifié de tableau orthogonal de force t (1 ≤ t ≤ m) sur
Gm si dans tout bloc formé de t colonnes de D les éléments de Gt figurent
un même nombre de fois λ. Tout l’intérêt de ce type de structure, d’après la
définition 8.2, est lié au fait qu’un plan d’expérience orthogonal pour le modèle
additif est donc associé à une matrice qui est forcément un tableau orthog-
onal de force 2. Pour plus d’informations concernant la classe des tableaux
orthogonaux ainsi que le lien existant entre tableau orthogonal de force t et
fraction régulière de résolution R le lecteur pourra se référer aux ouvrages de
Hedayat et al. [51], Collombier [19] ou bien à la thèse de Jourdan [53]. Con-
cernant maintenant la classe particulière des tableaux orthogonaux de force 2,
une méthode classique de construction est celle dite des différences, proposée
initialement par Bose et Bush [8]. L’ouvrage de Benoist et al. [3] s’intéresse
en détails à ce type de construction et propose en annexe bon nombre de
configurations classiques (voir l’exemple ci-dessous). La plupart des méthodes
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classiques de construction font intervenir des facteurs ayant un même nom-
bre h de modalités (plans symétriques). Les travaux de Wang et Wu [104]
proposent une extension au cas asymétrique.

Exemple

Considérons la matrice D suivante :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 1
1 0 0
1 1 1
2 0 0
2 1 1
3 0 1
3 1 0
4 0 1
4 1 0
5 0 1
5 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Il s’agit de la matrice (en codage naturel) d’un plan d’expérience pour
deux facteurs à 2 niveaux et un facteur à 6 niveaux obtenue à partir
d’une table dite à différences orthogonales (voir l’annexe 8 de Benoist
et al. [3]). Un tel plan d’expérience, de type L122261, est orthogonal
et de taille minimale.

8.7.5 Plans obtenus numériquement

Lorsque la plupart des méthodes théoriques de construction ne donnent pas
de bons résultats il est possible de s’orienter alors vers des algorithmes de con-
struction de plans d’expérience. Malgré la puissance de calcul des ordinateurs
modernes il est impossible en général de construire tous les plans possibles
(sauf dans les cas où très peu de facteurs interviennent) afin de sélectionner le
où les plans intéressants selon divers critères. En effet si, par exemple, m = 4
facteurs à h = 3 modalités interviennent une recherche exhaustive de tous
les plans d’expérience susceptibles d’être orthogonaux et de taille minimale
(c’est-à-dire n = 9 ici) conduit à un total de 336 � 1017 possibilités différentes
(puisque trois modalités peuvent intervenir dans chacun des 9 × 4 = 36 ter-
mes de la matrice du plan). Voila donc pourquoi il est nécessaire d’utiliser
des algorithmes capables de construire des plans d’expérience vérifiant, de
manière le plus souvent approchée, certaines conditions dites d’optimalité
(voir le chapitre 10 consacré à ces notions). Le lecteur souhaitant en savoir
plus pourra consulter, une nouvelle fois, l’ouvrage de Benoist et al. [3]. Citons
ici brièvement quelques techniques algorithmiques classiques :

1) les algorithmes basés sur le principe de propagation des contraintes
ont pour but de réduire au maximum la classe des plans à étudier. Pour la
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recherche, par exemple, d’un plan orthogonal il est inutile de considérer des
configurations ne vérifiant pas au préalable la contrainte selon laquelle chacune
des modalités des facteurs apparait un même nombre de fois, etc...

2) l’algorithme d’échange consiste, partant d’un plan d’expérience initial
donné ou bien déterminé au hasard, à rajouter itérativement (on supprimer
dans certains cas) des expériences de manière à optimiser au mieux un critère
d’optimalité choisi au préalable. Les principales versions en sont la méthode
DetMax proposée par Mitchell [65] ou bien la méthode de Federov [40].

Exemple

Reprenons l’exemple du paragraphe 8.7.3 avec 4 facteurs à deux
modalités et 1 facteur à trois modalités. Un plan orthogonal de type
L242431 a alors été proposé à l’aide de la technique des plans pro-
duits. Il existe cependant un plan d’expérience orthogonal plus petit,
de type L122431, obtenu de façon algorithmique. Sa matrice est donnée
par (voir l’ouvrage de Benoist et al. [3]) :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
2 0 1 0 0
2 0 1 1 1
2 1 0 0 1
2 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

8.8 Introduction d’effets d’interaction

Si le modèle additif étudié tout au long de ce chapitre s’avère peu perfor-
mant afin de modéliser correctement un phénomène aléatoire il est alors na-
turel d’utiliser un modèle plus riche. Ceci est réalisé le plus souvent à l’aide
de modèles à effets d’interactions (appelés encore modèles croisés). Une
présentation sommaire de ce type de modèle est faite ici (le lecteur souhaitant
aller plus loin pourra consulter les ouvrages de Cottrell et Coursol [23] ou
Collombier [19]). La plupart des techniques développées afin d’analyser un tel
modèle et construire des plans d’expérience adaptés sont similaires à celles
déjà présentées pour le modèle additif.

D’une manière générale considérons m facteurs qualitatifs ayant respec-
tivement h1, h2, ..., hm modalités. Considérons toujours le modèle statistique
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Y (x) = f (x)+ ε (x) avec x = (i1, i2, ..., im) ∈ E vecteur associé aux différents
codages naturels de l’expérience réalisée (voir le paragraphe 8.2.2). On utilise
alors un modèle à effets d’interactions si et seulement si :

f(i1, i2, ..., im) = β0 + β
[i1]
1 + β

[i2]
2 + ... + β

[im]
m + β

[i1i2]
12 + β

[i1i3]
13 + ... +

β
[im−1im]
(m−1)m .

On dit (pour i, j = 1, ..., m avec i < j, k = 1, ..., hi et l = 1, ..., hj) que β
[kl]
ij

est l’effet d’interaction entre les modalités k et l des facteurs i et j. Un tel
modèle est qualifié de complet car tous les effets d’interactions possibles entre
couples de facteurs sont considérés. Comme il existe hihj effets d’interactions
de la forme β

[kl]
ij le nombre total de paramètres d’un tel modèle est donc donné

par :

p∗ = 1 +
m∑

i=1

hi +
∑∑

i<j

hihj.

Matriciellement il est donc possible de réécrire le modèle à effets d’interactions
sous la forme Y = Xβ + ε avec :

X =
[
In X1 ... Xm X12 ... X(m−1)m

]

où Xi ∈ M (n, hi) (i = 1, ..., m) est toujours la matrice des indicatrices des
modalités du facteur i et maintenant Xij ∈ M (n, hihj) (i, j = 1, ..., m avec
i < j) est la matrice des indicatrices des modalités des interactions entre les
facteurs i et j.

Exemple

Considérons ici m = 2 facteurs à h1 = 2 et h2 = 3 modalités. Le
modèle à effets d’interactions est donné par (pour i1 ∈ {0, 1} et i2 ∈
{0, 1, 2}) :

f (i1, i2) = β0 + β
[i1]
1 + β

[i2]
2 + β

[i1i2]
12 .

Il est donc constitué par un total de p∗ = 12 paramètres qui sont :

β0, β
[0]
1 , β

[1]
1 , β

[0]
2 , β

[1]
2 , β

[2]
2 , β

[00]
12 , β

[01]
12 , β

[02]
12 , β

[10]
12 , β

[11]
12 , β

[12]
12 .

Tout comme pour le modèle additif il est clair que la matrice X du modèle à
effets d’interactions ne peut jamais être, par construction, de plein rang. On
utilise alors classiquement les contraintes d’identifications données ci-dessous
afin de la rendre régulière. On considère dans un premier temps les mêmes
contraintes que pour le modèle additif, c’est-à-dire :

∀ i = 1, ..., m ,
hi−1∑

j=0

β
[j]
i = 0

puis on rajoute les nouvelles contraintes relatives aux effets d’interactions
(pour tous les i, j = 1, ..., m tels que i < j) :
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∀ k = 0, ..., hi − 1 et ∀ l = 0, ..., hj − 1 ,
hj−1∑

l=0

β
[kl]
ij =

hi−1∑

k=0

β
[kl]
ij = 0.

Exemple

Pour l’exemple présenté précedemment, les effets des modalités de
chacun des facteurs doivent vérifier les contraintes suivantes :

β
[0]
1 + β

[1]
1 = 0 et β

[0]
2 + β

[1]
2 + β

[2]
2 = 0

Concernant maintenant les interactions on impose que :
{

β
[00]
12 + β

[01]
12 + β

[02]
12 = 0 et β

[10]
12 + β

[11]
12 + β

[12]
12 = 0

β
[00]
12 + β

[10]
12 = 0 , β

[01]
12 + β

[11]
12 = 0 et β

[02]
12 + β

[12]
12 = 0.

Il en résulte donc que seulement p = 6 des p∗ = 12 paramètres du
modèle sont réellement à estimer (attention les 5 contraintes imposées
aux effets d’interactions ne forment que 4 équations linéairement
indépendantes).

Dans le cas général ces contraintes font qu’un des paramètres n’est plus à
estimer pour le facteur i et de même (hi + hj − 1) des paramètres sont déduits
immédiatement des contraintes pour l’interaction entre les facteurs i et j. Le
nombre de paramètres inconnus du modèle à effets d’interactions est donc :

p = p∗−m−
∑∑

i<j

(hi + hj − 1) = 1+
m∑

i=1

(hi − 1)+
∑∑

i<j

(hi − 1) (hj − 1) .

Le problème de la détermination de plans d’expérience adaptés à un tel
modèle se pose maintenant. On vérifie dans un premier temps que tout
plan d’expérience factoriel complet permet d’analyser le modèle à effets
d’interactions de manière très simple (voir Cottrell et Coursol [23] pour plus
de détails). On obtient en effet (pour i, j = 1, ..., m avec i < j, k = 0, ..., hi−1
et l = 0, ..., hj − 1) les estimateurs des moindres carrés donnés explicitement

par les formules suivantes (en notant toujours Y
[k]

i la moyenne des réponses
où seule la modalité k du facteur i intervient et de même Y

[kl]

ij la moyenne
des réponses où seules les modalités k et l des facteurs respectifs i et j inter-
viennent) :

β̂0 = Y et

{
β̂
[k]
i = Y

[k]

i − Y ,

β̂
[kl]
ij = Y

[kl]

ij − Y
[k]

i − Y
[l]

j + Y .
.

Les dispersions de ces différents estimateurs vérifient de plus :

Var β̂0 =
σ2

n
, Var β̂

[k]
i =

σ2

n
(hi − 1) , Var β̂

[kl]
ij =

σ2

n
(hihj − hi − hj + 1) .
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Exemple

Toujours pour le même exemple développé durant toute cette section
on peut envisager d’utiliser un plan factoriel complet constitué des n =
6 expériences décrites par la matrice D (en codage naturel) suivante.

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 1
0 2
1 0
1 1
1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2
6
8
2
5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Considérons alors le vecteurs Y des réponses donné parallèlement à
cette matrice. Ce plan d’expérience est ici saturé (n = p) et les esti-
mateurs des moindres carrés des paramètres du modèle sont :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

β̂0 = +4.0,

β̂
[0]
1 = −1.0, β̂

[1]
1 = +1.0,

β̂
[0]
2 = +0.5, β̂

[1]
2 = −2.0, β̂

[2]
2 = +1.5,

β̂
[00]
12 = −2.5, β̂

[01]
12 = +1.0, β̂

[02]
12 = +1.5,

β̂
[10]
12 = +2.5, β̂

[11]
12 = −1.0, β̂

[12]
12 = −1.5.

Remarquons enfin que l’utilisation d’un plan factoriel complet peut rapide-
ment s’avérer être trop lourde. Il est alors possible de n’utiliser qu’une partie
de la totalité des expériences. On montre qu’une fraction régulière adaptée au
modèle à effets d’interactions doit être de résolution égale à V (ou plus).
Un catalogue de fractions de ce type est proposé dans l’ouvrage de Benoist
et al. [3].

8.9 Exemple d’application

Considérons ici un fabriquant d’automobiles dont l’objectif est de choisir un
nouveau train de pneumatiques devant équiper un de ses modèles. L’intérêt
principal du constructeur est d’effectuer ce choix de manière à obtenir une
consommation du véhicule la plus faible possible. Ce choix a été réduit à
m = 3 facteurs principaux à h = 4 modalités résumés dans le tableau suivant
(avec affectation arbitraire des diverses modalités à un codage naturel) :

Modalité 0 Modalité 1 Modalité 2 Modalité 3
Structure Diagonale Radiale Bidiagonale Renforcée
Modèle Classique Sport Economique Mixte
Gomme Type 1 Type 2 Type 3 Type 4
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Pour chaque type de pneumatique testé la réponse est la consommation
moyenne (exprimée en litres pour 100 km) mesurée suite à la réalisation de
plusieurs parcours types effectués sur des pistes privées dans des conditions
facilement reproductibles. Supposons que pour des raisons de coût de fabri-
cation et de temps d’expérimentation le constructeur ne souhaite pas tester
tous les pneus possibles (ce qui représenterait ici n = 43 = 64 expériences à
réaliser). D’après les résultats obtenus dans ce chapitre il est possible d’utiliser
une fraction régulière du plan factoriel complet. Considérons, par exemple, la
fraction régulière définie par la relation suivante :

I =123.

Le plan d’expérience ainsi obtenu (déjà présenté au paragraphe 8.5.2) est bien
orthogonal, constitué par seulement n = 43−1 = 16 expériences différentes.
La fraction régulière obtenue est de plus de résolution égale à III (car
G =

{
I, 123, 122232, 132333

}
). La matrice de ce plan est donnée ci-dessous en

codage naturel :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 3
0 2 2
0 3 1
1 0 3
1 1 2
1 2 1
1 3 0
2 0 2
2 1 1
2 2 0
2 3 3
3 0 1
3 1 0
3 2 3
3 3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Ceci correspond au protocole expérimental suivant (le vecteur des réponse
mesurées Y , en litres par 100 km, est donné parallèlement) :



8.9 Exemple d’application 347

Structure Modèle Gomme
Exp 1 Diagonale Classique Type 1
Exp 2 Diagonale Sport Type 4
Exp 3 Diagonale Economique Type 3
Exp 4 Diagonale Mixte Type 2
Exp 5 Radiale Classique Type 4
Exp 6 Radiale Sport Type 3
Exp 7 Radiale Economique Type 2
Exp 8 Radiale Mixte Type 1
Exp 9 Bidiagonale Classique Type 3
Exp 10 Bidiagonale Sport Type 2
Exp 11 Bidiagonale Economique Type 1
Exp 12 Bidiagonale Mixte Type 4
Exp 13 Renforcée Classique Type 2
Exp 14 Renforcée Sport Type 1
Exp 15 Renforcée Economique Type 4
Exp 16 Renforcée Mixte Type 3

Y
7.34
7.79
7.48
7.25
7.16
7.74
7.08
7.48
7.36
7.64
7.60
7.78
7.21
8.06
7.66
7.72

Le programme SAS suivant permet d’entrer ces données. La table ”donnees”
contient ici la matrice du plan en codage naturel, il est tout à fait possible
d’entrer aussi le protocole expérimental (noter str$, mod$ et gom$ pour entrer
les modalités sous forme non-numérique).

Data Donnees;
Input str mod gom y;
Cards;
0 0 0 7.34
0 1 3 7.79

...
expérience i et réponse i

...
3 2 3 7.66
3 3 2 7.72

Run;

On obtient alors le tableau d’analyse de la variance donné ci-dessous :

Source ddl S. carrés M. Carrés St. Test Proba.
Régression 9 1.099 0.122 46.68 0.0002 •••

Erreur 6 0.016 0.003
Total 15 1.114

La procédure SAS suivante peut être utilisée pour obtenir ces résultats (la
commande ”class” indique au logiciel d’utiliser les trois facteurs déclarés en
tant que variables qualitatives).
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Proc Glm data=Donnees;
Class str mod gom;
Model y = str mod gom;

Run;

Ces résultats montrent que le modèle est valide puisque l’hypothèse ”tous
les paramètres du modèle (sauf β0) sont nuls” peut être très clairement rejetée.
Ce modèle est de plus globalement bien ajusté puisque (valeur ”R-Square” de
la sortie SAS) :

R2 = 1− SSE

SST
� 0.986.

Un estimateur sans biais de la variance des résidus σ2 est donné par (valeur
”Root MSE” de la sortie SAS) :

σ̂2 = MSE = 0.003 (donc σ̂ � 0.051).

Voici maintenant les valeurs des différents estimateurs des moindres carrés
des paramètres du modèle. Le plan d’expérience utilisé étant orthogonal ces
estimateurs (ainsi que leurs dispersions) peuvent être obtenus explicitement
à l’aide des formules de la proposition 8.5.

Param. Estimat. Ec. type St. Test Proba.
β0 7.522 0.013 588.4 0.0001 •••

β
[0]
1 −0.057 0.022v −2.57 0.0416 •◦◦

β
[1]
1 −0.157 0.022 −7.09 0.0006 •••

β
[2]
1 0.073 0.022 3.30 0.0164 •••

β
[3]
1 0.141 0.022 6.35 0.0009 •••

β
[0]
2 −0.254 0.022 −11.49 0.0001 ••◦

β
[1]
2 0.286 0.022 12.90 0.0001 •••

β
[2]
2 −0.067 0.022 −3.02 0.0232 •◦◦

β
[3]
2 0.036 0.022 1.61 0.1570 ◦◦◦

β
[0]
3 0.098 0.022 4.43 0.0047 ••◦

β
[1]
3 −0.227 0.022 −10.25 0.0001 •••

β
[2]
3 0.053 0.022 2.40 0.0533 ◦◦◦

β
[3]
3 0.076 0.022 3.42 0.0143 •◦◦

Attention au fait que la méthode d’estimation des paramètres du modèle
utilisée par SAS diffère de celle présentée dans ce chapitre. En effet, au lieu
d’utiliser les contraintes d’identification de la proposition 8.1 ce logiciel utilise
la contrainte suivante : l’estimateur de la dernière modalité de chaque facteur
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est égal à zéro. Pour les modalité du facteur ”structure” SAS propose, par
exemple, les résultats suivants (ces estimateurs sont notés β̃ pour les distinguer
des estimateurs β̂ construits dans ce chapitre) :

β̃
[0]
1 = −0.1975 , β̃

[1]
1 = −0.2975 , β̃

[2]
1 = −0.0675 et β̃

[3]
1 = 0.

Afin de retrouver un résultat compatible avec les contraintes de la propo-
sition 8.1 on vérifie facilement que (pour la première modalité du facteur
”structure”) :

β̂
[0]
1 =

(

1− 1
4

)

β̃
[0]
1 − 1

4
β̃
[1]
1 − 1

4
β̃
[2]
1 − 1

4
β̃
[3]
1 .

De manière générale il suffit donc de centrer chacun des vecteurs β̃i. Cette
manipulation peut être introduite dans la procédure de la manière suivante :

Proc Glm data=Donnees;
Class str mod gom;
Model y = str mod gom;
Estimate ’Beta1 [0]’ Str 0.75 -0.25 -0.25 -0.25;
Estimate ’Beta1 [1]’ Str -0.25 0.75 -0.25 -0.25;

...
Run;

Ces résultats sont parfois résumés à l’aide du graphique suivant (source :
logiciel Nemrod) donnant une représentation directe des diverses valeurs des
estimateurs (les trois facteurs étant ici désignés par les lettres A, B et C).

–0.057A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

–0.157

–0.254

–0.067

–0.227

0.073

0.141

0.286

0.036

0.098

0.053

0.076

Fig. 8.1. Graphe des effets des modalités.
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Considérons enfin le tableau suivant comparant les réponses observées (Y
obs.) aux réponses moyennes prédites par le modèle (Ŷ pred.). La différence
entre ces deux valeurs donne les résidus estimés mesurant l’erreur commise.
La dernière colonne donne enfin l’écart-type associé à chacune des prédictions
(d’après la proposition 8.6 cette valeur est commune à toutes les expériences).

De manière générale on constate que la plupart des valeurs théoriques
prédites sont très proches des valeurs observées. Ceci est bien en accord avec la
valeur élevée du coefficient R2 obtenue précédemment. Ces résultats peuvent
une nouvelle fois être obtenus directement avec le logiciel SAS en rajoutant
l’option ”clm” après l’écriture du modèle utilisé.

Y obs. Ŷ pred. Y − Ŷ Ec. type
Exp 1 7.34 7.31 0.03 0.043
Exp 2 7.79 7.83 −0.04 0.043
Exp 3 7.48 7.45 0.03 0.043
Exp 4 7.25 7.27 −0.02 0.043
Exp 5 7.16 7.19 −0.03 0.043
Exp 6 7.74 7.70 0.04 0.043
Exp 7 7.08 7.07 0.01 0.043
Exp 8 7.48 7.50 −0.02 0.043
Exp 9 7.36 7.39 −0.03 0.043
Exp 10 7.64 7.65 −0.01 0.043
Exp 11 7.60 7.63 −0.03 0.043
Exp 12 7.78 7.71 0.07 0.043
Exp 13 7.21 7.18 0.03 0.043
Exp 14 8.06 8.05 0.01 0.043
Exp 15 7.66 7.67 −0.01 0.043
Exp 16 7.72 7.75 −0.03 0.043

Conclusion

Tous les résultats obtenus précédemment entrâınent que :

1) Le modèle additif mis en oeuvre sur une fraction régulière de résolution III
semble capable de décrire le phénomène étudié de façon tout à fait satisfaisante
ici.

2) Concernant les différentes structures de pneumatiques étudiées il apparâıt
clairement que la structure radiale permet de diminuer significativement la
consommation du véhicule. A l’opposé les structures bidiagonale et surtout
renforcée augmentent significativement cette même consommation.

3) Concernant les différents modèles de pneumatiques il apparâıt finalement
que le modèle classique est celui qui présente les meilleurs résultats vis-à-
vis de la consommation. A l’opposé le modèle sport a un effet clairement



8.10 Résumé 351

défavorable sur la consommation du véhicule. Le modèle économique sem-
ble avoir un effet positif sur la consommation (mais moindre que le modèle
classique) alors que le modèle mixte ne présente aucun effet significatif sur la
consommation du véhicule.

4) Concernant le type de gomme utilisé pour la fabrication des pneumatiques
le résultat est ici très clair puisque seule la gomme de type 2 a un effet
intéressant (et très significatif) au niveau de la diminution de la consommation
du véhicule.

En regroupant maintenant toutes ces constatations on en déduit d’après
la modélisation effectuée que le type de pneumatiques permettant de réduire
au maximum la consommation du véhicule a les caractéristiques suivantes :

Facteur Modalité
Structure Radiale
Modèle Classique
Gomme Type 2

Pour un tel type de pneumatiques le modèle théorique ajusté prédit une con-
sommation moyenne de :

6.88 litres par 100 km.

Ce résultat est toujours donné avec une précision de 0.043 pour son écart-
type. Le minimum détecté ici ne fait pas partie des expériences réalisées. Il
convient donc maintenant de fabriquer ce type de pneumatique afin de vérifier
si la réalité est conforme aux prévisions du modèle mathématique.

8.10 Résumé

Diverses configurations adaptées à l’analyse d’un modèle additif pour m fac-
teurs qualitatifs ont été présentées durant ce chapitre. On retiendra donc :

1) les plans factoriels complets,

2) les fractions régulières de résolution III (ou plus),

3) les plans en carrés latins,

4) les tables de Taguchi,

5) les plans obtenus par diverses transformations sur d’autres plans (conser-
vation de l’orthogonalité, plans produits),

6) les tableaux orthogonaux,
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7) les plans obtenus numériquement.

Un résumé exhaustif (sous forme de tableau par exemple) de ces config-
urations n’est évidemment plus possible ici à cause du trop grand nombre
de modalités pouvant intervenir de manière différente (h1 modalités pour le
facteur 1, ..., hm modalités pour le facteur m).
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COMPLEMENTS



354
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8.11 (Compléments) Démonstrations

Durant tout ce chapitre la matrice X du modèle est une matrice d’indicatrices
des modalités, elle n’est donc jamais de plein rang. D’après la proposition 8.1
une contrainte d’identification classique consiste à imposer à chaque sous-
vecteur βi (i = 1, ..., m) des effets relatifs au facteur i d’être un contraste de
R

hi . Ceci conduit alors à une nouvelle matrice du modèle, de plein rang cette
fois, tenant compte de cette contrainte. Cette matrice sera qualifiée dans la
suite de matrice du modèle centrée et notée X∗. Le lemme ci-dessous précise
le lien existant entre X et X∗ ainsi que certaines propriétés de cette nouvelle
matrice.

Lemme 8.A. (matrice du modèle centrée). Soit un modèle additif à m facteur
représenté par la matrice X ∈ M (n, p) sur un plan d’expérience donné. La
prise en compte des contraintes d’identification classiques transforme X en la
matrice du modèle centrée X∗ ∈M (n, p∗) donnée explicitement par :

X∗ =
[
In X1A1 ... XmAm

]
avec Ai =

[
Ihi−1

−t
Ihi−1

]

.

Chacune des matrices Ai ( i = 1, ..., m) vérifie de plus :

t
IhiAi = 0 et tAiAi = Ihi−1 + Jhi−1.

Démonstration. La forme de la matrice X∗ proposée ici est une simple
réécriture matricielle des contraintes d’identification classiques. Détaillons ceci
sur un exemple simple. Considérons la matrice Xi des indicatrices du facteur
i à hi = 3 modalités. Les contraintes classiques d’identification imposent alors
que :

2∑

j=0

β
[j]
i = 0 ⇔ β

[2]
i = −β

[0]
i − β

[1]
i .

Ceci montre donc qu’il est possible à l’aide de cette relation de supprimer
la dernière modalité du facteur i (i.e. la dernière colonne de Xi) puisqu’on
peut l’exprimer à l’aide des deux premières modalités (i.e. des deux premières
colonnes de Xi). On obtient donc par exemple (pour n = 6 expériences) :

Xi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒ X∗
i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
1 0
1 0
0 1

−1 −1
−1 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= XiAi avec Ai =

⎡

⎣
1 0
0 1

−1 −1

⎤

⎦ .

Ce résultat est généralisable sans la moindre difficulté au cas où hi modalités
interviennent. Les propriétés énoncées pour la matrice Ai sont immédiates. La
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relation t
IhiAi découle simplement du fait que, par construction, les colonnes

de Xi sont des contrastes de R
n. Pour la deuxième relation, il vient :

tAiAi =
[
Ihi−1 −Ihi−1

]
[

Ihi−1

−t
Ihi−1

]

= Ihi−1 + Ihi−1
t
Ihi−1 �

Proposition 8.5. Soit un plan d’expérience orthogonal pour m facteurs
qualitatifs à h1, ..., hm modalités, analysé à l’aide du modèle additif. Les es-
timateurs des moindres carrés de l’effet moyen général β0 ainsi que de
chacun des paramètres β

[j]
i (∀ i = 1, ..., m et ∀ j = 0, ..., hi − 1) sont donnés

par :
β̂0 = Y et β̂

[j]
i = Y

[j]

i − Y .

Concernant la dispersion de ces estimateurs il vient :

Var β̂0 =
σ2

n
et Var β̂

[j]
i =

σ2

n
(hi − 1) .

Démonstration. Le modèle statistique sous contraintes est :

Y = X∗β∗ + ε

où (d’après le lemme 8.A) la matrice du modèle centrée est donnée par :

X∗ =
[
In X1A1 ... XmAm

]
.

Le vecteur β∗ ∈ R
p∗

des paramètres inconnus du modèle sous contrainte est :

tβ∗ = t
(
β0

tβ∗
1 ... tβ∗

m

)

où β∗
i ∈ R

hi−1 (i = 1, ..., m) regroupe les effets β
[0]
i , ..., β

[hi−2]
i relatifs au

facteur i (i.e. le dernier effet a été supprimé). Il en découle immédiatement
que :

tX∗X∗ =

⎡

⎢
⎢
⎢
⎢
⎣

n t
InX1A1 . . . t

InXmAm

tA1
tX1In

tA1
tX1X1A1 . . . tA1

tX1XmAm

...
...

...
tAm

tXmIn
tAm

tXmX1A1 . . . tAm
tXmXmAm

⎤

⎥
⎥
⎥
⎥
⎦

.

Or, le plan d’expérience utilisé ayant été supposé orthogonal il vient donc
pour i, j = 1, ..., m avec i 	= j (voir la proposition 8.4 pour les propriétés des
plans orthogonaux ainsi que le lemme 8.A pour les propriétés de la matrice
Ai) :
⎧
⎪⎨

⎪⎩

t
InXiAi = (t

InXi)Ai = ri
t
IhiAi = 0,

tAi
tXiXiAi = ri

tAiIhiAi = ri
tAiAi = ri (Ihi−1 + Jhi−1) ,

tAi
tXiXjAj = tAiNijAj = λij

tAiJhihj Aj = λij (tAiIhi)
(
t
Ihj Aj

)
= 0.
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Ceci prouve donc que lorsque le plan d’expérience est orthogonal la matrice
tX∗X∗ est diagonale par blocs, donnée explicitement par :

tX∗X∗ = diag (n, r1 (Ih1−1 + Jh1−1) , ..., rm (Ihm−1 + Jhm−1)) .

Chaque bloc est donc complètement symétrique et d’après le lemme 5.A :

(Ihi−1 + Jhi−1)
−1 = Ihi−1 − 1

hi
Jhi−1.

La matrice des covariances de V

(
β̂∗
)

= σ2 (tX∗X∗)−1 est donc donnée par :

V

(
β̂∗
)

= σ2 diag
(

1
n

,
1
r1

(

Ih1−1 − 1
h1

Jh1−1

)

, ...,
1

rm

(

Ihm−1 − 1
hm

Jhm−1

))

.

On en déduit immédiatement les diverses dispersions des composantes de β̂∗

par lecture des termes diagonaux de cette matrice :

∀ i = 1, ..., m et ∀ j = 0, ..., hi − 2, Var β̂0 =
σ2

n
et Var β̂

[j]
i =

σ2

ri

(
hi − 1

hi

)

Remarquons aussi que les covariances non-nulles ne concernent que les couples
de composantes de chacun des vecteurs β∗

i relatif au facteur i et sont données
par :

∀ i = 1, ..., m et ∀ j, j
′
= 0, ..., hi − 2 avec j < j

′
, Cov

(

β̂
[j]
i , β̂

[j′]
i

)

= − σ2

rihi
.

Ce dernier résultat montre que la dispersion des paramètres estimés de la
forme β̂

[hi−1]
i (i.e. les paramètres supprimés dans la matrice centrée X∗) est

bien identique aux dispersion déjà obtenues puisqu’il vient :

β
[hi−1]
i = −

hi−2∑

j=0

β
[j]
i

⇒ Var β̂
[hi−1]
i =

hi−2∑

j=0

Var β̂
[j]
i +

∑∑

j<j′
Cov

(

β̂
[j]
i , β̂

[j′]
i

)

= σ2

[
(hi − 1)2

rihi
− 2C2

hi−1

rihi

]

=
σ2

ri

(
hi − 1

hi

)

.

Il est enfin possible de simplifier toutes ces expressions puisque le plan
d’expérience étant orthogonal on peut toujours remplacer ri par n/hi d’après
la proposition 8.4. Revenons maintenant aux équations normales afin de
déterminer la forme explicite des divers estimateurs. Ces équations sous la
contrainte utilisée sont :
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β̂∗ =
(
tX∗X∗)−1 tX∗Y.

Il a été prouvé précédemment que lorsque le plan est orthogonal la matrice
tX∗X∗ est diagonale par blocs. On en déduit alors, dans un premier temps,
que l’estimateur des moindres carrés de l’effet moyen général est donné par :

β̂0 =
1
n

t
InY = Y .

Le fait que tX∗X∗ soit diagonale par blocs implique aussi que les vecteurs
β∗

i ∈ R
hi−1 sont estimés indépendemment les uns des autres à l’aide des

relations suivantes :

∀ i = 1, ..., m , β̂∗
i =

1
ri

(

Ihi−1 − 1
hi

Jhi−1

)
tAi

tXiY. (1)

Comme Xi est la matrice des indicatrices des modalités du facteur i il vient
alors :

tXiY =

⎡

⎢
⎢
⎣

Y
[0]
i
...

Y
[hi−1]
i

⎤

⎥
⎥
⎦ et donc tAi

tXiY =

⎡

⎢
⎢
⎣

Y
[0]
i − Y

[hi−1]
i

...
Y

[hi−2]
i − Y

[hi−1]
i

⎤

⎥
⎥
⎦

d’après la forme générale de la matrice Ai (voir le lemme 8.A). Etudions
maintenant l’effet de l’opérateur (Ih−1 − (1/h)Jh−1) sur un vecteur v ∈ R

h−1.
On a alors :

(

Ih−1 − 1
h

Jh−1

)

v = v − 1
h

Ih−1

(
t
Ih−1v

)
= v −

(
h− 1

h

)

vIh−1.

Ce dernier résultat permet donc d’affirmer que, d’après la relation (1) :

β̂
[j]
i =

1
ri

[

Y
[j]
i − Y

[hi−1]
i −

(
hi − 1

hi

)(
1

hi − 1

hi−2∑

k=0

Y
[k]
i − Y

[hi−1]
i

)]

=
1
ri

Y
[j]
i − 1

ri

[

Y
[hi−1]
i +

1
hi

hi−2∑

k=0

Y
[k]
i −

(
hi − 1

hi

)

Y
[hi−1]
i

]

= Y
[j]

i − 1
rihi

hi−1∑

k=0

Y
[k]
i = Y

[j]

i − 1
hi

hi−1∑

k=0

Y
[k]

i = Y
[j]

i − Y .

Concernant maintenant l’effet de la modalité hi−1 du facteur i sur la réponse
on vérifie sans peine que :

hi−1∑

j=0

β̂
[j]
i = 0 ⇔ β̂

[hi−1]
i = Y

[hi−1]

i − Y .
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La proposition énoncée est donc bien démontrée �

Proposition 8.6. Soit un plan d’expérience orthogonal pour m facteurs
qualitatifs à h1, ..., hm modalités, analysé à l’aide du modèle additif. La dis-
persion de la réponse prédite au point x = (i1, i2, ..., im) ∈ E est :

Var Ŷ (x) =
σ2

n

(

1 +
m∑

i=1

(hi − 1)

)

.

Démonstration. La réponse prédite au point x = (i1, i2, ..., im) est donnée
par :

Ŷ (x) = β̂0 + β̂
[i1]
1 + β̂

[i2]
2 + ... + β̂[im]

m .

La démonstration de la proposition 8.5 a montré que tous les estimateurs
présents dans l’expression de Ŷ (x) sont deux-à-deux non-corrélés. Donc :

Var Ŷ (x) = Var β̂0 + Var β̂
[i1]
1 + ... + Var β̂[im]

m .

Les résultats de la proposition 8.5 permettent d’en déduire le résultat �

Proposition 8.10. Soit m facteurs qualitatifs tels que chacun d’eux a un
nombre premier h de modalités. Le groupe G engendré par les q générateurs
d’une fraction régulière est un groupe fini constitué par hq éléments.

Démonstration. Considérons une fraction régulière définie par la famille des
q générateursF = {M1, M2, ..., Mq} . On sait alors (voir par exemple l’ouvrage
de Calais [17]) que le groupe G engendré par les éléments de F est :

G =
{
M1M2...Mn , n ∈ N

∗ , Mi ∈ F ou M−1
i ∈ F} .

Remarquons que, par définition, on a : ∀ Mi ∈ F , Mh
i = I. Il en résulte qu’il

est inutile de répéter les éléments de F plus de (h− 1) fois et :

G =
{
Mβ1

1 Mβ2
2 ...Mβq

q , 0 ≤ βi < h , Mi ∈ F ou M−1
i ∈ F

}
.

Détaillons maintenant la condition M−1
i ∈ F . On a alors :

M−1
i ∈ F ⇔ ∃ M ∈ F tel que M−1

i = M

⇔ Mh−1
i = M puisque Mh

i = I

⇔ M
(h−1)2

i = Mh−1

⇔ Mi = Mh−1 puisque M
(h−1)2

i = MiM
h(h−2)
i = Mi.

Cette condition n’apporte donc aucune contrainte supplémentaire et :
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G =
{

Mβ1
1 Mβ2

2 ...Mβq
q , 0 ≤ βi < h , Mi ∈ F

}
.

Déterminons maintenant le nombre maximal d’éléments distincts que peut
avoir l’ensemble G. Dénombrons ses éléments de la manière suivante (en les
supposant provisoirement tous distincts dans le raisonnement ci-dessous) :

0) L’ensemble G contient un seul élément n’utilisant aucun des éléments
de F . Il s’agit de l’élément neutre I.

1) L’ensemble G contient q (h− 1) éléments (différents de l’élément neutre)
obtenus à partir d’un seul élément de F . En effet, à tout élément Mi de F
correspondent les (h− 1) éléments Mi, M2

i ,..., Mh−1
i de G. Cette construction

peut être faite avec q éléments de F distincts pour un total de q (h− 1)
constructions possibles.

2) L’ensemble G contient C2
q (h− 1)2 éléments (différents de l’élément neu-

tre) de la forme Mβi

i M
βj

j obtenus à partir de deux éléments Mi et Mj de F .

...

q) L’ensemble G contient Cq
q (h− 1)q = (h− 1)q éléments (différents de

l’élément neutre) obtenus avec la totalité des éléments de l’ensemble F .

En regroupant ces résultats et en utilisant la formule du binôme de Newton
il vient donc :

card (G) ≤
q∑

i=0

Ci
q (h− 1)i = hq.

Le cardinal de G est maintenant exactement égal à hq si et seulement si tous
les éléments obtenus ci-dessus sont distincts. Remarquons dans un premier
temps qu’il est nécessaire que le résultat énoncé en 1 soit vrai c’est-à-dire
que chacun des générateurs Mi doit engendrer les h éléments distincts I,
Mi, M2

i , ..., Mh−1
i . On sait cependant que tout générateur Mi engendre à

l’aide de ses puissances successives un groupe monogène qui est dans le cas
général isomorphe au groupe Z/qZ avec q diviseur de h (voir Calais [17]).
Lorsque h est premier tout générateur Mi engendre bien un groupe constitué
par h éléments distincts. Justifions enfin que tous les couples d’éléments de
G sont alors distincts. Supposons donc qu’il existe deux vecteurs distincts
(β1, ..., βq) ∈ {0, ..., h− 1}q et (γ1, ..., γq) ∈ {0, ..., h− 1}q tels que :

Mβ1
1 Mβ2

2 ...Mβq
q = Mγ1

1 Mγ2
2 ...Mγq

q .

En supposant maintenant (sans perte de généralité) que β1 	= 0 il vient en
multipliant les deux membres de l’égalité par Mh−γ1

1 :

Mh−γ1+β1
1

(
Mβ2

2 ...Mβq
q

)
= Mγ2

2 ...Mγq
q
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En effectuant de même une multiplication par Mh−β2
2 ...M

h−βq
q on peut af-

firmer qu’il existe des coefficients Δ1, ..., Δq ∈ {0, ..., h− 1} tels que :

MΔ1
1 = MΔ2

2 ...MΔq
q .

Comme h est un nombre premier on en déduit que Δ1 est toujours un
générateur du groupe Z/hZ donc il existe un entier a tel que aΔ1 ≡ 1 [h] . En
élevant les deux membres de l’égalité à la puissance a on aboutit à la forme
équivalente suivante :

M1 = M
Δ′

2
2 ...M

Δ′
q

q

avec Δ′
1, ..., Δ

′
q ∈ {0, ..., h− 1} . Une telle égalité est cependant impossible à

obtenir puisque par hypothèse F est une famille indépendante. On en déduit
alors que les hq éléments de G sont bien deux à deux distincts �



9

Plans d’expérience en blocs pour facteurs
qualitatifs

9.1 Introduction

La problématique des plans d’expérience en blocs a déjà été introduite au
chapitre 6 pour des facteurs quantitatifs. Elle s’impose de la même manière
pour des facteurs qualitatifs lorsque les expériences réalisées semblent être
hétérogènes. Les expériences homogènes sont alors regroupées en sous-
ensembles appelés blocs (issus d’un même arrivage de matière première, du
travail d’un même ouvrier, etc...) et le modèle est enrichi en introduisant
divers effets de bloc.

Ce chapitre introduit tout d’abord des généralités concernant l’utilisation
d’un modèle à effets de blocs pour facteurs qualitatifs. Le problème de
l’écriture du modèle, des diverses matrices remarquables et enfin des tech-
niques permettant de décomposer les équations normales en équations nor-
males réduites est abordé. Tous ces résultats sont ensuite appliqués aux trois
grandes classes de plans en blocs que sont les plans en blocs complets, les
plans en blocs incomplets équilibrés et enfin les plans en blocs partiellement
équilibrés. L’analyse statistique de tous ces plans d’expérience peut, une nou-
velle fois, être menée de manière explicite et très simple.

La plupart de ces configurations permettent facilement d’estimer les effets
des traitements. Ceci constitue la finalité de l’étude lorsque les effets des blocs
sont considérés comme des effets de nuisance dont l’estimation importe peu. Il
est cependant prouvé qu’il est facile d’estimer aussi les effets des blocs lorsque
cette information peut s’avérer utile.

Une extension est ensuite proposée en fin de chapitre concernant la classe
des plans d’expérience en blocs cycliques. Les techniques d’analyse de telles
configurations sont rapidement exposées. Un exemple d’application pratique,
mis en œuvre à l’aide du logiciel SAS, termine ce chapitre.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 9,
c© Springer-Verlag Berlin Heidelberg 2010
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9.2 Généralités

9.2.1 Modèle pour plans en blocs

Considérons ici le modèle classique pour plan en blocs où un facteur qualitatif
à h modalités est analysé à l’aide d’un plan d’expérience en b blocs constitués
respectivement par k1, ..., kb expériences (le nombre total d’expériences est
donc n =

∑
ki). De manière usuelle il est courant dans ce contexte de qualifier

de traitements les diverses modalités considérées. Afin de les associer à une
quantité numérique on utilise souvent dans la suite le codage naturel (voir
le paragraphe 8.2.1) et on note de manière abrégée le premier traitement
par T 0, le second par T 1, ... , le dernier par T (h− 1) (ou bien seulement par
0, 1, ..., h−1 s’il n’y a pas d’ambiguité). De même chacun des blocs est désigné
parfois de manière plus rapide par B1, B2, ..., Bb. Notons classiquement Yl (i)
la réponse observée lorsque le traitement i (0 ≤ i ≤ h− 1) est mis en oeuvre
dans le bloc l (1 ≤ l ≤ b). Le modèle (classique) à effets de blocs est alors le
modèle statistique tel que les réponses associées au bloc l vérifient la relation
Yl (i) = fl (i) + ε (i) avec :

fl(i) = β0 + γ[l] + β
[i]
T .

On peut encore écrire ce modèle sous la forme complète donnée ci-dessous :

fl(i) = β0 +
b∑

j1=1

γ[j1]δlj1 +
h−1∑

j2=0

β
[j2]
T δij2

où δij est le symbole de Kronecker (i.e. δij = 1 si i = j, δij = 0 sinon). Pour
ce modèle on dit que (avec l = 1, ..., b et i = 0, ..., h− 1) :

⎧
⎪⎪⎨

⎪⎪⎩

β0 (i.e. la constante) est l’effet moyen général,

γ[l] est l’effet du bloc l,

β
[i]
T est l’effet du traitement i.

Le nombre total de paramètres d’un tel modèle est donc :

p∗ = 1 + b + h.

Matriciellement ce modèle peut être mis sous la forme classique Y = Xβ + ε
avec :

X =
[

In XB XT

]

où XB ∈ M (n, b) est la matrice des indicatrices des blocs (notée aussi sim-
plement B comme dans les chapitres précédents) et XT ∈ M (n, h) est la
matrice des indicatrices des traitements. Le vecteur β ∈ R

p∗ peut alors être
partitionné en :

tβ = t
(
β0 | tγ | tβT

)
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où le sous-vecteur γ ∈ R
b regroupe tous les effets des blocs et le sous-vecteur

βT ∈ R
h regroupe tous les effets des traitements.

Remarque. Le modèle pour plans en blocs n’est donc qu’un cas particulier
du modèle additif étudié en détails lors du chapitre 8 car il peut être iden-
tifié naturellement à un modèle additif où seulement deux facteurs qualitatifs
interviennent : celui quantifiant les effets des traitements et celui quantifiant
les effets des blocs.

9.2.2 Matrices et valeurs remarquables

Voici quelques valeurs numériques et matricielles spécifiques à l’analyse des
plans d’expérience en blocs pour facteurs qualitatifs. Un plan d’expérience en
blocs est qualifié de complet lorsque tous les h traitements sont présents dans
chacun des blocs. Si ce n’est pas le cas le plan d’expérience est dit incomplet.
Lorsque le nombre de traitements ou le nombre de blocs est grand il est,
bien entendu, primordial de rechercher des configurations incomplètes afin de
diminuer le nombre d’expériences à réaliser. Concernant la structure des blocs
on pose :

K = tBB = diag (k1, ..., kb) .

Lorsque le plan est en blocs de même taille k il vient donc simplement
K = kIb. Concernant cette fois les traitements on pose :

R = tXT XT = diag (r1, ..., rh)

où ri désigne le nombre d’occurences du traitement i dans le plan d’expérience.
Lorsque tous les traitements apparaissent un même nombre r de fois le plan
est qualifié d’équirépliqué et il vient R = rIh. Tout comme pour les plans
d’expérience présentés dans le chapitre précédent la matrice d’incidence
N ∈M (h, b) est définie par :

N = tXT B.

Son terme général à l’intersection de la ligne i et la colonne j indique donc le
nombre de fois où le traitement i est appliqué au bloc j. Par sommation par
ligne ou par colonne cette matrice vérifie toujours les relations suivantes :

NIb = t (r1, ..., rh) et tNIh = t (k1, ..., kb) .

On limite par la suite l’étude (afin de réduire le nombre d’expériences) aux
plans d’expérience binaires c’est-à-dire pour lesquels la matrice N est unique-
ment constituée par les valeurs 0 ou 1 (en d’autres termes chacun des traite-
ments ne peut être appliqué plus d’une fois par bloc). On considère enfin la
matrice suivante, qualifiée de matrice de concordance et définie pour tout
plan d’expérience binaire par :
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C = N tN =

⎡

⎢
⎢
⎢
⎣

r1 λ12 ... λ1h

λ12 r2 ... λ2h

...
...

...
λ1h λ2h ... rh

⎤

⎥
⎥
⎥
⎦

.

La matrice C est carrée d’ordre h et lorsque le plan est binaire ses éléments
sont (puisqu’elle est obtenue, par définition, par produits scalaires des lignes
de N) :

1) les ri (i = 1, ..., h) sur la diagonale donnant le nombre d’occurences du
traitement i dans le plan d’expérience,

2) les λij (i, j = 1, ..., h avec i 	= j) hors de la diagonale donnant le nombre
d’apparitions simultanées des traitements i et j dans le plan d’expérience.

On peut dire aussi, de manière équivalente (dans le cas d’un plan binaire),
que ri est le nombre de blocs contenant le traitement i alors que λij est le
nombre de blocs contenant simultanément les traitements i et j.

Exemple

Considérons un phénomène aléatoire pour h = 3 traitements, analysé
à l’aide du plan d’expérience en b = 2 blocs suivant :

0 1
1 2

Bloc 1
Bloc 2

Cette notation classique traduit le fait que le bloc 1 est constitué
par les traitements 0 et 1 (en codage naturel) alors que le bloc 2
fait intervenir les traitements 1 et 2. Les expériences réalisées ici sont
associées au modèle linéaire de matrice X =

[
In B XT

]
où (en

commençant par les expériences du bloc 1 et en terminant par celles
du bloc 2) :

B =

⎡

⎢
⎢
⎣

1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎦ et XT =

⎡

⎢
⎢
⎣

1 0 0
0 1 0
0 1 0
0 0 1

⎤

⎥
⎥
⎦ .

Il en découle immédiatement que :

K =
[

2 0
0 2

]

et R =

⎡

⎣
1 0 0
0 2 0
0 0 1

⎤

⎦ .

Ces deux matrices traduisent bien le fait que le plan d’expérience
utilisé ici est en blocs de même taille (puisque k = 2) mais par contre
le plan n’est pas équirépliqué (puisque r1 = r3 = 1 mais r2 = 2).
Concernant maintenant les matrices d’incidence et de concordance il
vient :
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N = tXT B =

⎡

⎣
1 0
1 1
0 1

⎤

⎦ et C = N tN =

⎡

⎣
1 1 0
1 2 1
0 1 1

⎤

⎦ .

Le plan d’expérience considéré ici est donc bien binaire. On retrouve
les diverses valeurs ri (i = 1, 2, 3) sur la diagonale de C. Les valeurs
sur l’extra-diagonale indiquent que les traitements 1 et 2 ainsi que 2
et 3 apparaissent simultanément dans un bloc. Par contre aucun des
blocs ne contient à la fois les traitements 1 et 3.

9.2.3 Contraintes d’identification

Le modèle à effets de blocs est toujours surparamétré pour les mêmes raison
qu’avec le modèle pour facteurs qualitatifs (voir le paragraphe 8.2.6). Plus
précisemment la matrice du modèle X =

[
In B XT

]
a toujours un rang

inférieur à (p∗ − 2) puisque la somme des colonnes de chacune des matrices
B et XT est toujours égale à In. On supposera dans la suite que l’on utilise
un plan d’expérience tel que la matrice X ne présente aucun autre lien entre
ses colonnes, c’est-à-dire que :

rg (X) = p∗ − 2.

D’après les résultats généraux obtenus pour le modèle additif on peut rendre
le modèle étudié régulier à l’aide des contraintes d’identification classiques
suivantes :

Proposition 9.1. Des contraintes d’identification pour le modèle à effets
de blocs consistent à utiliser pour vecteur des effets des blocs γ (resp. des
traitements βT ) un contraste de R

b (resp. de R
h). En d’autres termes :

b∑

l=1

γ[l] = 0 et
h−1∑

i=0

β
[i]
T = 0.

Ces contraintes seront dites contraintes d’identification classiques. Il en
résulte que le nombre de paramètres inconnus du modèle est alors :

p = p∗ − 2 = b + h− 1.

9.2.4 Equations normales

Les équations normales du modèle à effets de blocs peuvent facilement
être décomposées en équations normales réduites permettant de déterminer
séparément les estimateurs des effets des blocs et des traitements. La résolution
explicite de ces diverses équations sera menée dans les sections suivantes
en fonction des plans d’expérience utilisés. Partant de la forme matricielle
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Y = Xβ + ε du modèle avec ici X =
[

In B XT

]
les équations normales

sont données par (tXX) β̂ = tXY avec donc :

tXX =

⎡

⎣
n t

InB t
InXT

tBIn
tBB tBXT

tXT In
tXT B tXT XT

⎤

⎦ =

⎡

⎣
n t

InB t
InXT

tBIn K tN
tXT In N R

⎤

⎦ .

On en déduit que les équations normales sont toujours obtenues explicitement
par le sytème d’équations suivant :

⎧
⎪⎨

⎪⎩

nβ̂0 + (t
InB) γ̂ + (t

InXT ) β̂T = t
InY

(tBIn) β̂0 + Kγ̂ + tNβ̂T = tBY

(tXT In) β̂0 + Nγ̂ + Rβ̂T = tXT Y

(E)

Recherche de β̂T

Partant du système d’équations (E) il est possible d’obtenir l’estimateur
des effets des traitements à l’aide du résultat ci-dessous :

Proposition 9.2. [�] L’estimateur des moindres carrés des effets des
traitements est solution des équations :

CT β̂T = QT

avec

{
CT ∈ M (h, h) définie par : CT = tXT P(ImB)⊥XT

QT contraste de R
h défini par : QT = tXT P(ImB)⊥Y

où P(ImB)⊥ désigne le projecteur orthogonal sur (Im B)⊥ c’est-à-dire que

P(ImB)⊥ = In − PImB = In −B (tBB)−1 tB.

Les équations présentées à la proposition 9.2 sont d’un grand intérêt, elles
sont souvent qualifiées d’équations normales réduites ou encore d’équations
intrablocs. De même la matrice CT = tXT P(ImB)⊥XT est parfois qualifiée
de matrice intrablocs réduite. Lorsque le plan d’expérience considéré est à
la fois équirépliqué et en blocs de même taille (ce qui sera souvent le cas par
la suite) il vient alors simplement :

CT = R− 1
k

tXT BtBXT = R− 1
k

N tN = rIh − 1
k

C.

La structure de la matrice CT est donc dans ce cas très proche de celle de
la matrice de concordance C. Concernant le vecteur QT remarquons que sa
détermination pratique est simple. En effet :

QT = tXT P(ImB)⊥Y = tXT Y − tXT PImBY.
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En supposant les observations du vecteur Y rangées dans l’ordre des blocs
alors PIm B est une matrice diagonale par blocs donnée par la relation PIm B =
diag (1/k1Jk1 , ..., 1/kbJkb

) et en désignant par Y Bi la moyenne des réponses
observées dans le bloc i il vient :

PImBY = t
(
Y B1, ..., Y B1, ..., Y Bb, ..., Y Bb

)

avec chacune des quantités Y Bi apparaissant ki fois dans ce vecteur. On en
déduit que les composantes du vecteur QT ∈ R

h sont données par (avec
i = 0, ..., h− 1 et Yl (i) la réponse obervée lorque le traitement i est appliqué
au bloc l) :

(QT )i =
∑

l / Ti∈Bl

(
Yl (i)− Y Bl

)

où la somme est réalisée sur tous les l (1 ≤ l ≤ b) tels que le traitement i
appartient au bloc l (voir l’exemple ci-dessous). Ce résultat permet de qualifier
dans la suite le vecteur QT de vecteur des sommes par traitements ajustées
par bloc.

Exemple

Reprenons l’exemple du paragraphe 9.2.2 et supposons que les n = 4
réponses sont données par :

Y = t (Y1 (0) , Y1 (1) , Y2 (1) , Y2 (2)) = t (10, 4, 6, 2) .

Les moyennes par bloc vérifient Y B1 = 7 et Y B2 = 4 donc :

QT =

⎡

⎣
(10− 7)

(4− 7) + (6− 4)
(2− 4)

⎤

⎦ =

⎡

⎣
3

−1
−2

⎤

⎦ .

Remarque. On ne détaille pas dans cet ouvrage les techniques d’analyse si-
multanée intrablocs et interblocs mais notons que parallèlement aux équations
intrablocs de la proposition 9.2 les équations dites interblocs sont :

(
tXT PImBXT

)
β̂∗

T = tXT PImBY.

Recherche de γ̂

Déterminons ici les équations normales réduites conduisant à l’estimation
des moindres carrés des effets des blocs. On montre alors, de manière similaire
à l’estimation des effets des traitements, que :

Proposition 9.3. [�] L’estimateur des moindres carrés des effets des blocs
est solution des équations :

CB γ̂ = QB
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avec

{
CB ∈M (b, b) définie par : CB = tBP(ImXT )⊥B

QB contraste de R
b défini par : QB = tBP(ImXT )⊥Y

où P(ImXT )⊥ désigne le projecteur orthogonal sur (Im XT )⊥ c’est-à-dire que

P(ImXT )⊥ = In − PImXT = In −XT (tXT XT )−1 tXT .

Les équations normales réduites obtenues ici sont (logiquement) identiques en
tout point à celles de la proposition 9.2 modulo une permutation des matrices
XT et B (et donc aussi des vecteurs βT et γ). Lorsque le plan d’expérience
est à la fois équirépliqué et en blocs de même taille alors la matrice CB prend
la forme simplifiée donnée ci-dessous :

CB = K − 1
r

tBXT
tXT B = kIb − 1

r
tNN.

Concernant maintenant le vecteur QB ∈ R
b on montre (en suivant la même

démarche que pour le vecteur QT ) que ses composantes sont données par (avec
i = 1, ..., b) :

(QB)i =
∑

j / Tj∈Bi

(
Yi (j)− Y Tj

)

où la somme est réalisée sur tous les j (0 ≤ j ≤ h− 1) tels que le traitement j
appartient au bloc i (voir l’exemple ci-dessous). Ce résultat permet de qualifier
dans la suite le vecteur QB de vecteur des sommes par blocs ajustées par
traitement.

Exemple

Reprenons l’exemple du paragraphe 9.2.2 et supposons toujours que
les n = 4 réponses sont données par :

Y = t (Y1 (0) , Y1 (1) , Y2 (1) , Y2 (2)) = t (10, 4, 6, 2) .

Comme les moyennes par traitement vérifient ici Y T0 = 10, Y T1 = 5
et Y T2 = 2 on en déduit alors que :

QB =
[

(10− 10) + (4− 5)
(6− 5) + (2− 5)

]

=
[−1

1

]

.

Recherche de β̂0

Terminons par l’estimateur des moindres carrés de l’effet moyen général
β0. Une fois les estimateurs β̂T et γ̂ déterminés il est obtenu aisément.

Proposition 9.4. [�] L’estimateur des moindres carrés de l’effet moyen
général est :

β̂0 =
1
n

[
t
InY − (

t
InB

)
γ̂ − (

t
InXT

)
β̂T

]
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où γ̂ et β̂T sont respectivement les estimateurs des moindres carrés des ef-
fets des blocs et des effets des traitements. Lorsque le plan d’expérience est
équirépliqué en blocs de même taille il vient simplement (avec les contraintes
d’identifications classiques) :

β̂0 =
1
n

t
InY = Y et Var β̂0 =

σ2

n
.

9.3 Plans en blocs complets

9.3.1 Définition et propriétés

Considérons ici la classe des plans en blocs pour facteurs qualitatifs la plus
simple à mettre en oeuvre, définie de la manière suivante :

Définition 9.5. Soit un phénomène aléatoire analysé à l’aide de h traite-
ments répartis en b blocs. On appelle plan d’expérience en blocs complets
toute configuration telle que chacun des b blocs contient l’ensemble des h
traitements.

Seuls les plans d’expérience binaires sont étudiés donc lorsque les quantités
h et b sont données il existe un unique plan en blocs complets (où chaque
traitement apparâıt une fois et une seule dans chacun des blocs). Un tel plan
sera désigné dans la suite par la notation CBD (h, b) issue de la terminologie
Complete Block Design. Les propriétés suivantes sont immédiates.

1) Chacun des blocs contient tous les traitements donc tout CBD (h, b) est
un plan d’expérience en blocs de même taille (avec k = h) et équirépliqué
(avec r = b). Le nombre total d’expériences réalisées est n = bk = rh.

2) Chacun des blocs contient tous les traitements donc la matrice
d’incidence d’un CBD (h, b) est donnée par :

N = Jhb = Ih
t
Ib.

3) La matrice de concordance d’un CBD (h, b) est alors :

C = N tN = JhbJbh =
(
Ih

t
Ib

) (
Ib

t
Ih

)
= bJh.

Exemple

Considérons h = 3 traitements à analyser en b = 2 blocs. On peut
alors proposer le plan d’expérience CBD (3, 2) donné par :

0 1 2
0 1 2

Bloc 1
Bloc 2
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Ce plan d’expérience est bien équirépliqué puisque chacun des traite-
ments figure dans r = 2 blocs, chacun des blocs étant de taille k = 3.
Le nombre total d’expériences à réaliser est n = bk = rh = 6. Les
matrices d’incidence et de concordance sont données ici par :

N =

⎡

⎣
1 1
1 1
1 1

⎤

⎦ et C =

⎡

⎣
2 2 2
2 2 2
2 2 2

⎤

⎦ .

9.3.2 Estimation des divers effets

Déterminons tout d’abord les formules explicites donnant les estimateurs des
effets des traitements ainsi que leur dispersion. D’après le paragraphe 9.2.4
l’estimateur des effets des traitements est solution des équations normales
réduites suivantes :

CT β̂T = QT .

Dans le cas d’un plan en blocs complets la matrice CT est très simple, donnée
par :

CT = rIh − 1
k
C = bIh − b

h
Jh puisque b = k et r = b.

La matrice CT est donc toujours ici une matrice complètement symétrique
singulière car b−(b/h)h = 0 (voir le lemme 5.A). Il en découle une infinité de
solutions pour le système des équations normales réduites. On montre cepen-
dant qu’il existe une unique solution vérifiant les contraintes d’identification
classiques :

Proposition 9.6. [�] Soit un plan d’expérience en blocs complets de type
CBD (h, b). L’estimateur des moindres carrés des effets des traitements
vérifiant les contraintes d’identification classiques est donné par :

β̂T =
1
b
QT et ∀ i = 0, ..., h− 1 , Var β̂

[i]
T = σ2 (h− 1)

n
.

En d’autres termes chacune des composantes de β̂T est obtenue ici de manière
très simple puisque :

∀ i = 0, ..., h− 1 , β̂
[i]
T = a (QT )i avec a =

1
b
.

D’après le paragraphe 9.2.4, (QT )i =
∑

l / Ti∈Bl

(
Yl (i)− Y Bl

)
et donc :

∀ i = 0, ..., h− 1 , β̂
[i]
T =

1
b

∑

l / Ti∈Bl

(
Yl (i)− Y Bl

)
.

Lorsque le plan d’expérience est complet chaque traitement i est présent dans
la totalité des b blocs, on a donc aussi l’expression suivante :
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∀ i = 0, ..., h− 1 , β̂
[i]
T = Y Ti − Y

avec Y Ti moyenne des observations associées au traitement i.

Exemple

Reprenons l’exemple du paragraphe 9.3.1 et montrons que dans le cas
d’une réponse déterministe la proposition 9.6 permet bien de retrouver
de manière exacte les divers effets des traitements du modèle utilisé.
Considérons le modèle à effets de blocs tel que :

β0 = 20 β
[0]
T = −5 γ[1] = −4

β
[1]
T = 1 γ[2] = 4

β
[2]
T = 4

Le plan d’expérience utilisé, de type CBD (3, 2) , ainsi que les n = 6
réponses sont alors données ci-dessous :

0 1 2
0 1 2

Bloc 1
Bloc 2

Réponses :
11 17 20
19 25 28

Par application de la proposition 9.6 il faut déterminer le vecteur QT

des sommes par traitements ajustées par bloc afin de retrouver les
divers effets des traitements. Les moyennes par blocs valent :

Y B1 = 16 et Y B2 = 24.

On en déduit ensuite que :

QT =

⎡

⎣
(11− Y B1) +

(
19− Y B2

)

(17− Y B1) +
(
25− Y B2

)

(20− Y B1) +
(
28− Y B2

)

⎤

⎦ =

⎡

⎣
−10

2
8

⎤

⎦ .

Vu que b = 2 blocs sont utilisés on retrouve bien les différentes valeurs
des effets des traitements avec l’estimateur β̂T = (1/2)QT .

Si l’estimation des effets des blocs est recherchée on démontre alors (de
manière tout à fait similaire ici au cas des traitements) que pour tout plan
d’expérience en blocs complets de type CBD (h, b) l’estimateur des moin-
dres carrés des effets des blocs vérifiant les contraintes d’identification clas-
siques est donné par :

γ̂ =
1
h

QB et ∀ l = 1, ..., b , Var γ̂[l] = σ2 (b− 1)
n

.

Là aussi cette formule peut être réécrite sous la forme suivante :

∀ l = 1, ..., b , γ̂[l] = Y Bl − Y
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avec Y Bl moyenne des observations du bloc l. Concernant enfin l’estimation
de l’effet moyen général, la proposition 9.4 permet d’affirmer que pour tout
plan d’expérience en blocs complets de type CBD (h, b) l’estimateur des
moindres carrés de l’effet moyen général est donné par :

β̂0 = Y et Var β̂0 =
σ2

n
.

Exemple

Reprenons encore l’exemple utilisé dans les deux paragraphes précédents.
Concernant l’effet moyen général on retrouve bien que :

β̂0 = Y = 20.

Afin d’estimer maintenant les divers effets des blocs il faut au préalable
déterminer les moyennes par traitements :

Y T0 = 15 , Y T1 = 21 et Y T2 = 24.

On en déduit que :

QB =
[(

11− Y T0

)
+
(
17− Y T1

)
+
(
20− Y T2

)

(
19− Y T0

)
+
(
25− Y T1

)
+
(
28− Y T2

)

]

=
[−12

12

]

.

Vu que h = 3 traitements interviennent ici on retrouve donc bien les
différentes valeurs des effets des blocs à l’aide de γ̂ = (1/3)QB.

9.4 Plans en blocs incomplets équilibrés

9.4.1 Définition et propriétés

Lorsque les expériences sont coûteuses ou longues à réaliser l’utilisation d’un
plan en blocs complets peut s’avérer très contraignante puisqu’il est nécessaire
de réaliser toutes les expériences possibles. C’est pourquoi il est naturel de
rechercher une classe de plans d’expérience en blocs de plus petite taille
présentant cependant la même facilité d’analyse que les plans complets. Ceci
conduit à la classe des plans en blocs incomplets équilibrés définie de la
manière suivante :

Définition 9.7. Soit un phénomène aléatoire analysé à l’aide de h traitements
répartis en b blocs. On appelle plan en blocs incomplets équilibré tout plan
binaire vérifiant les conditions suivantes :
1) chaque bloc est constitué par k expériences (avec k < h),
2) chaque traitement apparâıt dans r blocs,
3) chaque paire de traitements apparâıt dans λ blocs.
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Un plan d’expérience en blocs vérifiant ces trois conditions sera désormais
désigné par la notation BIBD (h, b, k, r, λ) issue de la terminologie Balanced
Incomplete Bloc Design. Les propriétés suivantes sont alors immédiates pour
tout BIBD :

1) Tout BIBD est (par hypothèse) un plan d’expérience en blocs de même
taille et équirépliqué. Le nombre total d’expériences à réaliser est donc
n = bk = rh.

2) La matrice d’incidence d’un BIBD ne peut pas être déterminée facilement
de manière générale mais, par contre, les hypothèses 2 et 3 de la définition 9.7
entrâınent que la matrice de concordance de tout BIBD (h, b, k, r, λ) est :

C = N tN = (r − λ) Ih + λJh.

Remarquons qu’il existe le lien suivant entre les paramètres h, b, k, r et λ :

Proposition 9.8. [�] Pour tout BIBD (h, b, k, r, λ) on a la relation :

r (k − 1) = λ (h− 1) .

Illustrons tout ceci à l’aide de l’exemple ci-dessous.

Exemple

Considérons h = 3 traitements à analyser en b = 3 blocs. Un plan
d’expérience classique est donné par la configuration suivante :

0 1
1 2

0 2

Bloc 1
Bloc 2
Bloc 3

De manière équivalente ce plan d’expérience peut aussi être décrit par
le tableau suivant (déjà présenté à la section 5.4 afin de construire
des plans de Box et Behnken) où l’appartenance d’un traitement à un
bloc est signifiée par une croix.

Trait. 0 Trait. 1 Trait. 2
Bloc 1 × ×
Bloc 2 × ×
Bloc 3 × ×

On constate sans difficulté que ce plan d’expérience est bien en blocs
incomplets équilibré de type BIBD (3, 3, 2, 2, 1) (i.e. h = 3, b = 3,
k = 2, r = 2 et λ = 1). Sa matrice de concordance est :

C =

⎡

⎣
2 1 1
1 2 1
1 1 2

⎤

⎦ = I3 + J3.

On a bien r (k − 1) = λ (h− 1) = 2.
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9.4.2 Estimation des divers effets

L’objectif principal d’une étude menée à l’aide d’un BIBD est l’estimation des
divers effets des traitements. On a alors le résultat suivant :

Proposition 9.9. [�] Soit un plan d’expérience en blocs incomplets
équilibré de typeBIBD (h, b, k, r, λ). L’estimateur des moindres carrés des
effets des traitements vérifiant les contraintes d’identification classiques est :

β̂T =
k

λh
QT et ∀ i = 0, ..., h− 1 , Var β̂

[i]
T = σ2 k (h− 1)

λh2
.

On constate donc qu’une nouvelle fois chacune des composantes du vecteur
β̂T est obtenue de manière très simple puisque :

∀ i = 0, ..., h− 1 , β̂
[i]
T = a (QT )i avec a =

k

λh
.

Dans le ”cas limite” du plan en blocs complets il vient λ = b et k = h et on
retrouve bien la valeur a = 1/b de la proposition 9.6. D’après le paragraphe
9.2.4 on sait aussi que (QT )i =

∑
l / Ti∈Bl

(
Yl (i)− Y Bl

)
donc, de manière

équivalente :

∀ i = 0, ..., h− 1 , β̂
[i]
T =

k

λh

∑

l / Ti∈Bl

(
Yl (i)− Y Bl

)
.

Exemple

Reprenons l’exemple du paragraphe 9.4.1 et montrons que dans le cas
d’une réponse déterministe la proposition 9.9 permet bien de retrouver
les valeurs exactes des divers effets des traitements du modèle étudié.
Considérons le modèle à effets de blocs tel que :

β0 = 20 β
[0]
T = −5 γ[1] = −4

β
[1]
T = 1 γ[2] = 4

β
[2]
T = 4 γ[3] = 0

Le plan d’expérience complet impose ici la réalisation d’un total de 9
expériences. L’utilisation du BIBD (3, 3, 2, 2, 1) présenté dans le para-
graphe précédent réduit ce nombre à n = 6 :

0 1
1 2

0 2

Bloc 1
Bloc 2
Bloc 3

Réponses :
11 17

25 28
15 24

Le vecteur QT des sommes par traitements ajustées par bloc est donné
par (puisque Y B1 = 14, Y B2 = 26.5 et Y B3 = 19.5) :
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QT =

⎡

⎣
(11− Y B1) +

(
15− Y B3

)

(17− Y B1) +
(
25− Y B2

)

(28− Y B2) +
(
24− Y B3

)

⎤

⎦ =

⎡

⎣
−7.5

1.5
6.0

⎤

⎦ .

On retrouve bien les différentes valeurs des effets des traitements
utilisées à l’aide de l’estimateur β̂T = (2/3)QT .

Si l’estimation des effets des blocs est recherchée alors tout BIBD permet aussi
d’atteindre facilement cet objectif. On vérifie en effet que pour tout plan
d’expérience en blocs incomplets équilibré de type BIBD (h, b, k, r, λ)
l’estimateur des moindres carrés des effets des blocs vérifiant les contraintes
d’identification classiques est :

γ̂ =
1
k

(

Ib +
1
λh

tNN

)

QB.

Concernant les différentes dispersions il vient :

∀ l = 1, ..., b , Var γ̂[l] = σ2

(
1
k
− 1

rh
+

(h− k)
h2λ

)

.

Pour un calcul plus direct, les divers éléments de la matrice tNN sont obtenus
par produits scalaires des colonnes de N . Il en résulte que le terme général de
tNN est δij (∀ i, j = 1, ..., b), entier naturel égal au nombre de traitements
communs aux blocs i et j (en particulier δii = k puisque le plan est en blocs
de même taille k et δij = 0 lorsque les blocs i et j sont d’intersection vide).
Chacun des estimateurs des effets des blocs est donc obtenu par la relation
suivante (∀ l = 1, ..., b) :

γ̂[l] =
b∑

i=1

ali (QB)i

où :
all =

1
k

+
δll

kλh
=

1
k

+
1

λh
et ali =

δli

kλh
pour i 	= l.

Tout plan en blocs incomplets équilibré est à la fois équirépliqué et en blocs
de même taille. La proposition 9.4 permet donc d’affirmer que pour tout plan
d’expérience en blocs incomplets équilibré de type BIBD (h, b, k, r, λ)
l’estimateur des moindres carrés de l’effet moyen général est donné par :

β̂0 = Y et Var β̂0 =
σ2

n
.

Exemple

Reprenons l’exemple utilisé dans les paragraphes précédents. Concer-
nant l’effet moyen général on retrouve bien que :

β̂0 = Y = 20.
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Les moyennes par traitement sont Y T0 = 13, Y T1 = 21 et Y T2 = 26
donc le vecteur QB des sommes par blocs ajustées par traitement est
donné par :

QB =

⎡

⎣

(
11− Y T0

)
+
(
17− Y T1

)

(
25− Y T1

)
+
(
28− Y T2

)

(
15− Y T0

)
+
(
24− Y T2

)

⎤

⎦ =

⎡

⎣
−6

6
0

⎤

⎦ .

On retrouve bien (par exemple) l’estimateur de l’effet du premier bloc
à l’aide de la formule suivante :

γ̂[1] = a11 (QB)1 + a12 (QB)2 + a13 (QB)3

avec δ12 = δ13 = 1 (nombre de traitements communs aux blocs 1 et 2
ainsi que 1 et 3) ce qui entrâıne que :

a11 =
1
k

+
1
λh

=
5
6

et a12 = a13 =
δli

kλh
=

1
6
.

En conclusion il vient donc :

γ̂[1] =
5
6

(−6) +
1
6

(6) = −4.

9.4.3 Construction des BIBD

Il vient d’être montré que l’analyse statistique d’un BIBD est très simple à
mener. Le problème de l’utilisation de cette classe de plans d’expérience se
situe cependant en amont car il peut s’avérer complexe pour une situation
donnée, voire impossible, de construire une configuration en blocs incomplets
équilibrés. En effet le BIBD (4, 3, 2, 1, 1), par exemple, n’existe pas car la rela-
tion λ (h− 1) = r (k − 1) n’est pas vérifiée. Le problème de la construction de
ce type de plans a été historiquement abordé par un grand nombre d’auteurs.
Les tous premiers résultats sont dus à Bose [7] sous forme d’un ”catalogue”
de BIBD pour des tailles de blocs et des nombre de réplications relativement
faibles. La méthode classique dite des différences est présentée ici, d’autres
méthodes algébriques de construction des BIBD sont exposées, par exemple,
dans l’ouvrage de John [52].

Considérons h traitements codés usuellement par l’ensemble {0, 1, ..., h− 1}
identifié au groupe Z/hZ muni de l’addition modulo h. Soit un sous-ensemble
Φ de {0, 1, ..., h− 1} à h∗ éléments. On s’intéresse dans la suite à toutes
les différences de couples d’éléments de Φ, il en existe donc un total de
A2

h∗ = h∗ (h∗ − 1) à évaluer (non forcément distinctes).

Exemple

Pour h = 7 traitements considérons Φ = {0, 1, 2} . Les différences de
tous les couples d’éléments de Φ sont données ici par :



9.4 Plans en blocs incomplets équilibrés 379

0− 1 = 6, 0− 2 = 5, 1− 0 = 1,
1− 2 = 6, 2− 0 = 2, 2− 1 = 1.

On définit alors la notion d’ensemble aux différences de la manière suivante :

Définition 9.10. Soit Φ un sous-ensemble à h∗ élements de l’ensemble des
traitements {0, 1, ..., h− 1} . On dit que Φ est un ensemble aux différences
si et seulement si les h∗ (h∗ − 1) différences obtenues dans Φ font apparâıtre
tous les élements non-nuls de {0, 1, ..., h− 1} un même nombre de fois (noté
λ par la suite).

Illustrons ceci à l’aide des exemples suivants.

Exemple

L’exemple traité précédemment pour h = 7 et Φ = {0, 1, 2} n’est
pas un ensemble aux différences puisque les différences ne font jamais
apparâıtre le traitement 3. Toujours pour h = 7 traitements on peut
par contre remarquer que Φ = {0, 1, 3} est bien un ensemble aux
différences puisqu’alors toutes les différences sont données par :

0− 1 = 6, 0− 3 = 4, 1− 0 = 1,
1− 3 = 5, 3− 0 = 3, 3− 1 = 2.

Tous les éléments non nuls de l’ensemble des traitements {0, 1, 2, 3, 4, 5, 6}
apparaissent donc bien λ = 1 fois.

Ceci étant posé le résultat principal suivant est dû à Bose [7] (dans l’énoncé
on appelle plan cyclique tout plan d’expérience en blocs dont les blocs sont
obtenus par permutations circulaires de l’ensemble Φ, voir la section 9.6 pour
plus de détails) :

Proposition 9.11. Soit un phénomène aléatoire où h traitements sont étudiés
et Φ un ensemble aux différences à h∗ éléments (tel que chaque différence non-
nulle apparâıt exactement λ fois). Le plan d’expérience cyclique engendré
par le bloc Φ est alors toujours un plan en blocs incomplets équilibré de type
BIBD (h, b, k, r, λ) avec :

b = h et r = k = h∗.

Un BIBD (h, b, k, r, λ) tel que b = h et r = k est souvent qualifié de
symétrique. Illustrons une nouvelle fois ceci à l’aide d’un exemple.

Exemple

On vérifie que pour h = 4 traitements l’ensemble Φ = {0, 1, 2}
est bien un ensemble aux différences. On en déduit que le plan
d’expérience suivant, engendré par le bloc Φ, est bien un BIBD de
type BIBD (4, 4, 3, 3, 2) :
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0 1 2
1 2 3

0 2 3
0 1 3

Bloc 1
Bloc 2
Bloc 3
Bloc 4

9.5 Plans en blocs partiellement équilibrés

9.5.1 Définition et propriétés

D’après les résultats précédents l’utilisation des plans en blocs incomplets
équilibré est très simple mais leur construction peut s’avérer complexe. Ceci
est dû principalement aux hypothèses très contraignantes (voir la définition
9.7) que doivent vérifier de tels plans. En particulier d’après la proposition
9.8 il est nécessaire que l’on ait (puisque bk = rh) :

λ =
r (k − 1)

h− 1
=

bk (k − 1)
h (h− 1)

∈ N.

L’idée à la base de la classe des plans en blocs partiellement équilibrés est de
s’affranchir de cette contrainte. En d’autres termes on n’impose plus ici que
chaque paire de traitements apparaisse dans exactement λ blocs. De manière
équivalente, mais exprimé cette fois en terme de matrice de concordance, il
existe une seule valeur λ extradiagonale dans le cas des plans en blocs in-
complets équilibrés alors que pour les plans partiellement équilibrés plusieurs
valeurs différentes pourront être prises. On se limite ici au cas où la matrice
de concordance ne peut avoir que deux valeurs extradiagonales λ1 et λ2, les
plans d’expérience vérifiant une telle propriété sont dits à deux schémas
d’association.

Définition 9.12. Soit un phénomène aléatoire où h traitements sont étudiés
et codés par l’ensemble {0, 1, ..., h− 1} . Supposons cet ensemble partitionné
en n2 sous-ensembles Δ1, ..., Δn2 chacun étant constitué de n1 éléments
(donc h = n1n2). Deux traitements différents sont alors qualifiés d’associés
d’ordre 1 s’ils appartiennent à un même ensemble Δi (i = 1, ..., n2),
d’associés d’ordre 2 sinon.

Illustrons ceci à l’aide d’un exemple élémentaire.

Exemple

Considérons h = 4 traitements codés à l’aide de l’ensemble {0, 1, 2, 3} .
On peut alors, par exemple, effectuer la décomposition suivante :

{0, 1, 2, 3} = Δ1 ∪Δ2 avec Δ1 = {0, 1} et Δ2 = {2, 3} .

L’ensemble des traitements est ainsi partitionné en n2 = 2 ensembles
constitués chacun par n1 = 2 éléments. Les traitements 0 et 1 sont
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associés d’ordre 1, les traitements 0 et 2 sont associés d’ordre 2, etc
...

Ceci permet de définir ci-dessous le type de plans d’expérience étudiés ici :

Définition 9.13. Soit un phénomène aléatoire analysé à l’aide de h traite-
ments répartis en b blocs. Suppposons l’ensemble des traitements partitionné
en n2 sous-ensembles à n1 éléments . On appelle alors plan partiellement
équilibré à deux schémas d’association tout plan binaire vérifiant les
conditions suivantes :
1) chaque bloc est constitué par k expériences (avec k < h),
2) chaque traitement apparâıt dans r blocs,
3) chaque paire de traitements associés d’ordre 1 apparâıt dans λ1 blocs,
4) chaque paire de traitements associés d’ordre 2 apparâıt dans λ2 blocs.

Un plan d’expérience en blocs vérifiant les quatre conditions imposées à la
définition 9.13 sera désormais désigné par la notation GDD (h, b, k, r, λ1, λ2)
issue de la terminologie Group Divisible Design. Les propriétés suivantes sont
immédiates :

1) Tout GDD est (par hypothèse) un plan en blocs de même taille et
équirépliqué, le nombre total d’expériences à réaliser est donc n = bk = rh.

2) La classe des GDD généralise celle des BIBD dans le sens où un BIBD
n’est autre qu’un GDD où l’ensemble des traitements n’est pas partitionné
(i.e. toutes les paires de traitements sont associés d’ordre 1).

3) La matrice d’incidence d’un GDD ne peut pas être déterminée facilement de
manière générale mais, par contre, les hypothèse 2, 3 et 4 de la définition 9.13
entrâınent que la matrice de concordance de tout GDD (h, b, k, r, λ1, λ2)
peut toujours être ramenée (en recodant éventuellement de manière différente
les diverses modalités) à une matrice en blocs de la forme suivante :

C = N tN =
⎡

⎢
⎢
⎢
⎣

(r − λ1) In1 + λ1Jn1 λ2Jn1 . . . λ2Jn1

λ2Jn1 (r − λ1) In1 + λ1Jn1 . . . λ2Jn1

...
...

...
λ2Jn1 λ2Jn1 . . . (r − λ1) In1 + λ1Jn1

⎤

⎥
⎥
⎥
⎦

.

Il existe encore un lien entre les paramètres h, b, k, r, λ1 et λ2 donné par :

Proposition 9.14. [�] Pour tout GDD (h, b, k, r, λ1, λ2) tel que l’ensemble
des traitements est partitionné en n2 sous-ensembles à n1 éléments on a :

r (k − 1) = λ1 (n1 − 1) + λ2n1 (n2 − 1) .

Illustrons tout ceci.
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Exemple

Considérons toujours h = 4 traitements à analyser en b = 4 blocs.
A partir de la partition de l’ensemble des traitements {0, 1, 2, 3} =
{0, 1} ∪ {2, 3} en n2 = 2 sous-ensembles à n1 = 2 éléments on peut
proposer la configuration donnée ci-dessous :

0 2
0 3

1 2
1 3

Bloc 1
Bloc 2
Bloc 3
Bloc 4

Tous les couples associés à l’ordre 1 n’apparaissent jamais ensemble
dans un bloc alors que tous les couples associés à l’ordre 2 apparaissent
tous une fois (λ1 = 0 et λ2 = 1). Il en résulte que le plan d’expérience
présenté est de type GDD (4, 4, 2, 2, 0, 1) . Sa matrice de concordance
est :

C =

⎡

⎢
⎢
⎣

2 0 1 1
0 2 1 1
1 1 2 0
1 1 0 2

⎤

⎥
⎥
⎦ .

Un tel plan ne nécessite que n = 8 expériences soit la moitié du nombre
requis par le plan complet correspondant (il n’existe pas de plus de
BIBD constitué par des blocs de taille 2).

9.5.2 Estimation des divers effets

Une nouvelle fois l’objectif principal lors de la mise en oeuvre d’un plan
d’expérience partiellement équilibré est l’estimation des divers effets des traite-
ments. On a alors le résultat suivant :

Proposition 9.15. [�] Soit un plan d’expérience partiellement équilibré
à deux schémas d’association de type GDD (h, b, k, r, λ1, λ2) tel que
l’ensemble des traitements est partitionné en n2 sous-ensembles à n1 éléments.
L’estimateur des moindres carrés des effets des traitements vérifiant les con-
traintes d’identification classiques est donné par (avec U matrice d’ordre h
diagonale par blocs telle que U = diag (Jn1 , ..., Jn1)):

β̂T =
k

r (k − 1) + λ1

[

Ih − (λ2 − λ1)
hλ2

U

]

QT .

Concernant les différentes dispersions il vient :

∀ i = 0, ..., h− 1 , Var β̂
[i]
T =

σ2k

(r (k − 1) + λ1)
2

[

r (k − 1) +
λ2n1 (n2 − 1) (λ2 − λ1)

hλ2

(

n1
(λ2 − λ1)

hλ2
− 2

)]

.
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Remarque. Contrairement à la situation pour les plans complets ou les plans
en blocs incomplets équilibrés, un plan partiellement équilibré à deux schémas
d’associations n’est pas toujours régulier (i.e. l’estimateur des effets des
traitements d’un GDD peut ne pas exister). En effet, la formule obtenue à
la proposition 9.15 montre qu’il est impossible de déterminer l’estimateur β̂T

lorsque :
r (k − 1) + λ1 = 0 ou λ2 = 0.

La première condition est facile à éviter en pratique (car généralement k ≥ 2)
mais il conviendra dans la suite d’éviter toute configuration telle que λ2 = 0
(i.e. toute configuration telle que les traitements associés à l’ordre deux
n’apparaissent jamais simultanément dans un bloc). Le lecteur pourra consul-
ter l’ouvrage de John [52] (chapitre 5) pour plus d’informations concernant la
nature d’un GDD.

Chaque composante du vecteur β̂T peut aussi être écrite sous la forme
suivante :

∀ i = 0, ..., h− 1 , β̂
[i]
T = a

⎡

⎣(QT )i − b

⎛

⎝(QT )i +
∑

j / {i,j}∝1

(QT )j

⎞

⎠

⎤

⎦

où a = k/ (r (k − 1) + λ1) , b = (λ2 − λ1) /hλ2 et la notation (i, j) ∝ 1 traduit
le fait que le couple de traitements i et j sont associés à l’ordre 1 (par hy-
pothèse la somme

∑
j / {i,j}∝1porte toujours sur n1 − 1 éléments).

Exemple

Considérons une nouvelle fois l’exemple du GDD (4, 4, 2, 2, 0, 1) du
paragraphe 9.5.1 et supposons que les réponses observées sont détermini-
stes, obtenues à partir du modèle à effets de blocs tel que :

β0 = 20 β
[0]
T = −5 γ[1] = −6

β
[1]
T = 2 γ[2] = −2

β
[2]
T = 2 γ[3] = 0

β
[3]
T = 1 γ[3] = 8

L’utilisation du plan partiellement équilibré à deux schémas d’association
conduit donc à l’observation des réponses suivantes.

0 2
0 3

1 2
1 3

Bloc 1
Bloc 2
Bloc 3
Bloc 4

Réponses :

9 16
13 19

22 22
30 29

Le vecteur QT des sommes par traitements ajustées par bloc est alors
donné par (car Y B1 = 12.5, Y B2 = 16, Y B3 = 22 et Y B4 = 29.5) :
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QT =

⎡

⎢
⎢
⎣

(9− 12.5) + (13− 16)
(22− 22) + (30− 29.5)
(16− 12.5) + (22− 22)
(19− 16) + (29− 29.5)

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−6.5
0.5
3.5
2.5

⎤

⎥
⎥
⎦ .

Pour appliquer les formules établies suite à la proposition 9.15 il faut
déterminer les constantes suivantes :

a =
k

r (k − 1) + λ1
= 1 et b =

(λ2 − λ1)
hλ2

=
1
4
.

L’estimateur β̂
[0]
T de l’effet du traitement 0 est alors (puisque le traite-

ment 0 n’est associé à l’ordre 1 qu’avec le traitement 1) :

β̂
[0]
T =

⎡

⎣
3
4

(QT )0 −
1
4

∑

j / {0,j}∝1

(QT )j

⎤

⎦ =
3
4

(−6.5)− 1
4

(0.5) = −5.

Il en va de même pour la détermination de tous les autres estimateurs.

Une formulation explicite pour l’estimateur des effets des blocs s’avère être
ici complexe. C’est pourquoi nous conseillons à l’expérimentateur intéressé par
la connaissance d’une telle quantité de s’orienter vers la résolution numérique
du système des équations normales réduites obtenues à la proposition 9.3.
Remarquons cependant que tout plan partiellement équilibré à deux schémas
d’association est à la fois équirépliqué et en blocs de même taille. Il en résulte
que (voir la proposition 9.4) pour tout un plan d’expérience partiellement
équilibré à deux schémas d’association de type GDD (h, b, k, r, λ1, λ2)
l’estimateur des moindres carrés de l’effet moyen général est donné par :

β̂0 = Y et Var β̂0 =
σ2

n
.

Illustrons ces résultats à partir de l’exemple suivant.

Exemple

Toujours pour l’exemple du GDD (4, 4, 2, 2, 0, 1) du paragraphe 9.5.1
on retrouve bien que l’effet moyen général est donné ici par :

β̂0 = Y = 20.

Concernant maintenant les divers estimateurs des effets des blocs ils
sont solutions de l’équation normale réduite CB γ̂ = QB où :

CB = tBP(ImXT )⊥B =

⎡

⎢
⎢
⎣

1 −1/2 −1/2 0
−1/2 1 0 −1/2
−1/2 0 1 −1/2

0 −1/2 −1/2 1

⎤

⎥
⎥
⎦ et QB =

⎡

⎢
⎢
⎣

−5
−3
−1

9

⎤

⎥
⎥
⎦ .

Ce système d’équations admet alors une infinité de solutions, il con-
vient de ne garder que celle vérifiant les contraintes d’identification
classiques (i.e. γ̂[1] + γ̂[2] + γ̂[3] + γ̂[4] = 0).
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9.5.3 Construction des GDD

Une nouvelle fois le problème principal de la classe des plans partiellement
équilibrés réside dans leur construction qui peut s’avérer difficile, voire im-
possible dans certains cas (pour un nombre de traitements impairs il est par
exemple impossible d’avoir h = n1n2 avec n1 ∈ N et n2 ∈ N). Une méhode
algébrique de construction est présentée ici, elle est dérivée de celle de Bose
[6] exposée au paragraphe 9.4.3 dans le cadre des BIBD (voir l’ouvrage de
John [52] pour plus de détails).

Proposition 9.16. Soit un phénomène aléatoire où h traitements sont étudiés
avec h = n1n2 (n1 ∈ N et n2 ∈ N). Supposons ces traitements classiquement
codés par 0, 1, ..., h − 1 et cet ensemble muni de l’addition modulo h. Sup-
posons enfin l’ensemble des traitements partitionné en n2 sous-ensembles à
n1 éléments tels que le i-ème de ces sous-ensembles (i = 0, ..., n2 − 1) est
donné par {i, i + n2, i + 2n2, ..., i + (n1 − 1)n2} . Soit Φ un ensemble à h∗

éléments vérifiant la propriété suivante pour les h∗ (h∗ − 1) différences de ses
couples d’éléments :

{
tous les associés d’ordre un de 0 apparaissent λ1 fois,
tous les autres traitements non-nuls apparaissent λ2 fois.

On peut alors affirmer que le plan d’expérience cyclique engendré par le bloc
Φ est un plan partiellement équilibré à deux schémas d’association de type
GDD (h, b, k, r, λ1, λ2) avec ici :

b = h et r = k = h∗.

D’après la décomposition de l’ensemble des traitements effectuée dans cette
proposition on a pour i = 0 le sous-ensemble {0, n2, 2n2, ..., (n1 − 1)n2} donc
les associés d’ordre un de 0 sont tout simplement les traitements repérés par
des multiples de n2. Cette méthode de construction conduit encore à des plans
d’expérience symétriques puisque b = h et r = k.

Exemple

Considérons un phénomène aléatoire dépendant de h = 6 traitements
et posons h = n1n2 avec n1 = 2 et n2 = 3. Ce choix est donc lié d’après
la proposition 9.16 à la partition de l’ensemble des traitements en 3
sous-ensembles à deux éléments donnés explicitement par :

{0, 1, 2, 3, 4, 5} = {0, 3} ∪ {1, 4} ∪ {2, 5} .

Afin de construire une configuration en blocs de taille 3 considérons
l’ensemble Φ = {0, 1, 4} . Les différences de tous les couples d’éléments
de Φ sont alors données par :

0− 1 = 5, 0− 4 = 2, 1− 0 = 1,
1− 4 = 3, 4− 0 = 4, 4− 1 = 3.
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On constate bien que le seul associé d’ordre un de 0 (c’est-à-dire 3) ap-
parait λ1 = 2 fois dans ces différences alors que tous les autres traite-
ments non-nuls (c’est-à-dire 1, 2, 4 et 5) apparaissent tous λ2 = 1 fois.
La proposition 9.16 permet donc d’affirmer que le plan d’expérience
cyclique engendré par le bloc Φ = {0, 1, 4} (donné ci-dessous) est bien
un plan en blocs partiellement équilibré à deux schémas d’association
de type GDD (6, 6, 3, 3, 2, 1).

0 1 4
1 2 5

0 2 3
1 3 4

2 4 5
0 3 5

Bloc 1
Bloc 2
Bloc 3
Bloc 4
Bloc 5
Bloc 6

Remarquons qu’un BIBD avec les mêmes paramètres est impossible
à construire car :

λ =
bk (k − 1)
h (h− 1)

=
6
5

/∈ N.

9.5.4 Généralisations

La classe des plans partiellement équilibrés à deux schémas d’association
de type GDD vient d’être présentée. Il est alors naturellement possible de
généraliser ce type de structure suivant l’une ou l’autre des voies présentées
ci-dessous (voir par exemple l’ouvrage de John [52] pour plus de détails).

1) La structure des GDD peut s’avérer contraignante dans le sens où il est
nécessaire de partitionner l’ensemble des traitements en sous-ensembles tels
que tous les couples de traitements d’un même sous-ensemble sont forcément
associés d’ordre un. Une technique plus souple consiste à utiliser des plans
pour lesquels un certain nombre de couples de traitements sont associés
d’ordre un (et apparaissent donc dans λ1 blocs) alors que tous les autres
sont associés d’ordre deux (et apparaissent donc dans λ2 blocs). De tels plans
d’expérience sont qualifiés de plans en blocs partiellement équilibrés de
type PBIBD (pour Partially Balanced Incomplet Bloc Design). Un exemple
de tel plan d’expérience pour h = 6 traitements en b = 6 blocs de taille k = 3
est donné ci-dessous :

0 1 3
1 2 4

2 3 5
0 3 4

1 4 5
0 2 5

Bloc 1
Bloc 2
Bloc 3
Bloc 4
Bloc 5
Bloc 6
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Remarquons que ce plan d’expérience a une structure très proche de l’exemple
du paragraphe 9.5.3 puisqu’il s’agit ici d’un plan cyclique engendré par le bloc
Φ = {0, 1, 3} (au lieu du bloc Φ = {0, 1, 4}). Ce plan d’expérience n’est cepen-
dant pas de type GDD. Il s’agit bien par contre d’un plan partiellement
équilibré de type PBIBD tel que les couples de traitements {0, 3}, {1, 4} et
{2, 5} sont associés d’ordre 1 avec λ1 = 2. Tous les autres couples de traite-
ments sont associés d’ordre 2 avec cette fois λ2 = 1. La difficulté principale
pour l’analyse de ce type de plans d’expérience par rapport aux GDD réside
dans le fait que la matrice de concordance n’a plus la structure en blocs
présentée au paragraphe 9.5.1.

2) La deuxième voie naturelle pour la généralisation des GDD consiste à
ne plus se limiter à deux schémas d’associations mais à un nombre quel-
conque (i.e. pour s schémas s’association alors la matrice de concordance
présente p valeurs extradiagonales λ1,..., λp). Ce type de structure devient
bien évidemment rapidement complexe à manier, le cas où s = 3 est le plus
courant en pratique. Un exemple classique est le plan d’expérience suivant
proposé par Vartak [102] :

4 5 7 8 10 11
1 2 7 8 10 11
1 2 4 5 10 11
1 2 4 5 7 8

3 5 6 8 9 11
0 2 6 8 9 11
0 2 3 5 9 11
0 2 3 5 6 8

3 4 6 7 9 10
0 1 6 7 9 10
0 1 3 4 9 10
0 1 3 4 6 7

Bloc 1
Bloc 2
Bloc 3
Bloc 4
Bloc 5
Bloc 6
Bloc 7
Bloc 8
Bloc 9
Bloc 10
Bloc 11
Bloc 12

Il s’agit d’un plan d’expérience pour h = 12 traitements en b = 12 blocs de
taille k = 6. Les schémas d’associations sont donnés par le tableau suivant :

0 1 2
3 4 5
6 7 8
9 10 11

Tout couple de traitements figurant sur une même ligne de ce tableau sont
associés d’ordre 1 et apparaissent λ1 = 3 fois simultanément dans des blocs
(c’est le cas, par exemple, pour le couple {1, 2}). De même tout couple figurant
dans une même colonne sont associés d’ordre 2 et apparaissent simultanément
dans λ2 = 4 blocs (c’est le cas, par exemple, pour le couple {0, 3}). Enfin les
autres couples sont associés à l’ordre 3 et apparaissent simultanément dans
λ3 = 2 blocs (c’est le cas, par exemple, pour le couple {0, 5}).
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9.6 Plans cycliques

9.6.1 Définition

Les méthodes présentées afin de construire des plans en blocs incomplets
équilibrés ou bien des plans en blocs partiellement équilibrés (voir les para-
graphes 9.4.3 et 9.5.3) utilisent des plans dits cycliques. Cette classe de plans
d’expérience est présentée ici dans le cas général. Considérons h traitements
codés usuellement par l’ensemble {0, 1, ..., h− 1} identifié au groupe Z/hZ

muni de l’addition modulo h. La construction de tout plan cyclique est liée
au choix préalable d’un générateur, c’est-à-dire d’un sous-ensemble Φ de
{0, 1, ..., h− 1} constitué par h∗ ≤ h éléments. La notion d’ensemble translaté
est primordiale pour la suite :

Définition 9.17. Soit un sous-ensemble Φ de {0, 1, ..., h− 1} identifié au
groupe Z/hZ ainsi qu’un entier naturel θ tel que 0 ≤ θ ≤ h − 1. On appelle
θ-translation de Φ l’ensemble :

Φθ = Φ + θ = {φ + θ , φ ∈ Φ} .

Cette définition entrâıne que l’ensemble initial Φ peut aussi être désigné par
Φ0. Les ensembles translatés Φ1, ..., Φh−1 sont généralement tous distincts mais
cette propriété n’est pas toujours vraie (voir l’exemple suivant).

Exemple

Pour h = 4 traitements le sous ensemble Φ = {0, 1} conduit par
translations successives aux trois ensembles distincts suivants :

Φ1 = {1, 2} , Φ2 = {2, 3} , Φ3 = {0, 3} .

Pour h = 4 traitements le sous ensemble Φ = {0, 2} ne conduit pas
cette fois par translations successives à trois ensembles distincts car :

Φ1 = Φ3 = {1, 3} , Φ2 = {0, 2} .

Un plan d’expérience cyclique est défini de la manière suivante :

Définition 9.18. Soit un phénomène aléatoire analysé à l’aide de h traite-
ments et un sous ensemble Φ de l’ensemble des traitements {0, 1, ..., h− 1}
appelé générateur. On appelle plan cyclique complet engendré par Φ le
plan d’expérience constitué par les h blocs :

Φ0 = Φ , Φ1 , Φ2 , ... , Φh−1.

Le plan d’expérience est qualifié de cyclique incomplet lorsque tous les h
blocs ne sont pas utilisés.

Une généralisation possible pour cette définition consiste à utiliser (de manière
identique) plus d’un générateur.
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Exemple

Considérons encore le cas où h = 4 traitements interviennent ainsi que
le générateur Φ = {0, 1} déjà utilisé précédemment. Le plan cyclique
complet est présenté à gauche ci-dessous. Un plan cyclique incomplet
issu du même générateur (avec trois blocs) est présenté à droite.

0 1
1 2

2 3
0 3

Bloc 1
Bloc 2
Bloc 3
Bloc 4

0 1
2 3

0 3

Bloc 1
Bloc 2
Bloc 3

9.6.2 Propriétés

Voici un certain nombre de propriétés et de remarques relatives à la classe
des plans d’expériences cycliques. La plupart d’entre elles sont immédiates à
vérifier.

1) Tout plan d’expérience cyclique est un plan en blocs de même taille (cette
taille est égale au nombre d’éléments h∗ du générateur utilisé). Il en résulte
que le nombre d’expériences à réaliser est n = bh∗ où b est le nombre de blocs
(donc n = hh∗ dans le cas d’un plan cyclique complet puisqu’alors h blocs
sont utilisés).

2) Tout plan d’expérience cyclique complet est un plan en blocs équirépliqué.
Le nombre de réplications de chacun des traitements vérifie :

n = bh∗ = rh donc r =
bh∗

h
= h∗

Il en résulte (voir le paragraphe 9.4.3) qu’un plan cyclique complet est un plan
en blocs symétrique. Cette propriété n’est pas vérifiée généralement par les
plans cycliques incomplets.

3) Tout comme pour le cas des GDD un plan d’expérience cyclique n’est
pas forcément régulier (i.e. l’estimation des paramètres du modèle sous con-
trainte d’identification classique n’est pas toujours possible). Une condition
nécessaire (mais non suffisante) de régularité est évidemment que le nombre
d’expériences réalisées soit supérieur ou égal au nombre de paramètres incon-
nus du modèle, donc :

n = bh∗ ≥ b + h− 1.

Il n’existe pas de formule explicite permettant de déterminer les différents es-
timateurs d’un modèle analysé à l’aide d’un plan cyclique. On montre cepen-
dant en annexe, à l’aide d’un exemple d’application, qu’il est possible d’obtenir
cependant facilement toutes ces quantités en utilisant un simple logiciel in-
cluant les opérations de base du calcul matriciel.
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9.7 Exemple d’application

Considérons une entreprise agronomique dont l’objectif est d’améliorer la pro-
duction de blé. Pour cela ses laboratoires de recherche ont mis au point des
nouvelles variétés et 7 d’entre elles ont été jugées prometteuses et sont donc
retenues afin d’être mises en culture (ceci va constituer les h = 7 traite-
ments). L’entreprise souhaite de plus tester ces variétés sur plusieurs parcelles
différentes afin de juger de leur capacité d’adaptation à divers types de sols et
de climats. Afin d’utiliser un plan symétrique on peut proposer ici d’effectuer
les expériences sur 7 parcelles différentes (ceci va constituer les b = 7 blocs).
Si cette solution est jugée réalisable par l’entreprise (i.e. si les spécialistes esti-
ment que tester les diverses variétés sur sept sites différents est suffisant) une
première solution consiste à proposer l’utilisation d’un plan en blocs complet.
Cette solution conduit donc ici à la réalisation de n = 72 = 49 expériences.
Supposons que ce nombre d’expériences soit jugé beaucoup trop important
(en effet, une expérience est relativement longue et complexe ici puisqu’elle
va de la préparation de la parcelle jusqu’à la récolte finale en attendant obli-
gatoirement que les diverses pousses soient arrivées à maturité). A partir
des méthodes de construction présentées au paragraphe 9.4.3 il est possible
d’utiliser un BIBD engendré par l’ensemble Φ = {0, 1, 3} (qui est bien un
ensemble aux différences). On peut donc proposer la configuration suivante
de type BIBD (7, 7, 3, 3, 1) :

0 1 3
1 2 4

2 3 5
3 4 6

0 4 5
1 5 6

0 2 6

Bloc 1
Bloc 2
Bloc 3
Bloc 4
Bloc 5
Bloc 6
Bloc 7

Cette configuration permet de réduire le nombre total d’expériences à n = 21
(soit une réduction de 57% par rapport au plan complet). Une fois la récolte
effectuée la réponse qui intéresse les chercheurs est naturellement la quantité
de blé produite par unité de surface. Plus précisemment on considère ici le
rendement à l’hectare obtenu c’est-à-dire le rapport Q/Q∗ où Q est la quantité
de blé produite à l’hectare alors que Q∗ est la valeur minimale recherchée pour
se lancer dans une production à grande échelle. Il en résulte que l’objectif
est ici de maximiser le rendement (ou tout au moins d’obtenir des valeurs
supérieures à 1).

Afin que les techniciens puissent facilement réaliser les expériences le pro-
tocole expérimental est donné ci-dessous. La variété i (0 ≤ i ≤ 6) est désignée
par V i alors que la parcelle j (1 ≤ j ≤ 7) est désignée par Pj. Le vecteur des
réponses mesurées (i.e. les divers rendements observés) est donné à droite du
tableau.
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Variété Parcelle
Exp 1 V 0 P1
Exp 2 V 1 P1
Exp 3 V 3 P1
Exp 4 V 1 P2
Exp 5 V 2 P2
Exp 6 V 4 P2
Exp 7 V 2 P3
Exp 8 V 3 P3
Exp 9 V 5 P3
Exp 10 V 3 P4
Exp 11 V 4 P4
Exp 12 V 6 P4
Exp 13 V 0 P5
Exp 14 V 4 P5
Exp 15 V 5 P5
Exp 16 V 1 P6
Exp 17 V 5 P6
Exp 18 V 6 P6
Exp 19 V 0 P7
Exp 20 V 2 P7
Exp 21 V 6 P7

Y
1.05
1.08
1.17
1.15
0.97
1.23
0.88
1.10
0.82
1.11
1.22
0.61
0.90
1.19
0.77
1.04
0.83
0.55
1.01
0.84
0.53

Le programme SAS suivant permet d’entrer ces données. La table ”donnees”
contient ici la matrice du plan d’expérience avec les codages naturels. La
dernière colonne est constituée par les différentes réponses.

Data Donnees;
Input var par y;
Cards;
0 1 1.05
1 1 1.08

...
expérience i et réponse i

...
2 7 0.84
6 7 0.53

Run;

Voici le tableau d’analyse de la variance :
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Source ddl S. carrés M. Carrés St. Test Proba.
Régression 12 0.9054 0.0754 66.23 0.0001 •••

Erreur 8 0.0091 0.0011
Total 20 0.9145

La procédure SAS suivante permet d’obtenir ces résultats avec la commande
”class” qui indique, comme dans le chapitre précédent, de traiter les facteurs
déclarés en tant que variables qualitatives :

Proc Glm date=Donnees;
Class var par;
Model y = var par;

Run;

Le modèle utilisé est donc valide puisque l’hypothèse ”tous les paramètres
du modèle (sauf β0) sont nuls” peut être ici très clairement rejetée. Ce modèle
est de plus globalement très bien ajusté puisque (valeur ”R-Square de la sortie
SAS) :

R2 = 1− SSE

SST
� 0.990.

Un estimateur sans biais de la variance σ2 des résidus est donné par (valeur
”Root MSE” de la sortie SAS) :

σ̂2 = MSE = 0.00125 (donc σ̂ � 0.03532).

Déterminons alors les différents estimateurs des moindres carrés des effets
des traitements. Remarquons au préalable que puisque le plan d’expérience
utilisé est à la fois équirépliqué et en blocs de même taille on a donc (voir la
proposition 9.4) :

β̂0 = Y � 0.9548 et Var β̂0 =
σ2

n
� 5.952.10−5.

Concernant maintenant les effets des traitements, leurs différentes valeurs et
dispersions sont résumées dans le tableau ci-dessous (voir la proposition 9.9
pour les formules explicites).

Param. Estimat. Ec. type St. Test Proba.
β0 0.9548 0.0077 123.9 0.0001 •••

β
[0]
T 0.0486 0.0214 2.27 0.0530 ◦◦◦

β
[1]
T 0.1057 0.0214 4.94 0.0011 ••◦

β
[2]
T −0.0657 0.0214 −3.07 0.0154 •◦◦

β
[3]
T 0.1571 0.0214 7.34 0.0001 •••

β
[4]
T 0.2529 0.0214 11.81 0.0001 •••

β
[5]
T −0.1171 0.0214 −5.47 0.0006 •••

β
[6]
T −0.3814 0.0214 −17.82 0.0001 •••
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Ces divers estimateurs peuvent êtres obtenus à l’aide de la procédure :

Proc Glm date=Donnees;
Class var par;
Model y = var par / solution;

Run;

La commande ”solution” force le logiciel à afficher les estimateurs de
tous les paramètres du modèle (effet moyen général, effets des traitements
et effets des blocs). Attention au fait que, tout comme lors du chapitre
précédent, SAS n’utilise pas les mêmes contraintes d’identification que celles
de cet ouvrage puisqu’il lève la singularité des équations normales en annulant
systématiquement la dernière modalité de chacun des facteurs. Il est possible
de retrouver les estimateurs donnés ici en rajoutant dans la procédure ”glm”
des commandes du type suivant (pour la première modalité des effets des
traitements) :

Estimate ’Variete0’ var 6/7 -1/7 -1/7 -1/7 -1/7 -1/7 -1/7;

Ce type d’instruction permet de ”centrer” le vecteur des paramètres estimés
et de retrouver ainsi la contrainte imposée ici (somme des composantes nulle).
Voir l’exemple final du chapitre 8 pour plus de détails (attention d’un point de
vue technique à remplacer les fractions par leurs valeurs approchées contenant
assez de décimales sinon le logiciel va refuser d’effectuer le calcul).

Dans l’exemple étudié ici l’estimation des effets des blocs peut être
intéressante dans le sens où ceci va apporter des informations concernant l’effet
de chacune des parcelles sur le rendement final. Les divers effets des blocs sont
alors résumés dans le tableau suivant (voir la fin du paragraphe 9.4.2 pour les
formules explicites). La technique d’obtention à l’aide du logiciel SAS est en
tout point identique à celle utilisée pour les effets des traitements.

Param. Estimat. Ec. type St. Test Proba.

γ[1] 0.0414 0.0214 1.94 0.0890 ◦◦◦

γ[2] 0.0643 0.0214 3.00 0.0170 •◦◦

γ[3] −0.0129 0.0214 −0.60 0.5447 ◦◦◦

γ[4] 0.0157 0.0214 0.73 0.4839 ◦◦◦

γ[5] −0.0629 0.0214 −2.94 0.0188 •◦◦

γ[6] −0.0171 0.0214 −0.80 0.4464 ◦◦◦

γ[7] −0.0286 0.0214 −1.33 0.2187 ◦◦◦
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Conclusion

Voici les conclusions qu’il est possible de tirer suite à tous les résultats
obtenus précédemment.

1) Le modèle à effets de blocs utilisé ici semble décrire correctement le
phénomène aléatoire étudié.

2) Le rendement moyen résultant de la totalité des n = 21 expériences réalisées
est de 0.95.

3) Concernant les effets des divers traitements (i.e. des diverses variétés de
blé testées) il apparâıt que la meilleure variété est, très significativement, la
4. Viennent ensuite les variétés 3 et 1 qui ont aussi des rendements supérieurs
à la moyenne. La variété 0 n’a pas un effet significatif sur le rendement. Enfin
il apparâıt que les variétés 2, 5 et 6 sont peu efficaces puisque associées à
des estimateurs des effets des traitements négatifs. Ceci est particulièrement
flagrant pour la variété 6 qui manifestement donne de très mauvais résultats
sur le terrain puisque l’estimateur associé vaut −0.38.

4) Concernant maintenant les effets des blocs (i.e. les effets des diverses par-
celles cultivées) il apparâıt qu’ils sont globalement peu significatifs. Seules les
parcelles 2 et 5 se distinguent légèrement par, respectivement, une différence
à la moyenne de 0.06 pour l’une et de −0.06 pour l’autre. Lors d’une étude
concrête il peut être intéressant de transmettre ce type d’information aux
spécialistes afin de voir si cela corrobore ou non leurs connaissances pratiques
(i.e. est-il par exemple clair à leurs yeux que la parcelle 2 est constitué d’un
sol ou d’un environnement un peu plus favorable que les autres ?).

5) Afin maintenant de revenir à la problématique initiale (i.e. déterminer une
variété de blé maximisant le rendement) il est ici très clair que la variété 4
est la meilleure du lot. Ceci se trouve confirmé par le fait que cette variété de
blé a bien été testée sur la parcelle 5 (c’est-à-dire la parcelle la plus difficle à
cultiver) et le rendement observé est quand même très satisfaisant puique égal
à 1.19 (si cette expérience n’avait pas été menée il aurait été intéressant de
la réaliser a posteriori afin de vérifier les résultats prédits par le modèle). De
manière théorique le modèle prédit un rendement moyen pour cette variété
de blé égal à :

Ŷl (4) = μ̂ + γ̂[l] + β̂
[i]
T = 1.2077 + γ̂[l].

9.8 Résumé

Diverses configurations adaptées à l’analyse d’un modèle en blocs pour fac-
teurs qualitatifs ont été présentées tout au long de ce chapitre. On retiendra
donc parmi les plans d’expérience binaires :
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1) les plans en blocs complets,

2) les plans en blocs incomplets équilibrés (BIBD),

3) les plans en blocs partiellement équilibrés (GDD),

4) les plans cycliques.

Les plans en blocs complets présentent l’avantage de toujours exister et
d’être d’analyse aisée mais l’inconvénient de conduire souvent à un nombre
d’expériences prohibitif.

Les plans en blocs incomplets équilibrés (BIBD) sont souvent constitués
par un nombre d’expériences correct tout en menant à des estimateurs des
paramètres du modèle simples à déterminer. Ils sont de plus le meilleur choix
possible en terme d’efficité (voir le chapitre 10). Ils présentent cependant le
gros défaut de ne pas toujours exister.

La classe des plans en blocs partiellement équilibrés (GDD) englobe celle
des BIBD. Il est donc possible de les utiliser plus fréquemment que les BIBD
mais leur existence n’est cependant pas assurée dans tous les cas. L’analyse
du modèle à effets de blocs reste faisable explicitement, bien qu’étant plus
complexe à mener que pour un BIBD.

Enfin, les plans cycliques sont aisés à construire et peuvent s’adapter à
n’importe quelle situation et à n’importe quel nombre d’expériences souhaité
(en jouant sur le ou les générateurs et sur les blocs sélectionnés). En con-
trepartie leur analyse est moins aisée que les plans précédents et nécessite
obligatoirement l’utilisation d’un outil informatique.
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COMPLEMENTS
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9.9 (Compléments) Résultats théoriques

9.9.1 Analyse d’un plan cyclique

Considérons ici une configuration non standard. Analysons-là à l’aide de tout
logiciel permettant d’effectuer les opérations de base du calcul matriciel. Soit
une situation où h = 7 traitements interviennent mais seulement b = 3 blocs
sont requis. Il est bien entendu possible de réaliser alors les n = 21 expériences
du plan complet mais supposons qu’une telle démarche s’avère beaucoup trop
coûteuse. On peut donc s’orienter vers un plan cyclique incomplet tel que
celui-ci (obtenu à l’aide du générateur Φ = {0, 1, 2}) :

0 1 2
2 3 4

4 5 6

Bloc 1
Bloc 2
Bloc 3

Un tel plan permet de réduire le nombre d’expériences à seulement n = 9
(il est donc saturé puisque le nombre de paramètres inconnus du modèle est
p = b + h− 1 = 9). Considérons maintenant les réponses suivantes (générées
ici à l’aide d’un modèle déterministe sans aucun résidu aléatoire) :

17 14 17
22 17 20

25 29 21

Bloc 1
Bloc 2
Bloc 3

1) Analyse des effets des traitements
Les effets des différents traitements peuvent être obtenus via la résolution

des équations normales réduites données sous forme générale à la proposition
9.2 par :

CT β̂T = QT où CT = tXT P(ImB)⊥XT et QT = tXT P(ImB)⊥Y.

Le plan d’expérience étant ici en blocs de même taille (avec k = 3) la matrice
CT a la forme suivante :

CT = tXT

(
In −B

(
tBB

)−1 tB
)

XT = tXT

(

In − 1
3
BtB

)

XT .

Il vient donc simplement (avec R = tXT XT et N = tXT B) :

CT = R− 1
3
N tN.

La matrice R contient sur la diagonale les nombres des diverses réplications
donc R = diag (1, 1, 2, 1, 2, 1, 1) . La matrice CT est alors déterminée à l’aide
de la matrice de concordance N tN donnée par :
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N tN =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0 0 0
1 1 1 0 0 0 0
1 1 2 1 1 0 0
0 0 1 1 1 0 0
0 0 1 1 2 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Déterminons maintenant le vecteur QT . D’après les remarques faisant suite à
la proposition 9.2 la i-ème composante de QT est :

(QT )i =
∑

l / Ti∈Bl

(
Yl (i)− Y Bl

)
.

On en déduit que la matrice CT et le vecteur QT sont donnés par (puisque
Y B1 = 16, Y B2 = 19.667 et Y B3 = 25) :

CT =
1
3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 −1 0 0 0 0
−1 2 −1 0 0 0 0
−1 −1 4 −1 −1 0 0

0 0 −1 2 −1 0 0
0 0 −1 −1 4 −1 −1
0 0 0 0 −1 2 −1
0 0 0 0 −1 −1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et QT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.000
−2.000

3.333
−2.667

0.333
4.000

−4.000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Il est clair que la matrice CT est singulière puisque la somme de tous ses
vecteurs colonne est égale au vecteur nul de R

7. Utilisons donc les contraintes
d’identification classiques afin de surmonter ce problème. Il vient :

6∑

i=0

β̂
[i]
T = 0 donc β̂

[6]
T = −

5∑

i=0

β̂
[i]
T .

Il est possible de supprimer l’effet du traitement 6 afin de rendre ce problème
régulier. Le système linéaire des équations normales devient alors C∗

T β̂∗
T = Q∗

T

où C∗
T et Q∗

T sont une matrice et un vecteur centrés selon la terminologie du
chapitre 8 (voir aussi le lemme 8.A de l’annexe A) donnés par :

C∗
T =

1
3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 4 −1 −1 0

0 0 −1 2 −1 0
1 1 0 0 5 0
1 1 1 1 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

et Q∗
T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.000
−2.000

3.333
−2.667

0.333
4.000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

La matrice C∗
T est maintenant régulière, son inverse est (utiliser ici un logiciel

de calcul scientifique) :
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(C∗
T )−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 2 10/7 5/7 3/7 0
2 3 10/7 5/7 3/7 0
1 1 10/7 5/7 3/7 0
0 0 3/7 12/7 3/7 0

−1 −1 −4/7 −2/7 3/7 0
−2 −2 −11/7 −9/7 −4/7 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Le vecteur des effets des traitements estimés est alors β̂∗
T = (C∗

T )−1
Q∗

T ce qui
conduit aux résultats suivants (sachant que β̂

[6]
T est simplement obtenu par

vérification de la contrainte d’identification classique) :

Effets des traitements

{
β̂
[0]
T = 2, β̂

[1]
T = −1, β̂

[2]
T = 2, β̂

[3]
T = −3,

β̂
[4]
T = 0, β̂

[5]
T = 4, β̂

[6]
T = −4.

Les dispersions de ces estimateurs peuvent être obtenues numériquement de la
manière suivante. Les vecteurs QT et Q∗

T sont ici liés par la relation Q∗
T = AQT

où A ∈M (h− 1, h) est définie par A =
[
Ih−1 0

]
. Il vient donc :

β̂∗
T = (C∗

T )−1
Q∗

T = (C∗
T )−1

AQT = (C∗
T )−1

AtXT P(ImB)⊥Y.

En d’autres termes on a simplement β̂∗
T = ΔY où Δ est la matrice :

Δ = (C∗
T )−1 AtXT (In − PImB) = (C∗

T )−1 AtXT

(

In − 1
3
BtB

)

.

On en déduit que la matrice des covariances du vecteur β̂∗
T est donnée par :

V

(
β̂∗

T

)
= σ2ΔtΔ puisque V (Y ) = σ2In.

Une fois ce calcul effectué on obtient alors (par exemple) :

Var β̂
[0]
T =

94
49

σ2 � 1.92σ2 et Var β̂
[2]
T =

38
49

σ2 � 0.776σ2.

Ce résultat n’est pas étonnant car dans le plan d’expérience utilisé le traite-
ment 0 n’apparâıt que dans un seul bloc alors que le traitement 2 apparâıt à
deux reprises et la qualité de son estimation est donc logiquement meilleure.

2) Analyse des effets des blocs.
Supposons maintenant qu’il soit intéressant de connâıtre les valeurs des

différents effets des blocs. La démarche à suivre est similaire à celle menée
pour les traitements sauf que cette fois les équations normales réduites à
résoudre sont données par (voir la proposition 9.3) :

CB γ̂ = QB où CB = tBP(ImXT )⊥B et QB = tBP(ImXT )⊥Y.
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La matrice CB peut alors être réécrite sous la forme :

CB = tB
(
In −XT

(
tXT XT

)−1 tXT

)
B

avec toujours R = tXT XT = diag (1, 1, 2, 1, 2, 1, 1) . Le détail de la procédure
de résolution de ce système linéaire d’équations est en tout point similaire
à ce qui a été fait avec les effets des traitements (i.e. comme la matrice CB

est singulière on la rend régulière en supprimant un des effets des blocs par
utilisation des contraintes d’identification classiques). Il vient alors :

Effets des blocs γ[1] = −5, γ[2] = 0 et γ[3] = 5.

3) Analyse de l’effet moyen général.
Déterminons pour terminer l’effet moyen général du modèle linéaire.

Prenons garde au fait que le plan d’expérience utilisé ici n’est pas équirépliqué
en blocs de même taille et la relation β̂0 = Y n’est plus forcément vraie. Il
faut donc utiliser la relation générale de la proposition 9.4 :

β̂0 =
1
n

[
t
InY − (

t
InB

)
γ̂ − (

t
InXT

)
β̂T

]
.

Comme t
InY = 182 , (t

InB) γ̂ = 0 et (t
InXT ) β̂T = 2 on en déduit donc que :

Effet moyen général β̂0 = 180/9 = 20.

Le résultat obtenu est donc bien différent de la valeur Y = 182/9.

9.10 (Compléments) Démonstrations

Tout comme dans le chapitre 8 les modèle considérés ici sont toujours associés
à une matrice X qui n’est jamais de plein rang (voir le paragraphe 9.2.3) donc
tXX est toujours singulière. Afin de pouvoir manier facilement les équations
normales malgré ce problème de singularité on utilise dans ce chapitre la
notion d’inverse généralisée d’une matrice :

Définition 9.A. Soit A une matrice de dimension quelconque (non forcément
carrée). On appelle inverse généralisée de A (ou encore G-inverse de A)
toute matrice, notée A−, telle que :

AA−A = A.

Il ne sera pas nécessaire ici d’aller bien au delà de cette simple définition.
Le lecteur souhaitant en savoir plus sur le sujet pourra se référer à l’ouvrage
de Rao et Mitra [78]. Lorsque A est une matrice carrée régulière alors la
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notion d’inverse généralisée cöıncide (logiquement) avec la notion classique
de matrice inverse. Dans tous les autres cas elle permet de généraliser ce
concept d’inversion matricielle. Remarquons que, mis à part le cas où A est
carrée régulière, il n’y a généralement pas unicité de l’inverse généralisée. Dans
l’optique de la résolution du système linéaire des équations normales on utilise
dans la suite le résultat suivant (voir par exemple le livre de Searle [88]) relatif
à tout système d’équations linéaires compatible (i.e. admettant au moins une
solution) :

Proposition 9.B. Soit un système d’équations linéaires compatible de la
forme Ax = y où A ∈M (n, p). L’ensemble des solutions de ce système est :

S =
{
A−y +

(
A−A− I

)
z / z ∈ R

p
}

où A− désigne une inverse généralisée particulière de la matrice A.

Passons maintenant aux diverses démonstrations.

Proposition 9.2. L’estimateur des moindres carrés des effets des traite-
ments est solution des équations :

CT β̂T = QT

avec

{
CT ∈ M (h, h) définie par : CT = tXT P(ImB)⊥XT

QT contraste de R
h défini par : QT = tXT P(ImB)⊥Y

où P(ImB)⊥ désigne le projecteur orthogonal sur (Im B)⊥ c’est-à-dire que

P(ImB)⊥ = In − PImB = In −B (tBB)−1 tB.

Démonstration. Partons de la forme générale des équations normales (E)
donnée au paragraphe 9.2.4. Remarquons que, par définition, la matrice tBB
est toujours inversible. En multipliant alors la deuxième ligne du système (E)
par −N (tBB)−1 et en la rajoutant à la troisième ligne il vient :

[
tXT In −N (tBB)−1 (tBIn)

]
β̂0 +

[
R−N (tBB)−1 tN

]
β̂T

=
[

tXT −N (tBB)−1 tB
]
Y.

Comme par définition N = tXT B et R = tXT XT on a donc encore :

tXT

(
In −B (tBB)−1t

B
)

Inβ̂0 + tXT

[
In −B (tBB)−1 tB

]
XT β̂T

= tXT

(
In −B (tBB)−1 tB

)
Y.

En désignant maintenant par PImB l’expression matricielle du projecteur or-
thogonal sur Im B on sait que PImB = B (tBB)−1 tB et donc :
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In −B
(
tBB

)−1 tB = In − PImB = P(ImB)⊥ .

On en déduit que β̂T est obtenu via la résolution des équations normales
réduites :

tXT P(ImB)⊥Inβ̂0 + tXT P(ImB)⊥XT β̂T = tXT P(ImB)⊥Y.

Comme de plus (par construction de la matrice B) In ⊂ Im B on en déduit
que P(ImB)⊥In = 0 et il vient finalement:

tXT P(ImB)⊥XT β̂T = tXT P(ImB)⊥Y.

Justifions que le vecteur QT = tXT P(ImB)⊥Y est bien un contraste de R
h :

t
IhQT = t

Ih
tXT P(ImB)⊥Y

mais XT est une matrice d’indicatrices donc on a toujours XT Ih = In et :

t
IhQT =

(
t
InP(ImB)⊥

)
Y = 0

car In ∈ Im B d’où P(ImB)⊥In = 0 �

Proposition 9.3. L’estimateur des moindres carrés des effets des blocs est
solution des équations :

CB γ̂ = QB

avec

{
CB ∈M (b, b) définie par : CB = tBP(ImXT )⊥B

QB contraste de R
b défini par : QB = tBP(ImXT )⊥Y

où P(ImXT )⊥ désigne le projecteur orthogonal sur (Im XT )⊥ c’est-à-dire que

P(ImXT )⊥ = In − PImXT = In −XT (tXT XT )−1 tXT .

Démonstration. La démonstration de ce résultat est similaire à la
démonstration de la proposition 9.2 à une permutation près des matrices
XT et B. Le point de départ est toujours le système d’équations normales
(E) . On remarque alors que la matrice R est toujours inversible et l’addition
de la deuxième ligne avec la troisième multipliée au préalable par −tNR−1

conduit à :
[

tBIn − tN (tXT XT )−1 (tXT In)
]
β̂0 +

[
K − tN (tXT XT )−1

N
]
γ̂

=
[

tB − tN (tXT XT )−1 tXT

]
Y.

La matrice XT est tout comme B une matrice d’indicatrices la simplification
de ces équations normales réduites s’effectue à l’aide des mêmes arguments
que ceux de la proposition 9.2 �
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Proposition 9.4. L’estimateur des moindres carrés de l’effet moyen
général est :

β̂0 =
1
n

[
t
InY − (

t
InB

)
γ̂ − (

t
InXT

)
β̂T

]

où γ̂ et β̂T sont respectivement les estimateurs des moindres carrés des ef-
fets des blocs et des effets des traitements. Lorsque le plan d’expérience est
équirépliqué en blocs de même taille il vient simplement (avec les contraintes
d’identifications classiques) :

β̂0 =
1
n

t
InY = Y et Var β̂0 =

σ2

n
.

Démonstration. La forme donnée ici pour l’estimateur β̂0 est évidente
puisqu’il ne s’agit que d’une réécriture de la première équation du système
(E) des équations normales. Considérons maintenant un plan d’expérience
équirépliqué en blocs de même taille. On a donc t

InB = kt
Ib et t

InXT = rt
Ih

d’où :
β̂0 =

1
n

[
t
InY − k

(
t
Ibγ̂

)− r
(

t
Ihβ̂T

)]
.

Lorsque les contraintes d’identification classiques sont utilisées les vecteurs γ̂
et β̂T sont alors des contrastes ce qui entrâıne bien que : β̂0 = Y . Concernant
enfin la dispersion de β̂0 il vient :

Var β̂0 =
1
n2

Var
(
t
InY

)
=

σ2

n2
t
InIn =

σ2

n
�

Proposition 9.6. Soit un plan d’expérience en blocs complets de type
CBD (h, b). L’estimateur des moindres carrés des effets des traitements
vérifiant les contraintes d’identification classiques est donné par :

β̂T =
1
b
QT et ∀ i = 0, ..., h− 1 , Var β̂

[i]
T = σ2 (h− 1)

n
.

Démonstration. Les équations normales réduites permettant d’estimer les
effets des traitements sont :

CT β̂T = QT où CT = bIh − b

h
Jh.

Le déterminant de la matrice CT est nul (voir le lemme 5.A) donc la matrice
CT n’est pas inversible. Utilisons alors la proposition 9.B afin de déterminer
l’ensemble des solutions de ce système d’équations. Procédons pour cela en
plusieurs étapes.

1) Recherche d’une inverse généralisée de CT .
Cherchons une telle matrice sous la forme complètement symétrique αIh+βJh.
Il faut donc vérifier la relation :
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CT (αIh + βJh) CT = CT .

Or il vient (puisque J2
h = hJh) :

CT (αIh + βJh)CT = b2
(

Ih − 1
h

Jh

)

(αIh + βJh)
(

Ih − 1
h

Jh

)

= b2
(
αIh − α

h
Jh

)(

Ih − 1
h

Jh

)

= αb2
(

Ih − 1
h

Jh

)

.

On en déduit alors que toute matrice de la forme :

C−
T =

1
b
Ih + βJh (β ∈ R quelconque)

est bien une inverse généralisée de la matrice CT (en particulier si une seule
inverse généralisée de CT est requise on pourra donc poser simplement β = 0).

2) Recherche de l’ensemble des solutions de CT β̂T = QT .
D’après la proposition 9.B toute solution de cette équation normale réduite
peut être écrite sous la forme suivante (en prenant ici C−

T = (1/b) Ih) :

β̂T =
1
b
QT +

(
1
b
CT − Ih

)

z =
1
b
QT − 1

h
Jhz avec z ∈ R

h.

3) Recherche de la solution sous contrainte.
Parmi ces solutions on ne garde que celle vérifiant les contraintes d’identifi-
cation classiques, c’est-à-dire t

Ihβ̂T = 0. Or d’après la proposition 9.2 QT est
toujours un contraste de R

h donc cet objectif est atteint si et seulement si
z = 0 dans l’expression ci-dessus, d’où :

β̂T =
1
b
QT .

4) Dispersion du vecteur β̂T .

Par définition QT = tXT P(ImB)⊥Y donc le vecteur β̂T peut aussi être écrit
sous la forme suivante :

β̂T =
(

1
b

tXT P(ImB)⊥

)

Y. D’où :

V

(
β̂T

)
=

1
b2

tXT P(ImB)⊥V (Y ) tP(ImB)⊥XT

=
σ2

b2
tXT P(ImB)⊥

tP(ImB)⊥XT puisque V (Y ) = σ2In

=
σ2

b2
tXT P(ImB)⊥XT puisque P(ImB)⊥ est un projecteur orthogonal.

On a de plus ici P(ImB)⊥ = In − B (tBB)−1 tB = In − 1
kBtB P(ImB)⊥ =

In −B (tBB)−1 tB donc :
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V

(
β̂T

)
=

σ2

b2

(
tXT XT − 1

k
tXT BtBXT

)

=
σ2

b2

(

rIh − 1
k

N tN

)

.

Or, on a déjà montré (voir le paragraphe 9.3.1) que pour tout plan en blocs
il vient r = b, k = h et C = N tN = bJh donc :

V

(
β̂T

)
=

σ2

b

(

Ih − 1
h

Jh

)

.

On en déduit bien la relation suivante (puisque bh = n ici) :

∀ i = 0, ..., h− 1 , Var β̂
[i]
T = σ2 (h− 1)

n
�

Proposition 9.8. Pour tout BIBD (h, b, k, r, λ) on a la relation suivante :

r (k − 1) = λ (h− 1) .

Démonstration. Considérons un plan en blocs de type BIBD (h, b, k, r, λ)
et un traitement i (i = 0, ..., h− 1) de référence. On sait, par hypothèse, que
ce traitement apparâıt dans exactement r blocs. Chaque bloc étant de taille
k le nombre total des autres traitements apparaissant dans ces blocs est donc
φ donné par :

φ = r (k − 1) .

De même chaque traitement i′ 	= i apparâıt aussi λ fois dans ces blocs. Comme
il existe (h− 1) traitements différents de i ceci donne alors comme total des
traitements autres que i figurant dans ces r blocs :

φ = λ (h− 1) .

D’où le résultat énoncé par identification de ces deux quantités �

Proposition 9.9. Soit un plan d’expérience en blocs incomplets équilibré
de typeBIBD (h, b, k, r, λ). L’estimateur des moindres carrés des effets des
traitements vérifiant les contraintes d’identification classiques est :

β̂T =
k

λh
QT et ∀ i = 0, ..., h− 1 , Var β̂

[i]
T = σ2 k (h− 1)

λh2
.

Démonstration. D’après la proposition 9.2 les équations normales réduites
permettant d’estimer les effets des traitements sont données par (puisque tout
BIBD est à la fois équirépliqué et en blocs de même taille) :

CT β̂T = QT avec CT = rIh − 1
k

C.

La matrice de concordance est de plus ici C = (r − λ) Ih + λJh donc :
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CT =
(

r − r

k
+

λ

k

)

Ih − λ

k
Jh.

Le plan d’expérience utilisé étant un BIBD on a aussi la relation suivante :

r − r

k
+

λ

k
=

r (k − 1) + λ

k
=

λ (h− 1) + λ

k
=

λh

k
.

Il en résulte que la matrice du système à résoudre est encore une matrice
complètement symétrique non inversible d’après le lemme 5.A. Résolvons
alors ce système d’équations en procédant en quatre étapes identiques à celles
utilisées dans le cas des plans complets (proposition 9.6).

1) Recherche d’une inverse généralisée de CT .
En réutilisant les résultats de la démonstration de la proposition 9.6 on peut
dire que toute matrice de la forme :

C−
T =

k

λh
Ih + βJh (β ∈ R quelconque)

est bien une inverse généralisée de la matrice CT .

2) Recherche de l’ensemble des solutions de CT β̂T = QT .
La proposition 9.B appliquée avec l’inverse généralisée particulière obtenue
lorsque β = 0 entraine que toute solution de cette équation normale réduite
peut être écrite sous la forme suivante :

β̂T =
k

λh
QT +

(
k

λh
CT − Ih

)

z =
k

λh
QT − λ

k
Jhz avec z ∈ R

h.

3) Recherche de la solution sous contrainte.
Parmi ces solutions on garde alors uniquement celle vérifiant les contraintes
d’identification classiques, c’est-à-dire t

Ihβ̂T = 0. Or d’après la proposition
9.2 QT est toujours un contraste de R

h donc cet objectif est atteint si et
seulement si z = 0 dans l’expression ci-dessus, d’où :

β̂T =
k

λh
QT .

4) Dispersion du vecteur β̂T .
Un raisonnement identique à celui proposé dans la démonstration de la propo-
sition 9.6 (seule la constante k/λh est différente) conduit à :

V

(
β̂T

)
=

σ2

(
k

λh

)2(
tXT XT − 1

k
tXT BtBXT

)

= σ2

(
k

λh

)2(

rIh − 1
k
N tN

)

.
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Or il a déjà été montré (voir le paragraphe 9.4.1) que pour tout plan en blocs
incomplets équilibré on a C = N tN = (r − λ) Ih + λJh donc :

V

(
β̂T

)
= σ2

(
k

λh

)2((

r − r

k
+

λ

k

)

Ih − λ

k
Jh

)

= σ2 k

λh

(

Ih − 1
h

Jh

)

.

On en déduit que :

∀ i = 0, ..., h− 1 , Var β̂
[i]
T = σ2 k

λh

(

1− 1
h

)

= σ2 k (h− 1)
λh2

�

Proposition 9.14. Pour tout GDD (h, b, k, r, λ1, λ2) tel que l’ensemble des
traitements est partitionné en n2 sous-ensembles à n1 éléments on a :

r (k − 1) = λ1 (n1 − 1) + λ2n1 (n2 − 1) .

Démonstration. Considérons un plan en blocs de type GDD (h, b, k, r, λ1, λ2)
et un traitement i (i = 0, ..., h− 1) de référence. Par hypothèse ce traitement
apparâıt dans exactement r blocs. Chaque bloc étant de taille k le nombre
total des autres traitements apparaissant dans ces blocs est donc égal à φ
donné par :

φ = r (k − 1) .

De même chaque traitement i′ 	= i apparâıt aussi dans ces blocs :
{

λ1 fois comme associé d’ordre 1,
λ2 fois comme associé d’ordre 2.

Or le traitement i a par hypothèse (n1 − 1) traitements associés à l’ordre 1
et donc h− 1− (n1 − 1) = h− n1 = n1 (n2 − 1) traitements associés à l’ordre
2. Ceci donne comme total des traitements autres que i figurant dans ces r
blocs :

φ = λ1 (n1 − 1) + λ2n1 (n2 − 1) .

D’où le résultat énoncé par identification de ces deux quantités �

Proposition 9.15. Soit un plan d’expérience partiellement équilibré
à deux schémas d’association de type GDD (h, b, k, r, λ1, λ2) tel que
l’ensemble des traitements est partitionné en n2 sous-ensembles à n1 éléments.
L’estimateur des moindres carrés des effets des traitements vérifiant les con-
traintes d’identification classiques est donné par (avec U matrice d’ordre h
diagonale par blocs telle que U = diag (Jn1 , ..., Jn1)):

β̂T =
k

r (k − 1) + λ1

[

Ih − (λ2 − λ1)
hλ2

U

]

QT .

Concernant les différentes dispersions il vient :
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∀ i = 0, ..., h− 1 , Var β̂
[i]
T =

σ2k

(r (k − 1) + λ1)
2

[

r (k − 1) +
λ2n1 (n2 − 1) (λ2 − λ1)

hλ2

(

n1
(λ2 − λ1)

hλ2
− 2

)]

.

Démonstration. D’après la proposition 9.2 les équations normales réduites
permettant d’estimer les effets des traitements sont données par (puisque tout
GDD est à la fois équirépliqué et en blocs de même taille) :

CT β̂T = QT avec CT = rIh − 1
k

C.

La structure de la matrice de concordance C est connue pour tout plan de
type GDD (h, b, k, r, λ1, λ2) (voir le paragraphe 9.5.1) et il vient :

C = (r − λ1) Ih + (λ1 − λ2) U + λ2Jh

où U est la matrice diagonale par blocs telle que U = diag (Jn1 , ..., Jn1).
Remarquons que les règles de calcul vis-à-vis des trois matrices Ih, et Jh

engendrant C sont très simples avec notamment :

J2
h = hJh , UJh = JhU = n1Jh et U2 = n1U.

On peut donc dire que la matrice CT est donnée ici par :

CT =
1
k

[(r (k − 1) + λ1) Ih + (λ2 − λ1)U − λ2Jh] .

Cette matrice est, une nouvelle fois, toujours singulière. En effet, la somme
de chacune de ses lignes vaut :

r (k − 1)− λ1 (n1 − 1)− λ2n1 (n2 − 1)
k

et cette quantité est toujours nulle d’après la proposition 9.14. Résolvons alors
le système d’équations CT β̂T = QT à l’aide des trois étapes suivantes.

1) Recherche d’une inverse généralisée de CT .
Cherchons ici une inverse généralisée de la matrice CT sous la forme αIh +
βU. En notant pour simplifier CT = a∗Ih + b∗U + c∗Jh (avec donc a∗ =
(r (k − 1) + λ1) /k, b∗ = (λ2 − λ1) /k et c∗ = −λ2/k) on a alors :

CT (αIh + βT ) = (a∗α) Ih + (a∗β + b∗α + n1b
∗β)U + c∗ (α + n1β) Jh.

On en déduit que :

CT (αIh + βU)CT =
(
a∗2α

)
Ih + [(a∗ + n1b

∗) (a∗β + b∗α + n1b
∗β) + a∗b∗α] U

+c∗ [(a∗ + n1b
∗ + hc∗) (α + n1β) + a∗α + n1 (a∗β + b∗α + n1b

∗β)]Jh.
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La matrice αIh + βU est bien une inverse généralisée de CT si et seulement
si CT (αIh + βU)CT = CT . On vérifie alors, par identification des divers
coefficients, que cette égalité est bien vérifiée dès lors que :

α =
1
a∗ =

k

r (k − 1) + λ1
et β =

−b∗

a∗ (a∗ + n1b∗)
=

k (λ2 − λ1)
[r (k − 1) + λ1] hλ2

.

2) Recherche de l’ensemble des solutions de CT β̂T = QT .
La proposition 9.B appliquée avec l’inverse généralisée particulière obtenue
précédemment conduit à la conclusion que toute solution de cette équation
normale réduite est de la forme suivante :

β̂T = C−
T QT +

(
C−

T CT − Ih

)
z avec z ∈ R

h.

Les divers résultats obtenus à la partie 1 permettent maintenant de simplifier
cette expression en affirmant qu’il existe un unique couple de réels (c1, c2)
(dont la détermination explicite est sans intérêt pour la suite) tel que :

β̂T =
k

r (k − 1) + λ1

[

Ih − (λ2 − λ1)
hλ2

U

]

QT + (c1U + c2Jh) z.

3) Recherche de la solution sous contrainte.
Parmi toutes ces solutions il faut une nouvelle fois garder uniquement celle
vérifiant les contraintes d’identification classiques t

Ihβ̂T = 0. Or :
{ t

IhQT = 0 car QT est un contraste de R
h,

t
IhUQT = (t

IhU)QT = n1 (t
IhQT ) = 0.

On en déduit que la solution sous contrainte est obtenue en posant z = 0,
d’où :

β̂T =
k

r (k − 1) + λ1

[

Ih − (λ2 − λ1)
hλ2

U

]

QT .

4) Dispersion du vecteur β̂T .
On vient de prouver ici que :

β̂T =
1
a∗

(

Ih − b∗

a∗ + n1b∗
U

)

QT =
1
a∗

(

Ih − b∗k
hλ2

U

)

QT

avec a∗ = (r (k − 1) + λ1) /k et b∗ = (λ2 − λ1) /k. On peut donc dire aussi
(d’après la définition du vecteur QT ) que :

β̂T =
1
a∗

(

Ih − b∗k
hλ2

U

)
tXT P(ImB)⊥Y.

D’où (puisque V (Y ) = σ2In et P(ImB)⊥ est un projecteur orthogonal) :

V

(
β̂T

)
=

σ2

a∗2

(

Ih − b∗k
hλ2

U

)
tXT P(ImB)⊥XT

(

Ih − b∗k
hλ2

U

)

.
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Le plan utilisé étant de plus en blocs de même taille il vient :

P(ImB)⊥ = In −B
(
tBB

)−1 tB = In − 1
k

BtB.

Donc :

V

(
β̂T

)
=

σ2

a∗2

(

Ih − b∗k
hλ2

U

) (
tXT XT − 1

k
tXT BtBXT

)(

Ih − b∗k
hλ2

U

)

=
σ2

a∗2

(

Ih − b∗k
hλ2

U

)

CT

(

Ih − b∗k
hλ2

U

)

.

=
σ2

a∗2

[

CT − 2
b∗k
hλ2

UCT +
(

b∗k
hλ2

)2

UCT U

]

.

Simplifions maintenant cette expression sachant que l’on a (par hypothèse) la
relation CT = a∗Ih + b∗U + c∗Jh, donc :

i) la matrice UCT est donnée par :

UCT = U (a∗Ih + b∗U + c∗Jh) = (a∗ + n1b
∗)U + n1c

∗Jh.

ii) la matrice UCT U est donnée par :

UCT U = ((a∗ + n1b
∗)U + n1c

∗Jh)U = n1UCT .

On en déduit alors (puisque a∗+n1b
∗ = hλ2/k) que tous les termes diagonaux

de la matrice UCT sont égaux à :

hλ2

k
+ n1c

∗ =
λ2 (h− n1)

k
=

n1λ2 (n2 − 1)
k

alors que tous les termes diagonaux de la matrice UCT U sont égaux à :

n1

(
hλ2

k
+ n1c

∗
)

=
n2
1λ2 (n2 − 1)

k
.

Comme tous les termes diagonaux de la matrice CT sont de plus égaux à
r (k − 1) /k ceci permet donc d’affirmer que toutes les dispersions Var β̂

[i]
T

sont égales pour i = 0, ..., h− 1 à la valeur donnée explicitement par :

Var β̂
[i]
T =

σ2

a∗2

[
r (k − 1)

k
− 2

b∗k
hλ2

(
λ2n1 (n2 − 1)

k

)

+ n1

(
b∗k
hλ2

)2(
λ2n1 (n2 − 1)

k

)]

donc :

Var β̂
[i]
T =

σ2

a∗2

[
r (k − 1)

k
+

b∗k
hλ2

(
λ2n1 (n2 − 1)

k

)(

n1
b∗k
hλ2

− 2
)]
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ceci donne alors à partir des valeurs de a∗ et b∗ :

Var β̂
[i]
T =

σ2k

(r (k − 1) + λ1)
2

[

r (k − 1) + λ2n1 (n2 − 1)
(λ2 − λ1)

hλ2

(

n1
(λ2 − λ1)

hλ2
− 2

)]

.

D’où le résultat énoncé �
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Optimalité des plans d’expérience



10

Critères d’optimalité

10.1 Introduction

Divers types de plan d’expérience ont été présentés et construits dans les
chapitres précédents. Il a été montré à plusieurs reprises que face à un même
problème plusieurs configurations équivalentes en terme de coût expérimental
(i.e. avec un même nombre d’expériences) peuvent exister. Dans un tel cas
l’expérimentateur souhaite, bien entendu, mettre en œuvre le meilleur de
tous ces plans. L’objet de ce chapitre est de proposer des pistes afin de
résoudre un tel problème. Ceci est généralement complexe car il n’existe pas de
critère naturel et universel permettant d’affirmer qu’un plan est meilleur qu’un
autre. C’est pourquoi divers critères mathématiques vont être étudiés, chacun
ayant pour but d’ordonner les plans d’expérience dans un sens particulier.
De manière générale ces critères pourront ensuite être étendus à des classes
entières de plans d’expérience (éventuellement infinies) afin de déterminer des
configurations optimales. Les bases mathématiques de la théorie des plans
d’expérience optimaux ont été établies principalement par Kiefer (voir, par
exemple, [58]). Le lecteur souhaitant approfondir ce thème pourra se référer
principalement aux ouvrages de Pukelsheim [75], Shah et Sinha [91] ou Col-
lombier [19], aux articles de Wynn [105], [106], Srivastava [94], [95] etc...

Ce chapitre débute par une section dédiée à des rappels et des compléments
principalement axés sur la notion d’ensemble ordonné ainsi que la notion de
matrice d’information associée à un estimateur donné. Les sections suivantes
abordent ensuite trois types classiques d’optimalité pour les plans d’expérience
: l’optimalité uniforme, la φq-optimalité et enfin l’optimalité universelle. Tous
ces critères d’optimalité sont présentés ici de manière simple en se ramenant
toujours à un ordre sur des vecteurs bien choisis.

Une dernière partie propose enfin d’appliquer toutes ces notions à di-
verses configurations étudiées dans les chapitres précédents. Ceci met alors en

W. Tinsson, Plans d’expérience: constructions et analyses statistiques,
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4 10,
c© Springer-Verlag Berlin Heidelberg 2010
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lumière tout l’intérêt d’utiliser des plans d’expérience construits algébriquement
car on obtient ainsi le plus souvent des configurations optimales.

10.2 Rappels et compléments

10.2.1 Ensembles ordonnés

Rappelons ici au préalable les axiomes mathématiques liés à la notion d’ordre.
Considérons de manière générale un ensemble E et une relation binaire (notée
�) sur les couples d’éléments de E. Cette relation définit une relation
d’ordre sur l’ensemble E si et seulement si (∀ x, y, z ∈ E) :

1) elle est réflexive : x � x,

2) elle est antisymétrique : (x � y et y � x) ⇒ x = y,

3) elle est transitive : (x � y et y � z) ⇒ x � z.

Si tous les couples d’éléments de E sont comparables, c’est-à-dire lorsque :

∀ x, y ∈ E , x � y ou y � x

on a alors une relation d’ordre total (i.e. E est un ensemble totalement or-
donné). Dans le cas contraire l’ordre est partiel. Lorsque les trois hypothèses
de la relation d’ordre sont trop contraignantes il est possible de considérer
une relation seulement réflexive et transitive munissant l’ensemble E d’un
préordre.

10.2.2 Ordres sur les vecteurs

Voici maintenant quelques relations d’ordre sur l’ensemble des vecteurs de
R

n
+. On se limite à cet ensemble car tous les vecteurs considérés par la suite

afin de manier la notion d’optimalité seront à composantes positives ou nulles.
Désignons dans cette section par u et v deux vecteurs de R

n
+ et par (ui)i=1,...,n

et (vi)i=1,...,n leurs composantes respectives supposées ordonnées de manière
décroissante (i.e. u1 ≥ u2 ≥ ... ≥ un, idem pour le vecteur v).

1) Ordre de Lœwner. L’ordre de Lœwner est un ordre classique défini
sur l’ensemble des matrices symétriques (voir la section 10.3). On l’étend
naturellement aux vecteurs en disant que (et en le notant �L) :

u �L v si et seulement si ∀ i = 1, ..., n , ui ≤ vi.

Cette relation binaire définit bien un ordre sur R
n
+ mais seulement partiel.
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Exemple

Considérons les vecteurs de R
3
+ suivants :

u =

⎡

⎣
7
4
2

⎤

⎦ et v =

⎡

⎣
9
5
4

⎤

⎦ , w =

⎡

⎣
8
7
1

⎤

⎦ et z =

⎡

⎣
9
4
3

⎤

⎦ .

Les vecteurs u et v vérifient u �L v. Les vecteurs w et z ne sont pas
comparables puisque aucune des relation w �L z ou z �L w n’est
vérifiée.

2) Q-ordre. Il s’agit ici d’ordonner deux vecteurs de R
n
+ selon la q-norme

classique définie par la relation suivante :

∀ 0 < q < +∞ , ‖u‖q =

(
n∑

i=1

uq
i

)1/q

.

Par passage à la limite en 0 et +∞ on pose aussi (attention au fait que ‖.‖∞
est encore une norme sur R

n
+ mais ce n’est plus le cas pour ‖.‖0) :

‖u‖0 =
n∏

i=1

ui et ‖u‖∞ = max
i=1,...,n

ui.

Pour tout 0 ≤ q ≤ +∞ fixé on dit alors que :

u �q v si et seulement si ‖u‖q ≤ ‖v‖q .

Tous les couples de vecteurs de R
n
+ sont bien comparables mais cette relation

binaire définit cette fois seulement un préordre sur R
n
+.

Exemple

Considérons les vecteurs de R
3
+ suivants :

u =

⎡

⎣
8
2
1

⎤

⎦ et v =

⎡

⎣
7
6
5

⎤

⎦ , w =

⎡

⎣
4
2
0

⎤

⎦ et z =

⎡

⎣
5
1
0

⎤

⎦ .

Concernant les vecteurs u et v il vient par exemple u �∞ v (car
‖u‖∞ = 8 ≥ ‖v‖∞ = 7) et u �1 v (car ‖u‖1 = 11 ≤ ‖v‖1 = 18). Pour
les vecteurs w et z il est clair que w �1 z et z �1 w mais ces deux
relations n’impliquent pas que w = z.

3) Ordre de Schur. On définir de même l’ordre de Schur sur deux vecteurs
de R

n
+ (noté simplement � par la suite) en disant que :
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u � v si et seulement si

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

ui =
n∑

i=1

vi,

∀ k = 1, ..., n− 1 ,
k∑

i=1

ui ≤
k∑

i=1

vi.

Cette relation binaire définit bien une relation d’ordre sur l’ensemble R
n
+ mais

l’ordre est partiel puisque deux vecteurs u et v ne sont pas forcément compa-
rables (une condition nécessaire mais non suffisante pour qu’ils le soit est que
‖u‖1 = ‖v‖1). Remarquons que si uk↓ ∈ R

k
+ est le sous-vecteur de u constitué

par ses k premières composantes (toujours ordonnées) il vient :

u � v ⇔ (‖u‖1 = ‖v‖1 et ∀ k = 1, ..., n− 1 , ‖uk↓‖1 ≤ ‖vk↓‖1).

Exemple

Considérons les vecteurs de R
3
+ suivants :

u =

⎡

⎣
5
4
2

⎤

⎦ et v =

⎡

⎣
7
3
1

⎤

⎦ , w =

⎡

⎣
4
3
1

⎤

⎦ et z =

⎡

⎣
5
0
3

⎤

⎦ .

Concernant les vecteurs u et v on a ici u � v. Les vecteurs w et z, par
contre, ne sont pas comparables puisque :

3∑

i=1

wi =
3∑

i=1

zi et w1 ≤ z1 mais
2∑

i=1

wi ≥
2∑

i=1

zi.

4) Ordre faible de Schur. Lorsque la condition
∑n

i=1 ui =
∑n

i=1 vi est
jugée trop contraignante on cherche alors naturellement à introduire un ordre
plus faible que l’ordre de Schur. Afin de définir un tel ordre remarquons au
préalable que :

u � v ⇒ ∀ k = 1, ..., n ,

k∑

i=1

ui ≤
k∑

i=1

vi.

Comme u � v entrâıne cependant (par définition) que
∑n

i=1 ui =
∑n

i=1 vi,
on a donc aussi (remplacer dans la première inégalité un des ui par

∑
j vj −∑

j �=i uj) :

u � v ⇒ ∀ k = 1, ..., n ,

n∑

i=k+1

ui ≥
n∑

i=k+1

vi.

Cette dernière relation est de même vraie lorsque k = 0 (toujours par
définition). On vient donc de montrer que si u � v alors on a forcément les
deux inégalités ci-dessus. Ceci permet de définir deux ordres faibles de Schur
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(notés classiquement �ω et �ω avec la lettre ω pour weak) de la manière
suivante :

u �ω v ⇔ ∀ k = 1, ..., n ,
k∑

i=1

ui ≤
k∑

i=1

vi,

u �ω v ⇔ ∀ k = 1, ..., n ,
n∑

i=k

ui ≥
n∑

i=k

vi.

Lorsque u �ω v (resp. u �ω v) on dit que u est faiblement inférieurement
(resp. supérieurement) majoré par v. Une nouvelle fois on obtient ainsi pour
�ω ou �ω un ordre partiel sur R

n
+ (mais il n’est plus nécessaire maintenant

que ‖u‖1 = ‖v‖1 pour que les vecteurs u et v puissent être comparés). Voici
deux propriétés liées à ces ordres faibles (elles figurent, parmi bien d’autres,
dans l’ouvrage de Marshall et Olkin [63]).

1) L’ordre de Schur entrâıne les deux ordres faibles de Schur. On vérifie que
la réciproque est également vraie donc :

(u �ω v et u �ω v) ⇔ u � v.

2) Il existe la relation suivante entre les deux ordres faibles :

u �ω v ⇔ −u �ω −v.

Exemple

Considérons les vecteurs u et v de R
3
+ suivants :

u =

⎡

⎣
4
2
1

⎤

⎦ et v =

⎡

⎣
8
3
2

⎤

⎦ .

On a u �ω v mais la relation u �ω v est ici fausse. Ces deux vecteurs
ne sont donc pas comparables pour l’ordre (classique) de Schur.

10.2.3 Matrice d’information

Il est très fréquent en pratique de considérer un plan d’expérience D utilisé
avec un modèle linéaire de la forme :

Y = XDβ + ε

tel que la matrice du modèle XD soit de plein rang (comme plusieurs plans
différents vont souvent être comparés on note alors XD la matrice du modèle
obtenue avec le plan D). Lorsque le paramètre d’intérêt est le vecteur β dans
sa totalité la matrice des covariances de l’estimateur des moindres carrés β̂
est donnée par (voir la proposition 2.6) :
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V

(
β̂
)

= σ2
(
tXDXD

)−1
.

La matrice (tXDXD)−1, appelée matrice de dispersion, est primordiale car
elle mesure, à une constante multiplicative près, la dispersion du vecteur des
paramètres estimés. C’est pourquoi cette matrice sera très souvent utilisée par
la suite pour construire divers critères ayant pour but d’évaluer la qualité du
plan d’expérience utilisé. L’inversion matricielle n’étant pas toujours simple
à effectuer on exprimera le plus souvent possible tous ces critères en fonction
de la seule matrice tXDXD appelée matrice d’information.

L’objectif est ici de généraliser la notion de matrice d’information à des
modèles linéaires plus complexes (modèle à effets de blocs, modèles pour fac-
teurs qualitatifs, etc...). Ce sujet à été longuement abordé dans l’ouvrage de
Pukelsheim [75] ainsi que dans celui de Collombier [19]. Considérons à partir
de maintenant un modèle linéaire quelconque utilisé avec un plan d’expérience
D permettant d’estimer un certain nombre de paramètres d’intérêt contenus
dans un vecteur α. On définit alors, de manière générale, la matrice de
dispersion (notée VD) obtenue sur le plan D pour l’estimation de α par la
relation :

VD (α̂) = σ2VD.

De même, la matrice d’information obtenue sur ce plan d’expérience pour
réaliser l’estimation de α (notée CD ou encore CD (α)) est la matrice des co-
efficients de l’équation normale permettant d’obtenir l’estimateur des moin-
dres carrés α̂.

De manière générale les matrices d’information et de dispersion sont liées
par la relation suivante (voir Collombier [19]) :

Proposition 10.1. Soit un modèle linéaire et un plan d’expérience D tels que
la matrice d’information CD pour le vecteur des paramètres α soit régulière.
Les matrices d’ information et de dispersion vérifient alors :

VD = C−1
D .

Voici maintenant ci-dessous divers exemples de matrices d’information (per-
mettant de traiter tous les modèles utilisés dans cet ouvrage).

1) Modèle classique avec XD de plein rang et estimation de β.
Il s’agit du cas déjà évoqué au début de ce paragraphe où le modèle ainsi

que le vecteur α des paramètres à estimer sont donnés par :

Y = XDβ + ε et α = β.

Les équations normales sont alors (voir la proposition 2.5) :
(
tXDXD

)
α̂ = tXDY.



10.2 Rappels et compléments 423

Il en découle que la matrice d’information est donnée par :

CD = tXDXD

La proposition 10.1 est bien vérifiée puisque la matrice XD est de plein rang
donc tXDXD est inversible avec (voir la proposition 2.6) :

VD
(
β̂
)

= σ2
(

tXDXD
)−1 ⇒ VD =

(
tXDXD

)−1 = C−1
D .

2) Modèle classique avec XD de plein rang et estimation de Kβ.
On ne cherche pas à estimer ici le vecteur β mais le vecteur transformé Kβ

avec K ∈ M (ω, p) . Le modèle utilisé et le vecteur des paramètres à estimer
sont alors :

Y = XDβ + ε et α = Kβ.

Supposons, pour simplifier, que la matrice K est carrée et inversible. On a
alors β = K−1α et le modèle linéaire utilisé peut aussi être écrit :

Y = XDβ + ε =
(
XDK−1

)
α + ε.

Il en découle (proposition 2.5) que les équations normales d’un tel modèle sont
données par : (

tK−1tXDXDK−1
)
α̂ = tK−1tXDY.

Comme tK−1tXDXDK−1 =
(
K (tXDXD)−1 tK

)−1

la matrice d’information
est :

CD =
(
K
(
tXDXD

)−1 tK
)−1

De manière plus générale remarquons que :

VD (α̂) = VD
(
Kβ̂

)
= KVD

(
β̂
)

tK = σ2K
(
tXDXD

)−1 tK.

Donc VD = K (tXDXD)−1 tK et la proposition 10.1 est bien vérifiée car :

CD =
(
K
(
tXDXD

)−1 tK
)−1

= V −1
D .

Dans le cas général (c’est-à-dire avec K carrée non-inversible ou même non-
carrée) l’obtention de la matrice d’information pour α est complexe (consulter
par exemple l’ouvrage de Pukelsheim [75]) mais garde cette forme générale.

3) Modèle partitionné.
Considérons ici, de manière très générale, un modèle linéaire dépendant

de deux groupes de paramètres inconnus regroupés dans les vecteurs β et
γ (c’est le cas, par exemple, pour les effets des traitements et les effets des
blocs). Supposons que seule l’estimation de β soir recherchée (i.e. les effets du



424 10 Critères d’optimalité

vecteur γ sont identifiés à des effets de nuisance). Le modèle considéré ainsi
que le vecteur d’intérêt α sont donc :

Y = XDβ + ZDγ + ε et α = β.

On peut aussi utiliser l’écriture suivante :

Y = X̃Dβ̃ + ε avec X̃D =
[
XD ZD

]
et β̃ =

[
α
γ

]

.

Il en résulte que les équations normales sont données par :
[

tXDXD tXDZD
tZDXD tZDZD

] [
α̂
γ̂

]

=
[

tXDY
tZDY

]

⇔
{

(tXDXD) α̂ + (tXDZD) γ̂ = tXDY

(tZDXD) α̂ + (tZDZD) γ̂ = tZDY
.

En supposant la matrice ZD de plein rang (ce qui sera toujours le cas dans les
exemples traités) on peut multiplier à gauche tous les termes de la seconde
égalité par (tZDZD)−1

. On obtient alors :
(
tZDZD

)−1 tZDXDα̂ + γ̂ =
(
tZDZD

)−1 tZDY.

La multiplication à gauche par −tXDZD donne maintenant :

−tXDPImZDXDα̂− (
tXDZD

)
γ̂ = −tXDPImZDY

avec toujours PImZD = ZD (tZDZD)−1 tZD le projecteur orthogonal sur
l’image de ZD. Rajouter cette équation à la première ligne des équations
normales conduit à :

(
tXD (In − PIm ZD )XD

)
α̂ = tXD (In − PImZD )Y.

Sachant que In − PImZD n’est autre que le projecteur sur l’orthogonal de
l’image de la matrice ZD (noté P(ImZD)⊥) on en déduit que la matrice
d’information relative à l’estimation du paramètre α est donnée par :

CD = tXD (In − PImZD )XD = tXDP(ImZD)⊥XD.

La proposition 10.1 est bien vérifiée puisque si CD est inversible VD (α̂) est
égale à :

VD

((
tXDP(ImZD)⊥XD

)−1
tXDP(ImZD)⊥Y

)

=

tXDP(ImZD)⊥X−1
D

tXDP(ImZD)⊥VD (Y ) P(ImZD)⊥XD
(

tXDP(ImZD)⊥XD
)−1

= σ2
(

tXDP(ImZD)⊥XD
)−1

tXDP(ImZD)⊥XD
(

tXDP(ImZD)⊥XD
)−1

car P(ImZD)⊥P(ImZD)⊥ = P(ImZD)⊥ puisque P(ImZD)⊥ est un projecteur. Donc
il vient :
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VD =
(

tXDP(ImZD)⊥XD
)−1

= C−1
D .

4) Modèle à matrice d’information non-inversible.
Considérons maintenant un modèle partitionné de la forme :

Y = XDβ + ZDγ + ε et α = β

mais avec cette fois la matrice d’information CD = tXDP(ImZD)⊥XD non-
inversible. Une telle situation se présente systématiquement dans le cas des
plans en blocs pour facteurs qualitatifs (voir le chapitre 9). Une première
technique consiste soit à supprimer des facteurs soit à utiliser des contraintes
d’identification afin de rendre cette matrice régulière et se ramener ainsi à
la situation déjà abordée précédemment (cas numéro trois). Il est cependant
possible de travailler directement avec la matrice tXDP(ImZD)⊥XD initiale.
Attention au fait qu’ici la proposition 10.1 n’est plus applicable mais on vérifie
facilement, en reconduisant le raisonnement du cas des modèles partitionnés,
que le équations normales pour l’estimation du paramètre α sont :

(
tXDP(ImZD)⊥XD

)
α̂ = tXDP(ImZD)⊥Y.

Il en découle que la matrice d’information est encore :

CD = tXDP(ImZD)⊥XD.

La difficulté réside ici dans le lien entre la matrice d’information CD et la ma-
trice de dispersion VD. Le fait que CD soit singulière entrâıne que les équations
normales admettent une infinité de solutions. On sait alors (voir la proposition
9.B) que l’ensemble des solutions est donné par :

S =
{
C−

D
(

tXDP(ImZD)⊥Y
)

+
(
C−

DCD − Ih

)
z / z ∈ R

h
}

où h est le nombre de paramètres du vecteur β et C−
D désigne une inverse

généralisée quelconque de la matrice CD (voir la définition 9.A). Soit alors
une solution quelconque des équations normales, i.e. :

α̂ = C−
D
(

tXDP(ImZD)⊥Y
)

+
(
C−

DCD − Ih

)
z∗ avec z∗ ∈ R

h fixé.

La quantité
(
C−

DCD − Ih

)
z∗ n’étant pas aléatoire il vient :

VD (α̂) = VD
(
C−

D
(

tXDP(ImZD)⊥Y
))

= C−
D

tXDP(ImZD)⊥V (Y )P(ImZD)⊥XDC−
D = σ2C−

DCDC−
D .

Ce dernier résultat montre donc que dans le cas général la relation liant les
matrices de dispersion et d’information est donnée par VD = C−

DCDC−
D où C−

D
désigne une inverse généralisée de la matrice d’information CD. Remarquons
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enfin que pour retrouver une formule similaire à celle de la proposition 10.1 il
est très courant de considérer une inverse généralisée particulière de la matrice
CD, appelée inverse généralisée de Moore-Penrose (notée C+

D) vérifiant (entre
autre) la propriété supplémentaire C+

DCDC+
D = C+

D . On a bien ainsi :

VD = C+
D .

Consulter pour plus de détails l’ouvrage de Rao et Mitra [78].

10.2.4 Complément d’analyse spectrale

Les valeurs propres de la matrice de dispersion VD associée au plan d’expéri-
ence D vont souvent être utilisées. Il a été montré qu’une telle matrice est
généralement liée à la matrice d’information CD par la relation VD = C−1

D .
La seule connaissance des valeurs et vecteurs propres de CD est alors suffisante
afin de réaliser l’analyse spectrale de VD. En effet si A est une matrice carrée
inversible admettant un vecteur propre u associé à la valeur propre λ (non-
nulle puisque A est inversible) alors :

Au = λu ⇔ A−1 (Au) = λA−1u ⇔ A−1u =
1
λ

u.

Ceci permet donc d’énoncer la proposition suivante :

Proposition 10.2. Si u est un vecteur propre de la matrice inversible A
associé à la valeur propre λ alors u est aussi un vecteur propre de la
matrice A−1 associé à la valeur propre 1/λ.

On va souvent considérer la suite pleine décroissante des valeurs propres
de la matrice d’information CD. Il s’agit de la totalité de ses p valeurs pro-
pres ordonnées λ

[1]
D ≥ ... ≥ λ

[p]
D (avec donc éventuellement des répétitions si

certaines valeurs propres ont un ordre de multiplicité strictement supérieur à
un). D’après la proposition 10.1 si la matrice CD est régulière et si l’on pose :

∀ i = 1, ..., p , μ
[i]
D =

1

λ
[i]
D

alors μ
[1]
D ≤ ... ≤ μ

[p]
D est cette fois la suite pleine croissante des valeurs propres

de la matrice de dispersion VD = C−1
D .

Lorsque la matrice d’information CD n’est pas inversible (cas numéro
4 présenté au paragraphe 10.2.3) on a alors VD = C+

D avec C+
D inverse

généralisée de Moore-Penrose. On vérifie que les résultats énoncés ici restent
vrais mais appliqués cette fois seulement aux valeurs propres non-nulles de
CD (puisque la singularité de CD se traduit par l’existence d’au moins une
valeur propre nulle).
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10.3 Optimalité uniforme

10.3.1 Exemple introductif

Considérons ici un phénomène aléatoire dépendant de m facteurs et un modèle
linéaire à ajuster supposé contenir un effet moyen général β0. Supposons
que l’expérimentateur dispose de deux plans d’expérience (notés D1 et D2)
de même taille et qu’il est tout particulièrement intéressé par la qualité de
l’estimation de β0. Désignons par VarD β̂0 la variance de l’estimateur sans
biais β̂0 obtenue à l’aide d’un plan D et supposons que les plans d’expérience
D1 et D2 vérifient :

VarD1 β̂0 ≤ VarD2 β̂0.

Il est clair qu’ici le choix de l’expérimentateur va se porter sur le plan
d’expérience D1 afin d’avoir un estimateur de meilleure qualité. On dit dans
ce cas que le plan d’expérience D1 est plus efficace que D2 pour l’estimation
de β0 (D1 sera dit strictement plus efficace si VarD1 β̂0 < VarD2 β̂0).

Supposons maintenant que le problème ne se limite pas à la comparaison
de deux plans d’expérience mais à un choix au sein d’une classe entière
(éventuellement infinie) notée Θ. Un plan d’expérience D∗ est alors qualifié
d’optimal au sein de la classe Θ (pour l’estimation de β0) si et seulement si :

∀ D ∈Θ , VarD∗ β̂0 ≤ VarD β̂0.

A partir de ceci on appelle efficacité d’un plan d’expérience D (toujours pour
l’estimation de β0) le rapport :

Eff (D) =
VarD∗ β̂0

VarD β̂0

.

Cet indicateur numérique (vérifiant 0 ≤ Eff (D) ≤ 1) traduit donc la qualité
d’un plan d’expérience en ramenant la variance de l’estimateur étudié à celle
du plan optimal. Un plan d’expérience est dit aussi efficace que le plan optimal
D∗ si et seulement si Eff(D) = 1.

Exemple

Considérons ici l’exemple des plans d’expérience usuels pour modèle
d’ordre un (voir le chapitre 3 paragraphe 3.2.4). Supposons qu’un tel
plan est utilisé pour ajuster un phénomène aléatoire dépendant de
m facteurs quantitatifs, que n expériences sont réalisées et enfin que,
classiquement, les points expérimentaux sont disposés dans la boule
centrée de rayon

√
m (en coordonnées codées). Quel plan d’expérience

usuel faut-il choisir alors afin d’estimer au mieux les divers effets
linéaires ? Il a été prouvé à la proposition 3.4 que la dispersion de
tous les effets linéaires est la même, donnée par :
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∀ i = 1, ..., m , Var β̂i =
σ2

s2
.

Il est alors clair qu’un plan usuel est optimal (pour l’estimation des
βi) si et seulement si la quantité s2 est maximisée. Or :

s2 =
n∑

u=1

z2ui donc
m∑

i=1

n∑

u=1

z2ui = ms2.

De même :

ms2 =
m∑

i=1

n∑

u=1

z2ui =
n∑

u=1

(
m∑

i=1

z2ui

)

=
n∑

u=1

d2u

où du (u = 1, ..., n) désigne la distance du u-ième point du plan à
l’origine. Cette somme de carrés est donc maximale dès lors que toutes
les distance du sont maximisées. On en déduit qu’un plan d’expérience
usuel est optimal (pour l’estimation des effets linéaires) si et seule-
ment si tous ses points sont à la surface de la sphère de rayon

√
m.

Remarquons que c’est bien le cas pour tout plan factoriel complet ou
toute fraction régulière de ce type de plan.

10.3.2 Extension au cas vectoriel

On n’utilise généralement pas un plan d’expérience pour se focaliser sur un
seul paramètre mais sur la totalité des p paramètres inconnus du modèle con-
tenus dans le vecteur β. La qualité de l’estimation globale est alors quantifiée
pour le plan d’expérience D par la matrice des covariances telle que (voir le
paragraphe 10.2.3) :

VD
(
β̂
)

= σ2
(
tXDXD

)−1

où XD est la matrice du modèle pour le plan D supposée ici (dans un pre-
mier temps) de plein rang. Tout comme les plans d’expérience de l’exemple
précédent ont été ordonnés suivant les différentes variances considérées on
peut généraliser ici ce procédé en ordonnant maintenant les matrices des co-
variances à l’aide de l’ordre de Lœwner sur les matrices. Etant données
deux matrices carrées symétriques A et B, de même dimension, l’ordre de
Lœwner est défini par :

A ≥ B ⇔ (A−B) est semi-définie positive.

Ceci entrâıne la notion statistique suivante de plan uniformément optimal
(sous-entendu pour l’estimation de tous les paramètres du vecteur β) :

Définition 10.3. Un plan d’expérience D∗∈Θ est dit uniformément opti-
mal au sein de la classe Θ si et seulement si :
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∀ D ∈Θ , VD∗
(
β̂
)
≤ VD

(
β̂
)

.

Ce type d’optimalité est parfois qualifiée dans la littérature de U -optimalité
(pour uniform optimality).

10.3.3 Propriétés

La notion d’optimalité uniforme généralise ce qui a été vu dans l’exemple
introductif puisque si D∗∈Θ est un plan d’expérience uniformément optimal
il vient alors pour tout D ∈Θ, où β̂(i) désigne ici de manière très générale la
i-ème composante du vecteur β̂ :

VD∗
(
β̂
)
≤ VD

(
β̂
)
⇔ ∀ x ∈ R

p , txVD∗
(
β̂
)

x ≤ txVD
(
β̂
)

x,

⇒ ∀ i = 1, ..., p , VarD∗ β̂(i) ≤ VarD β̂(i).

Cette implication est immédiatemment démontrée par utilisation des vecteurs
particuliers de la forme xi = t (δi1, δi2, ..., δip) avec δij symbole de Kronecker
(i.e. δij = 1 si i = j, δij = 0 sinon). Réciproquement on vérifie immédiatement
que :

Proposition 10.4. Soit une classe Θ de plans d’expérience telle que pour
tout D ∈ Θ la matrice du modèle XD est de plein rang. Un plan d’expérience
D∗∈Θ est uniformément optimal au sein de cette classe si et seulement
si :

∀ k ∈ R
p , VarD∗

(
tkβ̂

)
≤ VarD

(
tkβ̂

)
.

L’optimalité uniforme peut donc être vue comme une notion équivalente à
l’optimalité de toutes les fonctions paramétriques de la forme tkβ.

Sachant maintenant que pour l’ordre de Lœwner on a toujours la relation
suivante :

A ≥ B ⇔ A−1 ≤ B−1

(ceci peut être démontré, par exemple, à partir du théorème de représentation
extrémale utilisé pour la démonstration de la proposition 10.6) il vient :

Proposition 10.5. Soit une classe Θ de plans d’expérience telle que pour
tout D ∈ Θ la matrice du modèle XD est de plein rang. Un plan d’expérience
D∗∈Θ est alors uniformément optimal au sein de cette classe si et seule-
ment si :

∀ D ∈Θ , tXD∗XD∗ ≥ tXDXD.

Ce résultat montre donc que pour obtenir l’optimalité uniforme il n’est pas
nécessaire d’inverser la matrice tXX . Ceci peut s’avérer très utile en pra-
tique dans tous les cas de figure où cette inversion est complexe à réaliser
explicitement.
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La notion d’optimalité uniforme peut enfin être aussi facilement traduite
en terme de valeurs propres. On obtient alors le résultat donné ci-dessous
faisant intervenir cette fois l’ordre de Lœwner sur les vecteurs (voir le para-
graphe 10.2.2) :

Proposition 10.6. [�] Soit une classe Θ de plans d’expérience telle que pour
tout D ∈ Θ la matrice du modèle XD est de plein rang. Soit λ

[1]
D ≥ ... ≥ λ

[p]
D la

suite pleine décroissante des valeurs propres de la matrice tXDXD et λD ∈ R
p

le vecteur contenant ces différentes valeurs dans le même ordre. L’optimalité
uniforme d’un plan d’expérience D∗∈Θ se traduit par :

∀ D ∈ Θ , λD∗ �L λD.

Tout l’intérêt pratique de cette proposition réside dans le fait que l’on
ramène ici une propriété matricielle (liée à l’ordre de Lœwner sur les matrices
d’information) à une propriété vectorielle plus facile à manier en général.

Exemple

Considérons ici m = 3 facteurs quantitatifs à deux niveaux. Com-
parons les deux configurations suivantes constituées par 8 expériences
: le plan factoriel completD1 et le planD2 de type ”un facteur à la fois”
(avec deux expériences centrales afin que n = 8). Pour l’ajustement
d’un modèle polynomial d’ordre un il vient :

XD1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 1 1 −1
1 −1 −1 1
1 1 −1 1
1 −1 1 1
1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et XD2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0
1 1 0 0
1 0 −1 0
1 0 1 0
1 0 0 −1
1 0 0 1
1 0 0 0
1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On en déduit que :

tXD1XD1 =

⎡

⎢
⎢
⎣

8 0 0 0
0 8 0 0
0 0 8 0
0 0 0 8

⎤

⎥
⎥
⎦ et tXD2XD2 =

⎡

⎢
⎢
⎣

8 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤

⎥
⎥
⎦ .

Il est clair que tXD1XD1 ≥ tXD2XD2 donc la proposition 10.5 per-
met d’affirmer que le plan d’expérience factoriel complet D1 est uni-
formément plus efficace que le plan de type ”un facteur à la fois”
D2. Pour faire le lien avec les valeurs propres et la proposition 10.6 on
a bien ici :

tλD1 = (8, 8, 8, 8) �L
tλD2 = (8, 2, 2, 2) .
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Remarquons enfin que la principale difficulté d’utilisation de l’optimalité
uniforme est due au fait qu’elle repose sur un ordre partiel (i.e. une ma-
trice n’est pas forcément semi-définie positive ou semi-définie négative). Il en
résulte que l’optimalité uniforme induit un ordre sur les plans d’expérience
ne permettant pas toujours de les comparer entre eux. C’est pourquoi des
critères d’optimalité plus faibles vont être présentés par la suite.

10.3.4 Généralisation

La notion d’optimalité uniforme vient d’être présentée dans le cas particulier
où la matrice du modèle est de plein rang et où tous les paramètres du vecteur
β sont estimés. Dans un contexte plus général il a déjà été montré au para-
graphe 10.2.3 que l’on peut utiliser les notions de matrice de dispersion (VD)
et de matrice d’information (CD) en lieu et place des matrices (tXDXD)−1 et
tXDXD considérées ici. Ceci conduit à la définition suivante (généralisant à
la fois la définition 10.3 et la proposition 10.5) :

Définition 10.7. Soit une classe Θ de plans d’expérience et VD la matrice
de dispersion associée au vecteur des paramètres estimés pour tout D ∈ Θ.
Un plan d’expérience D∗∈Θ est alors dit uniformément optimal au sein
de la classe Θ si et seulement si :

∀ D ∈Θ , VD∗ ≤ VD.

De manière équivalente si CD désigne la matrice d’information associée
au vecteur des paramètres estimés, un plan d’expérience D∗∈Θ est uni-
formément optimal au sein de la classe Θ si et seulement si :

∀ D ∈Θ , CD∗ ≥ CD.

On retrouve bien ici les résultats énoncés précédemment dans le cas par-
ticulier où CD = tXDXD et VD = (tXDXD)−1 (situation 1 du paragraphe
10.2.3). Intéressons-nous maintenant aux cas de figure où une telle proposi-
tion peut être utile et justifions les résultats énoncés ici.

1) Optimalité uniforme pour certains paramètres.
On a considéré jusqu’à présent la totalité des composantes du vecteur β.

L’objectif cherché est parfois différent dans la mesure où des configurations op-
timales pour certains des paramètres du modèle (par exemple les effets quadra-
tiques) ou certaines combinaisons linéaires de ceux-cis (par exemple la somme
des effets linéaires) sont préférables. D’un point de vue mathématique on ne
s’intéresse donc plus ici à l’estimation du vecteur β ∈ R

p mais à l’estimation
du vecteur Kβ ∈ R

w (w ≤ p) avec K ∈M (w, p) . Un plan d’expérienceD∗∈Θ
est alors uniformément optimal au sein de la classe Θ pour l’estimation
de Kβ si et seulement si (en supposant ici XD toujours de plein rang comme
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à la situation 2 du paragraphe 10.2.3) la matrice de dispersion de Kβ̂ est la
”plus petite possible” avec le plan d’expérience D∗ c’est-à-dire si (∀ D ∈Θ) :

VD∗ = K
(
tXD∗XD∗

)−1 tK ≤ VD = K
(
tXDXD

)−1 tK

ce qui est équivalent à dire (puisque A ≥ B ⇔ A−1 ≤ B−1) que :

CD∗ =
(
K
(
tXD∗XD∗

)−1 tK
)−1

≥ CD =
(
K
(
tXDXD

)−1 tK
)−1

.

On retrouve donc bien ce qui a été énoncé à la proposition 10.7.

2) Optimalité uniforme pour configurations singulières.
On a supposé jusqu’à présent que les plans utilisés ont une matrice

d’information CD régulière. Cette hypothèse n’est pas toujours vraie, elle est
notamment impossible à vérifier pour un plan d’expérience à facteurs quali-
tatifs (voir le chapitre 8). Deux techniques sont alors classiquement utilisées
afin de définir l’optimalité de telles configurations.

La première solution consiste à rendre la matrice d’information
régulière afin de se ramener au cas classique. Ceci peut être réalisé en sup-
primant certains paramètres du modèle (comme pour les modèles à effets
de blocs en supprimant l’effet moyen général) ou bien en imposant des con-
traintes d’identification (comme pour les modèles à facteurs qualitatifs). L’une
ou l’autre de ces méthodes conduisent mathématiquement à réduire le nombre
de colonnes de la matrice du modèle ce qui permet dans la plupart des cas de
rendre la matrice d’information régulière.

La deuxième solution consiste à ne pas modifier la matrice du modèle
et à appliquer directement la seconde relation de la proposition 10.7 disant
que le plan d’expérience D∗ est uniformément optimal au sein de la classe Θ
si et seulement si :

∀ D ∈Θ , CD∗ ≥ CD.

Le fait que la matrice d’information CD soit singulière ici n’empèche pas la
vérification d’une telle relation (cette matrice admet juste un certain nombre
de valeurs propres nulles). Justifions qu’une telle généralisation au cas sin-
gulier est mathématiquement licite. Lorsque la matrice d’information CD est
singulière alors le système des équations normales admet une infinité de solu-
tions. D’après le paragraphe 10.2.3 il est classique de considérer une inverse
généralisée particulière de cette matrice qui est l’inverse généralisée au sens de
Moore-Penrose (notée C+

D). L’intérêt de ce choix est de vérifier les équations
normales tout en ayant la relation VD = C+

D généralisant le lien existant entre
les matrice de dispersion et d’information dans le cas régulier. A partir de ceci
il est naturel de dire qu’un plan d’expérience D∗ est uniformément optimal
au sein de la classe Θ dès lors que :
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∀ D ∈Θ , VD∗ ≤ VD ⇔ ∀ D ∈Θ , C+
D∗ ≤ C+

D .

On montre alors (voir par exemple Collombier [19]) que dans le cadre des
inverses généralisées de Moore-Penrose on a encore la relation suivante :

A ≥ B ⇔ A+ ≤ B+.

Ceci permet donc d’affirmer en conclusion qu’un plan d’expérience D∗ est
uniformément optimal au sein de la classe Θ si et seulement si :

∀ D ∈Θ , VD∗ ≤ VD ⇔ ∀ D ∈Θ , CD∗ ≥ CD.

L’extension de la proposition 10.7 au cas des matrices d’information sin-
gulières est ainsi justifiée.

10.4 Critères d’efficacité

10.4.1 Généralités et hypothèses

Le critère d’optimalité uniforme est lié (proposition 10.6) à l’ordre de Lœwner
sur les vecteurs des valeurs propres de la matrice tXDXD (ou de la matrice
d’information CD de manière plus générale). Ceci peut dans certaines situ-
ations poser problème car d’une part ces conditions sont parfois très con-
traignantes et d’autre part l’ordre est seulement partiel. De plus le critère
d’optimalité uniforme ne permet pas d’associer à un plan d’expérience un in-
dicateur numérique rendant compte de la qualité de la matrice d’information.
Afin de corriger tout ceci tout en gardant des critères dépendant des
valeurs propres de la matrice CD il est courant de proposer divers critères
d’efficacité. Les trois principaux sont présentés à la suite.

Supposons tout au long de cette partie que la matrice d’information CD est
régulière quel que soit le plan d’expérience D utilisé dans la classe Θ. D’après
les résultats du paragraphe 10.2.3 ceci permet donc d’affirmer que les matrice
d’information CD et de dispersion VD sont liées par la relation CD = V −1

D .
Si la matrice d’information n’est pas de plein rang alors les résultats obtenus
par la suite seront toujours vrais en les appliquant uniquement aux valeurs
propres non-nulles de cette matrice.

Tous les critères étudiés ici sont des applications de l’ensemble des plans
de la classe Θ dans R

+. Désignons maintenant de manière générale par Φ une
telle application :

Φ : Θ → R
+ telle que D ∈ Θ �−→ Φ (D) .

L’objectif est d’utiliser des applications dépendant seulement de la matrice
d’information du plan considéré donc :
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∀ D ∈ Θ , Φ (D) = Φ (CD) .

Les critères proposés à la suite sont tous construits de manière à ce qu’un plan
d’expérience est d’autant plus efficace que la quantité Φ (CD) est faible. On
cherchera donc à minimiser Φ (CD) ou, de manière équivalente, à maximiser
Φ−1 (CD). Un plan d’expérience D∗ est qualifié d’optimal au sein de la classe
Θ si et seulement si :

∀ D ∈ Θ , Φ (CD∗) ≤ Φ (CD) .

Afin de normaliser l’efficacité des plans d’expérience il est courant en pra-
tique de ne pas mesurer directement l’efficacité du plan D mais son efficacité
relative (par rapport à un plan optimal D∗) donnée par :

Φ̃ (D) =
Φ (CD∗)
Φ (CD)

.

L’avantage principal de cette notion est de ramener toutes les efficacités à une
valeur de l’intervalle [0, 1] . Un plan d’expérience est alors d’autant meilleur
qu’il a une efficacité relative proche de 1.

10.4.2 Le critère de A-efficacité

Pour ce critère un plan d’expérience est d’autant meilleur (pour l’estimation
du vecteur β) que la variance moyenne des composantes de l’estimateur
β̂ est faible. Ces diverses variances étant sur la diagonale de la matrice des
covariances le critère de A-efficacité (avec A pour average) est donc naturelle-
ment défini à partir de la trace de la matrice (tXDXD)−1

. Ceci entrâıne la
définition plus générale suivante :

Définition 10.8. Soit un plan d’expérience D et CD la matrice d’information
associée au vecteur des paramètres estimés. La A-efficacité de ce plan
d’expérience est donnée par :

Φ1 (CD) =
1
p

Trace
(
C−1

D
)
.

Remarques et propriétés.

1) L’application Φ1 peut être facilement exprimée en fonction des valeurs
propres μ

[1]
D ≤ ... ≤ μ

[p]
D de la matrice de dispersion VD puisque VD = C−1

D .
D’après le paragraphe 10.2.4 il est donc possible d’exprimer aussi Φ1 en fonc-
tion des valeurs propres λ

[1]
D ≥ ... ≥ λ

[p]
D de la matrice d’information CD

(généralement plus facile à manier) avec :

Trace
(
C−1

D
)

= Trace (VD) =
p∑

i=1

μ
[i]
D donc Φ1 (CD) =

1
p

p∑

i=1

(
λ
[i]
D
)−1

.
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2) D’un point de vue géométrique ce critère est lié à la minimisation de la
somme des diamètres de l’ellipsöıde associé à la matrice VD (voir de manière
plus générale la notion d’ellipsöıdes de concentration d’un vecteur aléatoire).

10.4.3 Le critère de D-efficacité

Un des reproches qui peut être fait au critère de A-efficacité (pour l’estimation
du vecteur β) est qu’il ne tient pas compte de tous les termes de la matrice de
dispersion (tXDXD)−1 puisque seule la diagonale est utilisée (i.e. les diverses
covariances entre couples de composantes de β̂ sont négligées). Afin de corriger
ce problème il est courant d’utiliser le déterminant de la matrice de dispersion
(tXDXD)−1 comme critère d’efficacité. Un tel déterminant est toujours positif
(puisque tXDXD ainsi que son inverse sont des matrices définies positives) et
plus les éléments de (tXDXD)−1 seront ”petits” plus ce déterminant sera
lui même proche de zéro. Ceci conduit donc au critère de D-efficacité (avec
D pour determinant) présenté ci-dessous de manière générale à partir de la
notion de matrice d’information (en désignant toujours par |A| le déterminant
de la matrice A) :

Définition 10.9. Soit un plan d’expérience D et CD la matrice d’information
associée au vecteur des paramètres estimés . La D-efficacité de ce plan
d’expérience est donnée par :

Φ0 (CD) =
∣
∣C−1

D
∣
∣1/p

.

Remarques et propriétés.

1) Par propriété des déterminant il n’est pas nécessaire de déterminer l’inverse
de la matrice d’information CD puisque :

Φ0 (CD) =
∣
∣C−1

D
∣
∣1/p

= |CD|−1/p
.

Ceci entrâıne que Φ0 peut être exprimé en fonction des valeurs propres λ
[1]
D ≥

... ≥ λ
[p]
D de la matrice CD (généralement plus facile à manier) avec donc :

Φ0 (CD) =
(∏p

i=1λ
[i]
D
)−1/p

.

Remarquons enfin que l’objectif de minimisation de Φ0 (CD) est équivalent ici
à celui de maximisation de la quantité suivante souvent utilisée en pratique :

ln
(

1
Φ0 (CD)

)

=
1
p

p∑

i=1

ln λ
[i]
D .

2) Le critère de D-efficacité est invariant par reparamétrisation affine. En
effet, supposons que l’estimation recherchée soit celle du vecteur θ = Hβ + h
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avec H matrice connue et h vecteur connu. La matrice des covariances
de l’estimateur des moindres carrés de θ est alors donnée pour tout plan
d’expérience D ∈Θ par :

V

(
θ̂
)

= V

(
Hβ̂ + h

)
= HV

(
β̂
)

tH = σ2H
(
tXDXD

)−1 tH.

Il vient par propriété des déterminants :
∣
∣
∣H

(
tXDXD

)−1 tH
∣
∣
∣ =

∣
∣
∣
tHH

(
tXDXD

)−1
∣
∣
∣ =

∣
∣tHH

∣
∣
∣
∣
∣
(
tXDXD

)−1
∣
∣
∣

avec |tHH | valeur constante quel que soit le plan D de la classe Θ utilisé
(cette valeur ne dépend que du changement de variable effectué). Il en résulte
donc que tout plan d’expérience D-optimal pour l’estimation de β est encore
D-optimal pour l’estimation de θ = Hβ +h. Une application très intéressante
de ce résultat concerne les plans pour facteurs quantitatifs. En effet, tout plan
d’expérience D-optimal exprimé en coordonnées codées (voir le paragraphe
3.2.1) est encore D-optimal relativement aux coordonnées initiales. Cette ro-
bustesse par rapport au changement de variable affine utilisé classiquement
pour le codage des facteurs rend ce critère de D-efficacité très populaire en
pratique.

3) D’un point de vue géométrique ce critère est lié à la minimisation du
volume de l’ellipsöıde associé à la matrice VD (voir de manière plus générale
la notion d’ellipsöıdes de concentration d’un vecteur aléatoire).

10.4.4 Le critère de E-efficacité

Un dernier critère d’usage courant consiste à déterminer (pour l’estimation
du vecteur β) le maximum de la forme quadratique tx (tXDXD)−1

x lorsque x
décrit l’ensemble des vecteurs de R

p de norme 1. Ceci conduit alors au critère
de E-efficacité (avec E pour extremal) présenté ci-dessous dans le cas général
où la matrice tXDXD est remplacée par la matrice d’information :

Définition 10.10. Soit un plan d’expérience D et CD la matrice
d’information associée au vecteur des paramètres estimés . La E-efficacité
de ce plan d’expérience est donnée par :

Φ∞ (CD) = max
‖x‖=1

(
txC−1

D x
)
.

Remarques et propriétés.

1) D’après le théorème de représentation extrémale on peut exprimer directe-
ment Φ∞ en fonction des valeurs propres μ

[1]
D ≤ ... ≤ μ

[p]
D de la matrice de

dispersion VD = C−1
D puisque :
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Φ∞ (D) = μ
[p]
D =

1

λ
[p]
D

.

Un plan d’expérience est donc d’autant meilleur pour ce critère de E-efficacité
qu’il maximise la quantité λ

[p]
D .

2) D’un point de vue géométrique ce critère est lié à la minimisation du plus
grand des diamètres de l’éllipsöıde associé à la matrice VD (voir de manière
plus générale la notion d’ellipsöıdes de concentration d’un vecteur aléatoire).

10.4.5 Le critère général de Φq-efficacité

Les trois critères d’efficacité présentés ici ne sont que des cas particuliers d’une
classe très générale de critères dits de Φq-efficacité. Ces critères, directement
liés aux valeurs propres de la matrice d’information CD, sont définis de la
manière suivante :

Définition 10.11. Soit un plan d’expérience D et CD la matrice
d’information associée au vecteur des paramètres estimés . Désignons par
λ
[1]
D ≥ ... ≥ λ

[p]
D la suite pleine décroissante des valeurs propres de la ma-

trice CD. Pour tout 0 < q < +∞ la Φq-efficacité de ce plan d’expérience est
donnée par :

Φq (CD) =

(
1
p

p∑

i=1

(
λ
[i]
D
)−q

) 1
q

.

Lorsque q = 1 on retrouve bien le critère de A-efficacité (d’où la notation Φ1

de la définition 10.8). Remarquons qu’en terme de matrice de dispersion il
vient aussi :

Φq (CD) =
(

1
p

TraceC−q
D

) 1
q

=
(

1
p

TraceV q
D

) 1
q

.

Par passage à la limite sur q (en 0 et en +∞) on obtient naturellement les
deux généralisations suivantes :

Proposition 10.12. [�] Un prolongement par continuité de la fonction Φq

en 0 ainsi qu’en +∞ permet d’obtenir les deux critères supplémentaires :

Φ0 (CD) =
(∏p

i=1λ
[i]
D
)− 1

p

et Φ∞ (CD) =
1

λ
[p]
D

.

Ceci permet alors de retrouver respectivement les critères de D et E-efficacités
(définitions 10.9 et 10.10). De manière générale un plan d’expérience D∗ est
qualifié de Φq-optimal au sein de la classe Θ si et seulement si :

∀ D ∈ Θ , Φq (CD∗) ≤ Φq (CD) .
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10.4.6 Propriétés

Présentons ici quelques propriétés générales de la Φq-efficacité valables quelle
que soit la valeur de q (elles seront donc directement applicables dans les
cas particuliers de A, D et E-efficacité). Ces propriétés sont classiques, une
démonstration ne sera pas proposée systématiquement.

Les résultats du paragraphe 10.4.5 montrent que tout critère de Φq-
efficacité dépend de la matrice d’information CD mais peut toujours être ra-
mené à un critère vectoriel par le biais du vecteur des valeurs propres de cette
même matrice. En effet, on a (avec toujours μ

[i]
D = 1/λ

[i]
D les valeurs propres

de la matrice de dispersion VD) :

Φq (CD) =

(
1
p

p∑

i=1

(
λ
[i]
D
)−q

) 1
q

=

(
1
p

p∑

i=1

(
μ
[i]
D
)q
) 1

q

.

En désignant alors par μD ∈ R
p le vecteur contenant toutes les valeurs propres

de la matrice de dispersion VD il en résulte que tout critère de Φq-efficacité
n’est autre qu’une norme vectorielle de μD (à une constante multiplicative
près) puisqu’il vient d’après la paragraphe 10.2.2 :

∀ 0 < q < +∞ , Φq (CD) =
(

1
p

) 1
q

‖μD‖q .

De même pour les valeurs q = 0 et q = +∞ la proposition 10.12 entrâıne le
résultat suivant :

Φ0 (CD) = (‖μD‖0)
1
p et Φ∞ (CD) = ‖μD‖∞ .

Il est intéressant maintenant de faire le lien entre les notions de Φq-efficacité
et d’optimalité uniforme. On a pour cela le résultat suivant :

Proposition 10.13. [�] Tout critère de Φq-efficacité (avec 0 ≤ q ≤ +∞) est
une fonction croissante pour l’ordre de Lœwner sur les matrices de disper-
sion, donc :

VD1 ≤ VD2 ⇒ Φq (VD1) ≤ Φq (VD2) .

Il est donc équivalent d’énoncer que tout critère de Φq-efficacité est une
fonction décroissante relativement à l’ordre de Lœwner sur les matrices
d’information puisque dès lors que CD = V −1

D on a (puisque A ≥ B ⇔ A−1 ≤
B−1) :

CD1 ≥ CD2 ⇒ Φq (CD1) ≤ Φq (CD2) .

Le résultat énoncé à la proposition 10.13 est intéressant car si le plan
d’expérienceD1 est uniformément plus efficace que le plan D2 (i.e. CD1 ≥ CD2

d’après la proposition 10.7) alors ceci implique forcément que le plan D1



10.4 Critères d’efficacité 439

est aussi Φq-plus efficace que le plan D2 et ceci pour toute valeur q
(0 ≤ q ≤ +∞). L’optimalité uniforme entrâıne donc la Φq-optimalité pour
toutes les valeur possibles du paramètre q.

La propriété suivante est un résultat d’invariance valable pour tout critère
de Φq-efficacité. On désigne ici par O (Rp) le groupe orthogonal de R

p c’est-
à-dire l’ensemble des matrices orthogonales de dimension p (cet ensemble muni
du produit matriciel a bien une structure de groupe).

Proposition 10.14. [�] Tout critère de Φq-efficacité (avec 0 ≤ q ≤ +∞) est
orthogonalement invariant, donc :

∀ P ∈ O (Rp) , Φq (CD) = Φq

(
PCDtP

)
.

Concrêtement, dans le cas où CD = tXDXD, la Φq-efficacité de tout plan
d’expérience est donc identique pour l’estimation du paramètre β ou bien du
paramètre Pβ avec P matrice orthogonale. En effet, la matrice des covariances
de l’estimateur des moindres carrés P β̂ est alors donnée par :

VD
(
P β̂

)
= PVD

(
β̂
)

tP = σ2P
(
tXDXD

)−1 tP.

Il en résulte donc que la Φq-efficacité (avec 0 < q < +∞) relative à l’estimation
de Pβ (notée Φ∗

q) est :

Φ∗
q =

(
1
p

Trace
(
P
(

tXDXD
)−1 tP

)q
) 1

q

.

La matrice P est orthogonale donc
(
P (tXDXD)−1 tP

)−1

= P (tXDXD) tP

et :

Φ∗
q =

(
1
p

Trace
(
P tXDXDtP

)−q
) 1

q

= Φq

(
P tXDXDtP

)
.

D’après la proposition 10.14 on a Φq (P tXDXDtP ) = Φq (tXDXD) et on en
déduit donc que la Φq-efficacité relative à l’estimation de Pβ est bien égale à
la Φq-efficacité (classique) relative à l’estimation de β. Ce raisonnement peut
être généralisé sans difficulté aux cas q = 0 et q = +∞. Remarquons que cette
propriété entrâıne, de manière tout à fait logique, que si P est une matrice de
permutation alors la Φq-efficacité est la même pour l’estimation de β et pour
l’estimation de Pβ.

Enonçons enfin une dernière propriété liée à la convexité de tout critère
de Φq-efficacité. Considérons ici le critère de Φq-efficacité comme fonction des
valeurs propres de la matrice d’information CD. Donc pour 0 < q < +∞ :

Φq (CD) = Φq

(
λ
[1]
D , ..., λ

[p]
D
)

=

(
1
p

p∑

i=1

(
λ
[i]
D
)−q

) 1
q
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et pour les cas limites :

Φ0

(
λ
[1]
D , ..., λ

[p]
D
)

=
(∏p

i=1λ
[i]
D
)− 1

p

et Φ∞
(
λ
[1]
D , ..., λ

[p]
D
)

=
1

λ
[p]
D

.

Proposition 10.15. Considérons le critère de Φq-efficacité comme fonc-
tion des valeurs propres de la matrice d’information CD. Cette fonction de
]0, +∞[p dans R

+ est convexe pour tout 0 ≤ q ≤ +∞.

La démonstration de ce résultat, très calculatoire, n’est pas donnée ici. Il
suffit techniquement de déterminer la forme des dérivées partielles secondes
de la fonction Φq puis de démontrer que la matrice hessienne associée à cette
fonction est définie positive (voir, par exemple, Collombier [19]).

10.4.7 Caractérisation des plans d’expérience Φq-optimaux

La définition ainsi que les principales propriétés relatives à la notion de
Φq-efficacité viennent d’être détaillées. Etant donnée une classe Θ de plans
d’expérience la recherche d’un plan Φq-optimal n’a généralement rien d’évi-
dent. C’est pourquoi on propose ici un critère relativement simple, dû à Kiefer
[57], permettant de caractériser de telles configurations.

Proposition 10.16. [�] Soit une classe de plans d’expérience Θ et CD la
matrice d’information associée au vecteur des paramètres estimés. Notons
λ
[1]
D ≥ ... ≥ λ

[p]
D la suite pleine décroissante des valeurs propres de la ma-

trice CD et ωD,1, ..., ωD,p les éléments diagonaux de cette même matrice. Soit
un critère d’efficacité de la forme suivante :

Φ (CD) =
p∑

i=1

f
(
λ
[i]
D
)

avec f fonction convexe sur ]0, +∞[ . Supposons enfin qu’il existe un plan
d’expérience D∗ ∈ Θ tel que :

1) CD∗ = aIp avec a 	= 0, 2)
p∑

i=1

f (ωD∗,i) = min
D∈Θ

p∑

i=1

f (ωD,i) .

Le plan D∗ est alors Φ-optimal dans la classe Θ.

Justifions au préalable que cette proposition peut être appliquée à la plupart
des critères de Φq-efficacité.

1) Pour la Φq-optimalité (avec 0 < q < +∞). Le plan d’expérience D1 est
alors Φq-plus efficace que le plan D2 si et seulement si :
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Φq (CD1) ≤ Φq (CD2) ⇔
(

1
p

p∑

i=1

(
λ
[i]
D1

)−q
) 1

q

≤
(

1
p

p∑

i=1

(
λ
[i]
D2

)−q
) 1

q

⇔
p∑

i=1

(
λ
[i]
D1

)−q

≤
p∑

i=1

(
λ
[i]
D2

)−q

.

Il est possible d’utiliser le critère alternatif tel que :

Φ (CD) =
p∑

i=1

f
(
λ
[i]
D
)

où f (x) =
1
xq

.

Cette fonction f est convexe sur ]0, +∞[ (car f ′′ (x) = q (q + 1)x−q−2 ≥ 0),
la proposition 10.16 englobe donc bien tout critère de Φq-efficacité pour 0 <
q < +∞. En particulier le critère de A-efficacité correspond à l’utilisation de
la fonction f telle que f (x) = 1/x.

2) Pour la D-optimalité (q = 0). Le plan d’expérienceD1 est D-plus efficace
que le plan D2 si et seulement si :

Φ0 (CD1) ≤ Φ0 (CD2) ⇔
(

p∏

i=1

λ
[i]
D1

)− 1
p

≤
(

p∏

i=1

λ
[i]
D2

)− 1
p

⇔
(

p∏

i=1

λ
[i]
D1

)−1

≤
(

p∏

i=1

λ
[i]
D2

)−1

⇔
p∑

i=1

− ln
(
λ
[i]
D1

)
≤

p∑

i=1

− ln
(
λ
[i]
D2

)
.

On peut donc ici comparer deux plans d’expérience à l’aide du critère alter-
natif :

Φ (CD) =
p∑

i=1

f
(
λ
[i]
D
)

où f (x) = − ln (x) .

La fonction f ainsi définie est convexe sur ]0, +∞[ (car f ′′ (x) = 1/x2 ≥ 0),
la proposition 10.16 englobe donc bien le critère de D-efficacité.

3) Pour la E-optimalité (q = +∞). On a alors :

Φ∞ (CD) =
(
λ
[p]
D
)−1

.

Il n’est pas possible de déterminer une fonction f convexe permettant d’écrire
ce critère sous la forme proposée à la proposition 10.16. Cette proposition ne
permet donc pas d’obtenir directement des résultats relatifs à la E-optimalité
d’un plan d’expérience (on peut néanmoins en obtenir éventuellement sous
forme de prolongement par continuité comme dans l’exemple ci-dessous).
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Exemple

Considérons un phénomène aléatoire dépendant de m = 2 facteurs
quantitatifs et cherchons une configuration en n = 4 expériences per-
mettant d’ajuster un modèle d’ordre un. Considérons la classe très
générale Θ (incluant celle des plans usuels) des plans d’expérience à
support dans le domaine expérimental sphérique de rayon

√
m tels

que :

∀ i, j = 1, ..., m avec i 	= j, n [i] = s1 , n [ij] = s11 et n
[
i2
]

= s2.

D’après le chapitre 3 il est classique dans ce cas de proposer l’utilisation
d’un plan factoriel complet D∗. Prouvons que ce choix est le meilleur
possible en terme de Φq-efficacité. Pour un tel plan d’expérience la
première condition de la proposition 10.16 est bien vérifiée puisqu’on
a (avec p = m + 1 = 3)

CD∗ = tXD∗XD∗ = 4Ip.

Si f est la fonction telle que f (x) = 1/xq (0 < q < +∞) alors :

p∑

i=1

f (ωD∗,i) =
3∑

i=1

f (4) = 3
(

1
4

)q

.

Soit maintenant un plan D ∈Θ. Par construction la diagonale de la
matrice d’information tXDXD est le vecteur (4, s2, s2) , donc :

p∑

i=1

f (ωD,i) = f (4) + 2f (s2) =
(

1
4

)q

+ 2
(

1
s2

)q

.

La seconde condition de la proposition 10.16 est alors vérifiée si et
seulement si :

∀ D ∈Θ ,
p∑

i=1

f (ωD,i) ≥
p∑

i=1

f (ωD∗,i)

⇐⇒ ∀ D ∈Θ , s2 ≤ 4.

Or, par hypothèse, tout point est inclu dans la boule B (
√

m) donc :

∀ u = 1, ..., n ,
m∑

i=1

z2ui ≤ 2.

Il en découle que (puisque s2 =
∑

u z2ui) :

ms2 =
m∑

i=1

n∑

u=1

z2ui =
n∑

u=1

(
m∑

i=1

z2ui

)

≤ 2n.
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Comme ici n = 4 et m = 2 on obtient bien s2 ≤ 4 et donc le plan
factoriel complet est Φq-optimal pour toute valeur 0 < q < +∞.
Les D et E-efficacités étant obtenues à l’aide d’un prolongement par
continuité de la fonction Φq en 0 et +∞ on en déduit (puisque le
plan factoriel complet est Φq-optimal pour tout q de R

∗
+) que ce plan

d’expérience est donc aussi D et E-optimal.

10.4.8 Plans Φq-optimaux obtenus numériquement

On qualifie ici de plan d’expérience Φq-optimal ”numérique” toute configura-
tion Φq-optimale construite de façon algorithmique. De tels plans d’expérience
sont proposés par la plupart des logiciels spécialisés. Ils ont un intérêt pratique
lorsque les configuration classiques sont jugées de trop grande taille.

Concrètement la recherche de ce type de configuration commence par
le choix d’un plan d’expérience de départ, le plus souvent classique, qui va
contenir l’ensemble des n points expérimentaux candidats (il s’agit donc en
général du plan d’expérience qui est jugé de trop grande taille). L’utilisateur
fixe ensuite le nombre maximal n

′
< n d’expériences qu’il souhaite con-

server et l’algorithme utilisé a pour objectif d’extraire des n points initiaux
le ”meilleur” sous-ensemble en n′ points selon le critère de Φq-efficacité. Re-
marquons que le recours à des techniques algorithmiques est ici nécessaire
car, même sur des exemples de petite taille, il est généralement impossible
d’avoir une approche exhaustive du problème. L’exemple suivant traite le cas
(très simple) de la recherche d’un sous-ensemble de 8 points parmi les 16
que constituent les points expérimentaux d’un plan factoriel complet de type
FD

(
24, 0

)
. Les sous-ensembles possibles sont au nombre de C8

16 = 12870 ce
qui est déjà conséquent.

L’algorithme le plus couramment utilisé pour ce type de recherche est
une nouvelle fois l’algorithme d’échange déjà présenté au paragraphe 8.7.5
du chapitre 8. Il est mis en oeuvre le plus souvent afin de rechercher des
configurations D-optimales. Diverses versions de cet algorithme existent (voir
l’ouvrage de Benoist et al. [3]) mais elles sont toutes basées sur un principe
commun. Dans un premier temps un choix aléatoire de n′ expériences est
réalisé au sein du plan d’expérience de départ. L’algorithme procède ensuite
à divers type d’échanges des expériences (par exemple en remplaçant une
expérience à chaque itération) dans le but de converger itérativement vers
une valeur maximale du déterminant de la matrice d’information CD. Le choix
aléatoire des expériences initiales pouvant avoir une influence sur le résultat
final il est courant de réaliser plusieurs tirages initialisant l’algorithme afin de
sélectionner au final la meilleure de toutes les solutions.
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Exemple

Considérons ici un phénomène aléatoire dépendant de m = 4 fac-
teurs quantitatifs et un modèle polynomial de degré un. Partons de
la configuration classique qu’est le plan d’expérience factoriel complet
constitué par n = 24 = 16 expériences. Supposons que la réalisation de
la totalité de ces 16 expériences est trop coûteuse et que l’on souhaite
en effectuer seulement la moitié. D’après l’algorithme d’échange le
meilleur plan constitué par n′ = 8 expériences extraites du plan fac-
toriel complet est alors le plan D1 défini par la matrice D1 suivante
(source : logiciel Nemrod) :

D1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1
−1 1 −1 −1

1 −1 1 −1
1 1 1 −1
1 −1 −1 1
1 1 −1 1

−1 −1 1 1
−1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Le recours à des techniques algorithmiques était inutile ici puisque le
plan d’expérience proposé ci-dessus n’est autre que la fraction régulière
de résolution III définie par la relation −I8=134. Une telle configura-
tion est bien D-optimale (parmi tous les plans en n = 8 expériences ex-
traites du plan factoriel complet) d’après la proposition 10.16. Remar-
quons que diverses solutions peuvent être proposées par l’algorithme
d’échange puisqu’il n’y a pas unicité au niveau de la construction de
la fraction régulière (il peut aussi converger vers la fraction régulière
telle que I8=134, I8=1234, etc...). Réduisons maintenant au maxi-
mum la taille du plan d’expérience à utiliser. On peut s’orienter cette
fois vers une configuration saturée en n′′ = 5 expériences. L’algorithme
d’échange propose alors le plan d’expérience D2 défini par la matrice
D2 suivante (source : logiciel Nemrod) :

D2 =

⎡

⎢
⎢
⎢
⎢
⎣

1 −1 −1 −1
−1 1 −1 −1

1 1 1 −1
1 1 −1 1

−1 −1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

.

Il vient (avec la matrice du modèle donnée par XD2 = [ I5 | D2 ]) :

Φ0(CD2) = Φ0(tXD2XD2) =
∣
∣tXD2XD2

∣
∣−1/p = (2304)−1/5 � 0.213.

Si l’algorithme d’échange a bien convergé vers une solution qui est
un minimum global du déterminant de la matrice d’information alors
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la configuration sélectionnée ci-dessus est optimale dans la classe des
plans en n′′ = 5 expériences (issues du plan factoriel complet initial).
L’extraction de tout autre ensemble de 5 expériences parmi les 16 du
plan initial doit donc conduire à des configurations moins efficaces.
Les deux exemples suivants (plans D3 et D4 de matrices D3 et D4)
illustrent le fait qu’un tel choix effectué ”au hasard” peut s’avérer très
mauvais :

D3 =

⎡

⎢
⎢
⎢
⎢
⎣

1 −1 1 1
1 −1 −1 −1
1 −1 1 −1

−1 −1 1 1
1 −1 −1 1

⎤

⎥
⎥
⎥
⎥
⎦

, D4 =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 1 1
−1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎤

⎥
⎥
⎥
⎥
⎦

.

Le plan D3 est inutilisable pour l’estimation de tous les paramètres du
modèle (puisque la deuxième colonne de D3 est colinéaire au vecteur
I5). Concernant maintenant D4 il vient :

Φ0(CD4) = Φ0(tXD4XD4) =
∣
∣tXD4XD4

∣
∣−1/p = (256)−1/5 � 0.330.

Ce plan d’expérience est donc moins efficace que D2 en terme de D-
efficacité. Ce type de recherche informatique d’une configuration D-
optimale peut aussi être menée avec le logiciel SAS à l’aide de la
procédure ”Optex” (voir Azäıs et Bardet [1] pour plus de détails).
Cette procédure ne fait cependant pas partie de la version de base de
ce logiciel.

10.5 Optimalité universelle

10.5.1 Définition

L’exemple du paragraphe 10.4.7 a conduit à la construction de plans Φq-
optimaux pour toute les valeurs positives de q. Il est évident qu’en pratique
on a tout intérêt, si cela est possible, à travailler avec de telles configura-
tions ”uniformément” Φq-optimales. Ceci est l’objectif principal du critère
d’optimalité universelle étudié ici. Ce type de critère a été historiquement
introduit par Kiefer [57] puis modifié ou enrichi par bon nombre d’auteurs
par la suite. La définition de l’optimalité universelle utilisée dans cette sec-
tion a été proposée par Bondar [4] et présente l’avantage d’être directe-
ment liée aux valeurs propres de la matrice d’information (et donc d’être
facilement interprétable par rapport aux critères d’optimalité précédents). De
tels critères d’optimalité nécessitent l’utilisation de fonctions nécessairement
Schur-convexes. Définissons au préalable cette notion.
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Définition 10.17. Soit Φ une application de R
p dans R. Une telle application

est qualifiée de Schur-convexe si et seulement si (en désignant encore l’ordre
de Schur sur les vecteurs par �) :

∀ u, v ∈ R
p , u � v ⇒ Φ (u) ≤ Φ (v) .

Voici la définition de l’optimalité universelle retenue ici. Il a déjà été
montré que tout critère de Φq-efficacité est orthognalement invariant (propo-
sition 10.14). Une telle propriété va donc obligatoirement être requise pour
l’optimalité universelle dans le but à la fois d’englober toute Φq-efficacité et
aussi d’obtenir un critère dépendant uniquement des valeurs propres de la
matrice d’information utilisée.

Définition 10.18. Soit une classe Θ de plans d’expérience et, pour tout
D ∈ Θ, λD ∈ R

p le vecteur contenant la suite pleine décroissante des valeurs
propres de la matrice d’information CD. Un plan d’expérience D∗ ∈ Θ est dit
universellement optimal dans la classe Θ si et seulement si il est optimal
pour tout critère Φ à valeurs dans R vérifiant les propriétés suivantes :
1) Φ est invariant par toute transformation orthogonale,

2) Φ est décroissant par rapport à chacune des composantes λ
[i]
D ,

3) Φ est une fonction Schur-convexe en λD ∈ R
p.

La classe de critères proposés à la définition 10.18 englobe bien la classe
des critères de Φq-efficacité. Ceci découle du fait que :

1) Tout critère de Φq-efficacité (0 ≤ q ≤ +∞) est bien orthogonalement
invariant d’après la proposition 10.14.

2) Tout critère de Φq-efficacité (0 ≤ q ≤ +∞) est bien décroisant par rap-
port à chacune des composantes λ

[i]
D (ceci découle simplement de la définition

générale).

3) Tout critère de Φq-efficacité (0 ≤ q ≤ +∞) est bien une fonction Schur-
convexe de λD ∈ R

p. Cette propriété est moins évidente à cerner que les deux
précédentes. Il est cependant possible d’utiliser un lemme classique (voir par
exemple Druilhet [35], lemme 13) disant que pour tout critère Φ = Φ (C) avec
C matrice carrée on a (en désignant par λC le vecteur contenant la suite pleine
décroissante des valeurs propres de C) :

Φ est orthogonalement invariant et Φ est convexe

⇒ Φ est une fonction Schur-convexe en λC .

Ceci permet alors de conclure facilement puisque tout critère de Φq-efficacité
est orthogonalement invariant et il est de même convexe d’après la proposition
10.15.
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10.5.2 Propriétés

Voici tout d’abord une caractérisation de l’optimalité universelle en terme
d’ordre faible de Schur. Ce résultat est classique (voir par exemple Collombier
[19]).

Proposition 10.19. [�] Soit une classe Θ de plans d’expérience et, pour tout
D ∈ Θ, λD ∈ R

p le vecteur contenant la suite pleine décroissante des valeurs
propres de la matrice d’information CD. Un plan d’expérience D∗ ∈ Θ est
universellement optimal au sein de la classe Θ si et seulement si :

∀ D ∈ Θ , λD∗ �ω λD.

Remarquons que ce résultat est proche de celui de la proposition 10.6 rela-
tive à l’optimalité uniforme puisqu’on compare dans les deux cas les vecteurs
des valeurs propres des matrices d’information (seul l’ordre utilisé change).
Il découle aussi de ce résultat que l’optimalité uniforme entrâıne l’optimalité
universelle. En effet, d’après la proposition 10.6, si un plan d’expérience D∗

est uniformément optimal dans la classe Θ alors ceci entrâıne que :

∀ D ∈ Θ , λD∗ �L λD

avec de manière générale λD ∈ R
p vecteur contenant la suite pleine décroi-

ssante des valeurs propres de la matrice d’information CD. La définition de
l’ordre de Loewner sur les vecteurs (voir le paragraphe 10.2.2) entrâıne cepen-
dant la relation suivante pour l’ordre faible de Schur sur les vecteurs :

u �L v =⇒ v �ω u.

Il découle donc de cette relation que si D∗ est uniformément optimal dans
Θ alors λD∗ �ω λD (pour tout D ∈ Θ) donc D∗ est universellement optimal
dans Θ.

Afin de pouvoir manier plus facilement la notion d’optimalité universelle
la condition suffisante d’optimalité présentée ci-dessous est souvent utilisée.

Proposition 10.20. [�] Soit une classe Θ de plans d’expérience et CD la
matrice d’information de D. Soit D∗ ∈ Θ un plan d’expérience tel que :

1) CD∗ est multiple de l’identité,
2) Trace (CD∗) = max

D∈Θ

Trace (CD) .

Le plan d’expérience D∗ est alors universellement optimal dans la classe
Θ.

Cette proposition donne donc deux conditions relativement simples à vérifier
en pratique permettant dans de nombreux cas de caractériser des config-
urations universellement optimales (voir la section 10.6 pour des exemple
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d’applications). La proposition 10.20 n’est cependant applicable que dans
des situations où il est possible que la matrice d’information soit multiple
de l’identité, c’est-à-dire dans des cas où elle est forcément de plein rang.
On a cependant déjà vu qu’il existe des situations où il est structurellement
impossible de vérifier une telle propriété. Voici alors une généralisation de la
proposition 10.20 adaptée au cas où la matrice d’information est telle que les
sommes par lignes ou par colonne sont nulles (c’est par exemple le cas pour
des plans d’expérience en blocs à facteurs qualitatifs).

Proposition 10.21. [�] Soit une classe Θ de plans d’expérience et CD la
matrice d’information de D telle que la somme de ses lignes ou de ses colonnes
est égale au vecteur nul. Soit D∗ ∈ Θ un plan d’expérience tel que :

1) CD∗ est complètement symétrique,
2) Trace (CD∗) = max

D∈Θ

Trace (CD) .

Le plan d’expérience D∗ est alors universellement optimal dans la classe
Θ.

10.6 Exemples d’applications

Appliquons maintenant les résultats d’optimalité présentés ici à des configu-
rations étudiées dans les divers chapitres de cet ouvrage. Ceci va permettre
de retrouver ce qui avait été énoncé en introduction c’est-à-dire que l’intérêt
principal des plans d’expérience classiques construits algébriquement réside
dans le fait qu’ils sont bien souvent les ”meilleurs” plans possibles selon de
multiples critères.

Prenons garde au fait que par la suite la recherche de plans d’expérience
optimaux sera effectuée uniquement en comparant des configurations ayant :

1) le même nombre d’expériences,
2) un domaine expérimental identique.

Si la première hypothèse n’est pas vérifiée alors la comparaison n’a concrète-
ment pas de sens en terme de coût expérimental et va bien souvent amener à
la conclusion que le meilleur des deux plans d’expérience est tout simplement
celui qui a le plus d’expériences. De même si la seconde hypothèse n’est pas
vérifiée alors on aboutira souvent à la conclusion que le meilleur des deux plans
d’expérience est celui qui a le domaine expérimental le plus étendu. Les deux
hypothèses formulées ici vont donc permettre de réaliser des comparaisons
licites.
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10.6.1 Plans optimaux pour modèles d’ordre un

Ce type de configurations ont été étudiées en détails dans le troisième chapitre
de cet ouvrage. La classe des plans usuels (voir la définition 3.3) a été con-
sidérée alors. Il s’agit des plans d’expériences tels que les seuls moments non-
nuls jusqu’à l’ordre deux sont donnés par :

∀ i = 1, ..., m , n
[
i2
]

=
n∑

u=1

z2ui = s2.

Il a été prouvé que les configurations de ce type sont d’analyse aisée. Un autre
argument en leur faveur est la propriété d’optimalité donnée ci-dessous (en
désignant à partir de maintenant par B (α) la boule centrée de rayon α) :

Proposition 10.22. [�] Soit un phénomène aléatoire dépendant de m fac-
teurs ajusté à l’aide d’un modèle linéaire d’ordre un et Θ la classe des plans en
n expériences distribuées dans le domaine expérimental B (

√
m) . Tout plan

d’expérience usuel en n expériences tel que :

s2 = n

est universellement optimal dans la classe Θ.

Ce résultat d’optimalité universelle peut être appliqué à la plupart des con-
figurations du chapitre 3 (voir respectivement les propositions 3.6, 3.16, 3.18
et 3.20) :

1) Tout plan d’expérience factoriel complet de type FD (2m, 0) est uni-
versellement optimal dans la classe des configurations en 2m expériences dis-
tribuées dans le domaine expérimental B (

√
m) .

2) Toute fraction régulière de plan complet de type FD
(
2m−q
III , 0

)
est

universellement optimale dans la classe des configurations en 2m−q expériences
distribuées dans le domaine expérimental B (

√
m) .

3) Tout plan simplexe de type SD (m, 0) est universellement optimal
dans la classe des configurations saturées en (m + 1) expériences distribuées
dans le domaine expérimental B (

√
m) .

4) Tout plan de Plackett et Burman est universellement optimal dans
la classe des configurations saturées en (m + 1) expériences distribuées dans
le domaine expérimental B (

√
m) .

Les trois résultats énoncés précedemment ne sont valables que pour des con-
figurations n’ayant pas d’expérience au centre du domaine. Rajouter au moins
une expérience centrale à l’un de ces plans optimaux va poser problème car leur
matrice d’information relative au vecteur β (contenant l’effet moyen général
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ainsi que les effets linéaires) ne sera plus multiple de l’identité, ce qui rend
donc impossible l’application directe de la proposition 10.20.

Si n0 points centraux sont ajoutés à un plan d’expérience usuel vérifiant
la proposition 10.22 une alternative pour contourner cette difficulté consiste à
ne s’intéresser qu’à l’estimation des effets linéaires. La matrice d’information
relative à l’estimation de ces effets peut facilement être déterminée d’après
les résultats du paragraphe 10.2.3 (troisième point). On vérifie alors aisément
que tout plan d’expérience usuel en n expériences, tel que s2 = n, auquel on a
rajouté n0 expériences centrales est encore universellement optimal dans
la classe des plans d’expériences en n expériences distribuées dans B (

√
m)

avec n0 expériences centrales.

10.6.2 Plans optimaux pour modèles avec interactions

Considérons ici les modèles incluant des effets d’interactions d’ordre deux,
étudiés en détails dans le quatrième chapitre de cet ouvrage. Il a été alors
présenté, de manière très générale, la classe des plans dits usuels (voir la
définition 4.1). Il s’agit donc des plans d’expérience tels que tous les moments
impairs jusqu’à l’ordre quatre sont nuls et (∀ i, j = 1, ..., m tels que i 	= j) :

n
[
i2
]

=
n∑

u=1

z2ui = s2 et n
[
i2j2

]
=

n∑

u=1

z2uiz
2
uj = s22.

L’analyse statistique de telles configurations est très aisée. Un autre argument
en faveur de leur utilisation est la propriété d’optimalité donnée ci-dessous :

Proposition 10.23. [�] Soit un phénomène aléatoire dépendant de m fac-
teurs ajusté à l’aide d’un modèle linéaire à effets d’interactions d’ordre
deux et Θ la classe des plans en n expériences distribuées dans le domaine
expérimental B (

√
m) . Tout plan d’expérience usuel en n expériences tel que

:
s2 = s22 = n

est universellement optimal dans la classe Θ.

Ce résultat d’optimalité universelle peut maintenant être appliqué à la plupart
des configurations pour interactions d’ordre deux étudiées dans le chapitre 4.
Il vient alors (voir respectivement les propositions 4.4 et 4.5) :

1) Tout plan d’expérience factoriel complet de type FD (2m, 0) est uni-
versellement optimal dans la classe des configurations en 2m expériences dis-
tribuées dans le domaine expérimental B (

√
m) .

2) Toute fraction régulière de plan complet de type FD
(
2m−q
V , 0

)
est

universellement optimale dans la classe des configurations en 2m−q expériences
distribuées dans le domaine expérimental B (

√
m) .
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Tout comme dans le paragraphe précédent remarquons que les deux résultats
énoncés ici ne sont plus valables lorsqu’au moins une expérience centrale a
été rajoutée (car alors la matrice d’information relative au vecteur β n’est
plus multiple de l’identité de donc la proposition 10.20 n’est plus applicable).
Une nouvelle fois il est cependant possible de garder des configurations uni-
versellement optimales en se restreignant à l’estimation des effets linéaires
et d’interaction (i.e. en supprimant l’estimation de l’effet moyen général).

10.6.3 Plans optimaux pour surfaces de réponse

Considérons ici les plans d’expérience pour surface de réponse, c’est-à-dire
pour modèles d’ordre deux complets. De telles configurations ont été étudiées
en détails dans le cinquième chapitre de cet ouvrage. Il a été prouvé que
l’introduction d’effets quadratiques rend impossible l’obtention d’une matrice
d’information diagonale. La situation est donc plus complexe maintenant
car la proposition 10.20 n’est pas applicable. C’est pourquoi on s’oriente
vers des techniques permettant de déterminer des configurations A, D ou
bien E-optimales. Considérons une nouvelle fois la classe générale des plans
d’expérience usuels pour surfaces de réponse (voir la définition 5.1). Il s’agit
donc des plans tels que tous les moments impairs jusqu’à l’ordre quatre sont
nuls et (∀ i, j = 1, ..., m tels que i 	= j) :

n
[
i2
]

=
n∑

u=1

z2ui = s2, n
[
i2j2

]
=

n∑

u=1

z2uiz
2
uj = s22, n

[
i4
]

=
n∑

u=1

z4ui = s4.

On vérifie que les A, D et E-efficacités de tout plan d’expérience usuel peuvent
facilement être déterminées explicitement à l’aide des relations suivantes :

Proposition 10.24. [�] Soit un phénomène aléatoire dépendant de m facteurs
ajusté à l’aide d’un modèle linéaire d’ordre deux. Pour tout plan d’expé-
rience usuel on a les résultats suivants pour l’estimation de tous les paramè-
tres du modèle :
1) La A-efficacité du plan d’expérience est donnée par :

Φ1 (CD) =
1
p

[
(m− 1)
s4 − s22

+
m

s2
+

m (m− 1)
2s22

+
n + s4 + (m− 1) s22

Δ1

]

en notant Δ1 = n (s4 + (m− 1) s22)−ms22.

2) La D-efficacité du plan d’expérience est donnée par :

Φ0 (CD) =
(
(s4 − s22)

m−1
sm
2 s

m(m−1)/2
22 Δ1

)−1/p

3) La E-efficacité du plan d’expérience est donnée par :
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Φ∞ (CD) = min
(

1
s4 − s22

,
1
s2

,
1

s22
,

2
Δ2

)

en notant Δ2 = ns4 + (m− 1) s22 −
√

(n− s4 − (m− 1) s22)
2 + 4ms22.

Les résulats de la proposition 10.24 permettent de comparer très facilement
des plans d’expérience usuels entre eux sans avoir recours aux moyens informa-
tiques nécessaires à la recherche numérique des valeurs propres des différentes
matrices d’information. Ces résultats sont particulièrement intéressants pour
le problème de choix du paramètre α (distance des points axiaux au centre
du domaine) des plans d’expérience composites centrés. Il a été montré au
paragraphe 5.3.2 que la valeur du paramètre α peut être choisie dans le but
d’obtenir certaines propriétés (isovariance par transformations orthogonales,
presque-orthognalité, etc...). Ce choix peut aussi naturellement être effectué
dans le but d’obtenir une configuration la plus efficace possible. Pour tout
plan composite centré sous forme générale (voir la définition 5.7) il est possi-
ble d’appliquer la proposition 10.24 avec les valeurs suivantes :

s2 = 2m−q + 2α2 , s4 = 2m−q + 2α4 et s22 = 2m−q.

Utilisons ceci afin de déterminer des valeurs optimales pour le paramètre
α. Voici tout d’abord quelques exemples graphiques. Chacun de ces ex-
emples donne une représentation du critère d’efficacité choisi lorsque le
paramètre α varie (classiquement) dans l’intervalle [ 0,

√
m ] . Afin de se

ramener systématiquement à un objectif de maximisation on représente ici
des efficacités relatives (voir le paragraphe 10.4.1) qui sont donc égales au
rapport Φ (CD∗) /Φ (CD) où D∗ est le plan d’expérience optimal trouvé (i.e.
associé ici à la valeur α∗ optimale).

La figure 10.1 représente la A-efficacité pour des plans d’expérience com-
posites centrés à 3 facteurs.
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Fig. 10.1.
A-efficacité relative du CCD

(
23, α, n0

)
pour n0 = 0 et n0 = 1.
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La figure de gauche correspond au cas sans expérience au centre du do-
maine, la figure de droite en contient n0 = 1. Les valeurs optimales pour le
paramètre α sont alors respectivement égales à 1.12 et 1.255. La figure 10.2
représente cette fois le critère de D-efficacité pour des plans composites centré
à 4 facteurs.

La figure de gauche correspond au cas où il n’y a pas d’expérience au centre
du domaine, la figure de droite en contient n0 = 2. Les valeurs optimales
pour le paramètre α sont alors respectivement égales à 1.767 et 2 (i.e. la
situation optimale est obtenue dans le second cas lorsque les points axiaux
sont positionnés à la limite du domaine expérimental).
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Fig. 10.2.
D-efficacité relative du CCD

(
24, α, n0

)
pour n0 = 0 et n0 = 2.

Enfin, la figure 10.3 représente le critère de E-efficacité pour des plans
composites centré à 5 facteurs (en utilisant ici pour la partie factorielle une
fraction régulière de résolution V). La figure de gauche correspond au cas où
il n’y a pas d’expérience au centre du domaine, la figure de droite en contient
n0 = 3. Les valeurs optimales pour le paramètre α sont alors respectivement
égales à 1.183 et 1.294.
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Fig. 10.3.
E-efficacité relative du CCD

(
25−1, α, n0

)
pour n0 = 0 et n0 = 3.
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De manière plus générale les diverses valeurs optimales pour le paramètre
α sont résumées dans les deux tables suivantes (pour un nombre de facteurs
allant de 2 à 10 et l’utilisation pour la partie factorielle des fractions régulières
de résolution V de plus petite taille possible).

Table 10.1. Valeurs de α optimales (pas d’expérience centrale).

A-optimalité D-optimalité E-optimalité

CCD
(
22, α, 0

)
0.869 1.075 0.817

CCD
(
23, α, 0

)
1.120 1.466 0.971

CCD
(
24, α, 0

)
1.327 1.767 1.094

CCD
(
25−1

V , α, 0
)

1.496 2.036 1.183

CCD
(
26−1

V , α, 0
)

1.661 2.260 1.271

CCD
(
27−1

V , α, 0
)

1.810 2.464 1.356

CCD
(
28−2

V , α, 0
)

1.941 2.661 1.407

CCD
(
29−2

V , α, 0
)

2.070 2.838 1.467

CCD
(
210−3

V , α, 0
)

2.186 3.010 1.518

On constate pour les trois représentations graphiques précédentes que
l’efficacité relative est chaque fois nulle lorsque les points axiaux sont po-
sitionnés à la limite du domaine expérimental (i.e. α =

√
m) et qu’aucune

expérience au centre n’est réalisée. Ce phénomène est très général, il est dû
au fait que dans une telle situation toutes les expériences du plan composite
centré sont situées à la même distance de l’origine et donc le plan d’expérience
est à matrice d’information non-inversible d’après la proposition 5.2 (i.e. ad-
met au moins une valeur propre nulle) donc tout critère de Φq-efficacité a une
valeur infinie (ou de manière équivalente l’efficacité relative est nulle). Voila
donc pourquoi il est structurellement impossible, en l’absence d’expériences
au centre du domaine expérimental, d’obtenir une configuration efficace en
rejetant les points axiaux aux limites du domaine expérimental (sphérique
de rayon

√
m). La table 10.1 résume ces différentes situations avec pour

chaque plan d’expérience de type CCD
(
2m−q

V , α, n0

)
les valeurs optimales du

paramètre α permettant d’atteindre les objectifs de A, D ou bien E-efficacité.

Considérons maintenant la situation où au moins une expérience a été
menée au centre du domaine expérimental. Dans ce cas là le plan d’expérience
composite centré est bien régulier pour toute valeur du paramètre α dans
l’intervalle ] 0,

√
m ] . La table 10.2 donne les différentes valeurs de ce

paramètre permettant d’atteindre l’objectif de A, D ou E-optimalité. Pour
chaque situation trois valeurs ont été déterminées, elles correspondent (de
haut en bas) aux nombres d’expériences centrales égales à 1, 2 et 3 (valeurs
très courantes en pratique).
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Table 10.2.
Valeurs de α optimales (au moins une expérience centrale).

A-optimalité D-optimalité E-optimalité

CCD
(
22, α, n0

) 1.031
1.414
1.414

1.414
1.414
1.414

0.887
0.947
1.000

CCD
(
23, α, n0

) 1.255
1.732
1.732

1.732
1.732
1.732

1.027
1.077
1.122

CCD
(
24, α, n0

) 1.443
1.598
2.000

2.000
2.000
2.000

1.140
1.183
1.222

CCD
(
25−1

V , α, n0

) 1.605
1.743
2.236

2.236
2.236
2.236

1.222
1.259
1.294

CCD
(
26−1

V , α, n0

) 1.757
1.866
2.014

2.499
2.499
2.499

1.306
1.339
1.370

CCD
(
27−1

V , α, n0

) 1.897
1.992
2.102

2.646
2.646
2.646

1.377
1.407
1.436

CCD
(
28−2

V , α, n0

) 2.023
2.112
2.213

2.828
2.828
2.828

1.436
1.463
1.489

CCD
(
29−2

V , α, n0

) 2.147
2.228
2.317

3.000
3.000
3.000

1.493
1.518
1.542

CCD
(
210−3

V , α, n0

) 2.259
2.336
2.419

3.162
3.162
3.162

1.542
1.565
1.588

Les résultats relatifs à la D-optimalité sont particuliers car à chaque fois
le paramètre α optimal prend la plus grande valeur possible. Ceci traduit
en fait un comportement classique car généralement un plan d’expérience
est d’autant plus D-efficace que ses points sont rejetés aux limites du do-
maine expérimental (si, bien entendu, cela n’engendre pas une singularité).
Ces valeurs permettant d’obtenir la D-optimalité du plan composite centré
sont de plus encore les mêmes quel que soit le nombre d’expériences centrales
réalisées. Ce type de configuration est intéressante car elle cöıncide donc avec
la notion de plan d’expérience équiradial (exception faite des expériences cen-
trales) et parfois aussi avec celle de plan d’expérience isovariant. Remarquons
enfin que la valeur de α associée à la A-optimalité atteint aussi toujours la
valeur extrême α =

√
m dès lors que le nombre d’expériences centrales est
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suffisamment grand (par exemple pour m = 10 facteurs on vérifie que ce
résultat est obtenu dès lors que n0 ≥ 6).

10.6.4 Plans optimaux pour modèles à effets de blocs

Considérons ici les plans d’expérience incluant des effets de blocs. De telles
configurations ont été étudiées en détails dans le sixième chapitre de cet ou-
vrage. Plaçons-nous dans la classe très générale des plans d’expériences usuels
(voir la définition 6.1). Il s’agit donc de considérer des plans usuels pour le
modèle d’ordre deux tels que tous leurs moments par blocs impairs sont nuls
jusqu’à l’ordre deux et tous les moments pairs d’ordre deux sont égaux à
une même valeur (notée μl) pour le bloc l (l = 1, ..., b). Réaliser une analyse
comparable à celle du paragraphe précédent devient beaucoup plus complexe
ici. En effet, la recherche directe des différentes efficacités découle de la con-
naissance des valeurs propres de la matrice d’information qui est maintenant
(à un coefficient près) la matrice des moments généralisée (plus difficile
à manier que la matrice des moments du cas sans bloc). Dans une optique
de recherche de Φq-efficacité le critère obtenu va encore dépendre des car-
actéristiques s2, s4 et s22 associées à la géométrie du plan d’expérience mais
aussi de la façon dont le blocage à été réalisé.

Il est cependant possible d’obtenir certains résultats dans le cas particulier de
la D-efficacité. La proposition suivante permet de réaliser un choix optimal
pour les blocs du plan d’expérience considéré avec comme objectif l’obtention
de la meilleure D–efficacité pour l’ensemble de tous les paramètres inconnus
du modèle (effets de blocs, linéaires, quadratiques et d’interactions).

Proposition 10.25. [�] Soit un phénomène aléatoire en m facteurs, un plan
d’expérience D et Θ (k1, ..., kb) la classe des plans usuels en b blocs, de tailles
respectives k1, ..., kb, obtenus à partir du plan D. S’il existe dans cette classe
un plan bloqué orthogonalement alors il est D-optimal dans la classe
Θ (k1, ..., kb).

Ce résultat montre donc qu’il est préférable (si cela est possible) d’utiliser des
configurations bloquées orthogonalement. Ceci avait déjà été conseillé dans le
chapitre six afin de pouvoir simplifier l’analyse du modèle à effets de blocs.
De manière plus générale on a aussi le résultat suivant si aucune contrainte
n’est imposée relativement à la taille de chacun des blocs :

Proposition 10.26. [�] Soit un phénomène aléatoire en m facteurs, un plan
d’expérience D et Θ la classe des plans usuels en b blocs obtenus à partir du
plan D. S’il existe dans cette classe un plan bloqué orthogonalement en
blocs de même taille alors il est D-optimal dans la classe Θ.
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Relativement à la D-efficacité la meilleure structure en blocs possible est donc
celle d’un plan d’expérience à la fois bloqué orthogonalement et en blocs con-
stitués par le même nombre d’expériences. Le résultat suivant fait maintenant
le lien entre la recherche d’un plan en blocs D-optimal et la même recherche
sans bloc :

Proposition 10.27. [�] Soit un phénomène aléatoire en m facteurs ajusté
à l’aide d’un modèle linéaire d’ordre deux en blocs, Θ une classe de plans
d’expérience usuels et Θ (k1, ..., kb) la classe de ces mêmes plans décomposés
en plans usuels en blocs de tailles respectives k1, ..., kb. Si D est un plan
d’expérience D-optimal dans Θ pour le cas sans bloc et si D peut être bloqué
orthogonalement alors le plan d’expérience D est encore D-optimal dans
la classe Θ (k1, ..., kb) pour le modèle à effets de blocs.

Illustrons ceci à l’aide d’un exemple de plans d’expérience classiques.

Exemple

Considérons ici la classe Θ (8 + n1, 6 + n2) des plans d’expérience
composites centrés pour m = 3 facteurs de type CCD

(
23, α, n0

)
(avec

0 < α ≤ √
3) décomposés selon les deux blocs suivants :

∣
∣
∣
∣
Bloc 1 : partie factorielle et n1 points centraux,
Bloc 2 : partie axiale et n2 points centraux.

On sait que lorsque le nombre d’expériences centrales n0 = n1 + n2

est strictement supérieur à zéro la D-optimalité est obtenue, pour le
cas sans bloc, lorsque α =

√
3. Le blocage orthogonal est vérifié pour

cette valeur de α si et seulement si :

μ1 = μ2 ⇔ 8
8 + n1

=
6

6 + n2
⇔ 3n1 = 4n2.

On en déduit que, par exemple, le plan d’expérience composite centré
de type CCD

(
23,

√
3, 7

)
avec n1 = 3 expériences centrales dans le bloc

1 et n2 = 4 dans le bloc 2 est D-optimal dans la classe Θ (11, 10) .

10.6.5 Plans optimaux pour modèles à facteurs qualitatifs

Considérons pour terminer la situation des plans d’expérience pour facteurs
qualitatifs et plus particulièrement le cas des configurations décomposées en
blocs. Ce sujet a été étudié en détails dans le chapitre 9. Il a été montré
qu’afin de pouvoir analyser facilement le modèle à l’aide d’un petit nom-
bre d’expériences il est recommandé d’utiliser des plans en blocs incomplets
équilibrés (BIBD). Rappelons que lorsque h traitements sont répartis en b
blocs une configuration est un BIBD si et seulement si :
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1) chaque bloc est constitué par k expériences (avec k < h),
2) chaque traitement apparâıt dans r blocs,
3) chaque paire de traitements apparâıt dans λ blocs.

Tout BIBD vérifie aussi la propriété suivante d’optimalité :

Proposition 10.28 [�] Soit un phénomène aléatoire faisant intervenir un
facteur qualitatif à h modalités analysé à l’aide d’un plan d’expérience en b
blocs. Soit Θ la classe des plans d’expérience binaires en blocs de même taille
k pour l’estimation des effets des traitements. Tout plan d’expérience en blocs
incomplets équilibrés (BIBD) est alors universellement optimal dans
la classe Θ.

Illustrons ce résultat à l’aide d’un exemple d’application.

Exemple

Considérons un plan d’expérience pour un facteur qualitatif à h = 7
traitements en b = 7 blocs constitués chacun par k = 3 expériences.
Voici deux configurations possibles :

Plan d’expérience 1 Plan d’expérience 2

0 1 3
1 2 4

2 3 5
3 4 6

0 4 5
1 5 6

0 2 6

Bloc 1
Bloc 2
Bloc 3
Bloc 4
Bloc 5
Bloc 6
Bloc 7

0 1 2
1 2 3

2 3 4
3 4 5

4 5 6
0 5 6
0 1 6

Bloc 1
Bloc 2
Bloc 3
Bloc 4
Bloc 5
Bloc 6
Bloc 7

Le plan 1 est un BIBD de type BIBD(7, 7, 3, 3, 1). Ce BIBD, qui n’est
autre qu’un plan cyclique obtenu à l’aide du générateur Φ = {0, 1, 3} ,
a déjà été utilisé pour l’exemple d’application du chapitre 9 (voir la
section 9.7), il est construit à l’aide de la méthode des différences. Le
plan d’expérience 2 est un plan cyclique obtenu à l’aide du générateur
Φ = {0, 1, 2} et n’est pas un BIBD (car chaque paire de traitements
n’apparait pas dans un même nombre de blocs).
Vérifions que (par exemple) le plan d’expérience 1 est bien plus ef-
ficace que le plan d’expérience 2 pour les critères usuels de A, D et
E-efficacité. Le plan 1 étant un BIBD la matrice d’information pour
l’estimation des effets des traitements est donnée par (voir le para-
graphe 9.4) :

C
[1]
T = rIh − 1

k
N tN =

(

r − r

k
+

λ

k

)

Ih − λ

k
Jh =

1
3

(7I7 − J7)
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puisque r = 3 (nombre d’occurence de chacun des traitements) et λ =
1 (nombre d’apparitions de chaque paire de traitements au sein des
blocs). On en déduit que la matrice d’information du plan d’expérience
1 admet alors pour unique valeur propre non-nulle :

7
3
� 2.333 d’ordre de multiplicité égal à 6.

Considérons maintenant le plan d’expérience numéro 2. Comme il est à
la fois équirépliqué et en blocs de même taille sa matrice d’information
pour l’estimation des effets des traitements est encore donnée par :

C
[2]
T = rIh − 1

k
N tN = 3Ih − 1

3
N tN.

D’après la structure du plan la matrice de concordance est ici :

N tN =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 2 1 0 0 1 2
2 3 2 1 0 0 1
1 2 3 2 1 0 0
0 1 2 3 2 1 0
0 0 1 2 3 2 1
1 0 0 1 2 3 2
2 1 0 0 1 2 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On en déduit que :

C
[2]
T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −2/3 −1/3 0 0 −1/3 −2/3
−2/3 2 −2/3 −1/3 0 0 −1/3
−1/3 −2/3 2 −2/3 −1/3 0 0

0 −1/3 −2/3 2 −2/3 −1/3 0
0 0 −1/3 −2/3 2 −2/3 −1/3

−1/3 0 0 −1/3 −2/3 2 −2/3
−2/3 −1/3 0 0 −1/3 −2/3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Les valeurs propres non-nulles de cette matrice d’information sont
alors (utiliser un logiciel) :

1.317 d’ordre de multiplicité égal à 2,
2.786 d’ordre de multiplicité égal à 2,
2.897 d’ordre de multiplicité égal à 2.

En se limitant aux seules valeurs propres non-nulles (donc avec p = 6)
on obtient donc les efficacités suivantes pour les deux plans :

Pour la A-efficacité :

Φ1

(
C

[1]
T

)
= 0.429 < Φ1

(
C

[2]
T

)
= 0.488.
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Pour la D-efficacité :

Φ0

(
C

[1]
T

)
= 0.429 < Φ0

(
C

[2]
T

)
= 0.455.

Pour la E-efficacité :

Φ∞
(
C

[1]
T

)
= 0.429 < Φ∞

(
C

[2]
T

)
= 0.759.

Ceci montre bien que le plan d’expérience 1 est meilleur que le plan
d’expérience 2 concernant à la fois les critères de A, D et E efficacité.
Ce résultat est logique puisque d’après la proposition 10.28 le plan
d’expérience 1 est universellement optimal et cette optimalité entrâıne
l’optimalité relativement à tout critère de Φp-efficacité pour 0 ≤ p ≤
+∞. Remarquons aussi que pour le plan 1 les A, D et E efficacités
sont identiques. Ceci est toujours le cas pour un plan d’expérience à
matrice d’information complètement symétrique.

10.7 Résumé

Divers types d’optimalités pour les plans d’expérience ont été présentées du-
rant ce chapitre. Il s’agit de :

1) l’optimalité uniforme, basée sur l’ordre de Lœwner sur les matrices de dis-
persion ou d’information (relation très forte mais parfois impossible à obtenir),

2) les A, D et E optimalités, basées respectivement sur la comparaison des
traces, déterminants et plus grande valeur propre de la matrice de dispersion,

3) la Φq-optimalité, qui a pour but de généraliser les trois types d’optimalités
précédentes,

4) l’optimalité universelle, qui a pour but d’englober l’ensemble des critères
de Φq-optimalité.

D’après tous les résultats de ce chapitre les liens entre ces diverses optimalités
sont résumés dans la figure ci-dessous (par Φq-optimalité ”uniforme” on en-
tend ici une Φq-optimalité vérifiée pour tout 0 ≤ q ≤ +∞).



10.7 Résumé 461

Optimalité uniforme
⇓

Optimalité universelle
⇓

Φq-Optimalité ”uniforme”
⇓ ⇓ ⇓

A-optimalité D-optimalité E-optimalité
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COMPLEMENTS
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10.8 (Compléments) Démonstrations

Commençons par énoncer le lemme suivant, très utile par la suite afin de
déterminer l’ensemble des valeurs propres des matrices d’information de la
forme tXDXD lorsqu’un modèle polynomial du second degré est utilisé.

Lemme 10.A. Soit la matrice M carrée d’ordre (m + 1) telle que (avec
a, b, c ∈ R) :

M =
[

n at
Im

aIm (b − c) Im + cJm

]

Cette matrice admet alors un maximum de trois valeurs propres distinctes
données explicitement par :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b− c

1
2

(

n + b + (m− 1) c +
√

(n− b− (m− 1) c)2 + 4ma2

)

1
2

(

n + b + (m− 1) c−
√

(n− b− (m− 1) c)2 + 4ma2

)

Leurs ordres de multiplicité sont de plus respectivement (m− 1) , 1 et 1.

Démonstration. Remarquons au préalable que la sous-matrice (b− c) Im +
cJm est complètement symétrique et admet donc tout contraste de R

m comme
vecteur propre. Ceci incite à chercher des vecteurs propres de la matrice M
sous la forme :

v =
(

0
w

)

∈ R
m+1 avec w contraste de R

m (i.e. t
Imw = 0).

Il est alors clair que pour tout vecteur v de cette forme il vient :

Mv = [(b− c) Im + cJm] w = (b− c)w.

On en déduit (puisque l’espace vectoriel des contrastes de R
m a pour dimen-

sion m − 1) que la matrice M admet (b− c) pour valeur propre d’ordre au
moins égal à (m−1). Déterminons maintenant les deux dernières valeurs pro-
pres (notées λ et μ). La somme de toutes les valeurs propres de la matrice
M est égale à Trace (M) et leur produit vaut det(M) = |M |. En utilisant la
notion de complément de Schur (voir le lemme 5.B) il vient :

|M | = n

∣
∣
∣
∣(b− c) Im + cJm − 1

n
a2

Im
t
Im

∣
∣
∣
∣ = n

∣
∣
∣
∣(b− c) Im +

(

c− a2

n

)

Jm

∣
∣
∣
∣ .

Le calcul du déterminant de la matrice M se ramène donc à celui d’une matrice
complètement symétrique et donc (lemme 5.A) :

|M | = (b − c)m−1 [n (b− c) + m
(
nc− a2

)]
.
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Les deux dernières valeurs propres sont donc solutions du système suivant :
{

(m− 1) (b− c) + λ + μ = n + mb

(b− c)m−1
λμ = (b− c)m−1 [

n (b− c) + m
(
nc− a2

)] .

Il s’agit donc ici, en d’autres termes, de déterminer deux réels λ et μ sachant
que leur somme S et leur produit P valent :

S = n + b + (m− 1) c et P = n [b + (m− 1) c]−ma2.

On obtient bien alors les résultats énoncés dans la proposition pour λ et μ �

Proposition 10.6. Soit une classe Θ de plans d’expérience telle que pour tout
D ∈ Θ la matrice du modèle XD est de plein rang. Soit λ

[1]
D ≥ ... ≥ λ

[p]
D la suite

pleine décroissante des valeurs propres de la matrice tXDXD et λD ∈ R
p le

vecteur contenant ces différentes valeurs dans le même ordre. L’optimalité
uniforme d’un plan d’expérience D∗∈Θ se traduit par :

∀ D ∈ Θ , λD∗ �L λD.

Démonstration. Le plan D∗ est, par définition, uniformément optimal dans
la classe Θ si et seulement si (proposition 10.5) :

∀ D ∈Θ , tXD∗XD∗ ≥ tXDXD.

D’après la définition de l’ordre de Lœwner ceci équivaut donc à dire que la
matrice (tXD∗XD∗ − tXDXD) est semi-définie positive, i.e. :

∀ D ∈Θ et ∀ x∈R
p , tx

(
tXD∗XD∗

)
x ≥ tx

(
tXDXD

)
x.

Utilisons maintenant le théorème de représentation extrémale :

max
txx=1

tx
(
tXDXD

)
x = λ

[1]
D et min

txx=1

tx
(
tXDXD

)
x = λ

[p]
D .

Ceci montre donc bien que si D∗ est uniformément optimal dans Θ alors
λ
[1]
D∗ ≥ λ

[1]
D et λ

[p]
D∗ ≥ λ

[p]
D . Ce type de raisonnement peut être généralisé sans

difficulté à toutes les valeurs propres de la matrice tXDXD via le théorème de
représentation extrémale généralisé (voir l’ouvrage de Marshall et Olkin [63],
chapitre 20) et on montre alors que si D∗ est uniformément optimal dans Θ
alors :

∀ i = 1, ..., p , λ
[i]
D∗ ≥ λ

[i]
D c’est-à-dire λD∗ �L λD �

Proposition 10.12. Un prolongement par continuité de la fonction Φq en 0
ainsi qu’en +∞ permet d’obtenir les deux critères suivants :
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Φ0 (CD) =
(∏p

i=1λ
[i]
D
)− 1

p

et Φ∞ (CD) =
1

λ
[p]
D

.

Démonstration. Intéressons-nous, pour commencer, au prolongement de Φq

en 0. On sait que pour q > 0 il vient par définition :

ln (Φq (CD)) =
1
q

ln (ϕ (q)) avec ϕ (q) =
1
p

p∑

i=1

(
λ
[i]
D
)−q

.

La quantité ϕ (q) converge vers 1 lorsque q tend vers 0. Il en résulte que :

ϕ (q)− 1 =
1
p

p∑

i=1

[(
λ
[i]
D
)−q

− 1
]

converge vers 0 lorsque q tend vers 0. Comme un équivalent de ln (1 + t) au
voisinage de 0 est t on peut donc en conclure à ce stade que :

ln (Φq (CD)) ∼
0

1
p

p∑

i=1

δi (q) avec δi (q) =

(
λ
[i]
D
)−q

− 1

q
.

Considérons chacune des quantités δi (q) . On a (avec fi (q) =
(
λ
[i]
D
)−q

) :

δi(q) =
fi(q)− fi(0)

q
donc lim

q→0
δi(q) = f

′
i (0) où f

′
i (q) =

(
− ln λ

[i]
D
)(

λ
[i]
D
)−q

.

Il vient alors :

lim
q→0+

[ln (Φq (CD))] =
−1
p

p∑

i=1

ln λ
[i]
D = ln

(∏p
i=1λ

[i]
D
)− 1

p

.

Ceci permet bien de conclure. Considérons maintenant le prolongement de Φq

en +∞. Partons de l’expression suivante :

λ
[p]
D Φq (CD) = λ

[p]
D

(
1
p

p∑

i=1

(
λ
[i]
D
)−q

) 1
q

.

Pour tout x > 0 il vient maintenant x = (xq)1/q et, en appliquant cette
relation à x = λ

[p]
D :

λ
[p]
D Φq (CD) =

(
1
p

p∑

i=1

(
λ
[p]
D

λ
[i]
D

)q) 1
q

=

(
1
p

(

δ +
p−δ∑

i=1

(
λ
[p]
D

λ
[i]
D

)q)) 1
q

où δ ∈ N
∗ désigne l’ordre de multiplicité de la valeur propre λ

[p]
D . Remarquons

maintenant que λ
[p]
D est la plus petite des valeurs propres de la matrice CD,
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il en découle donc que pour i = 1, ..., p− δ on a λ
[p]
D /λ

[i]
D < 1 ce qui implique

que :

lim
q→+∞

p−δ∑

i=1

(
λ
[p]
D

λ
[i]
D

)q

= 0 donc lim
q→+∞λ

[p]
D Φq (CD) = lim

q→+∞

(
δ

p

) 1
q

= 1.

En notant Φ∞ (CD) = 1/λ
[p]
D on vient donc de montrer que :

lim
q→+∞

Φq (CD)
Φ∞ (CD)

= 1 d’où lim
q→+∞Φq (CD) = Φ∞ (CD) �

Proposition 10.13. Tout critère de Φq-efficacité (avec 0 ≤ q ≤ +∞) est une
fonction croissante pour l’ordre de Lœwner sur les matrices de dispersion,
donc :

VD1 ≤ VD2 ⇒ Φq (VD1) ≤ Φq (VD2) .

Démonstration. Considérons deux plans d’expérience D1 et D2 associés aux
matrices de dispersion VD1 et VD2 telles que VD1 ≤ VD2. On sait que, de
manière équivalente, il vient pour les matrices d’information CD1 ≥ CD2.
Cette relation se traduit sur les valeurs propres de ces deux matrices par (voir
l’ouvrage de Marshall et Olkin [63], chapitre 20) :

∀ i = 1, ..., p , λ
[i]
D1 ≥ λ

[i]
D2 ≥ 0.

Il en découle que
∑p

i=1

(
λ
[i]
D1

)−q

≤∑p
i=1

(
λ
[i]
D2

)−q

et donc (∀ 0 < q < +∞):

VD1 ≤ VD2 ⇒ Φq (CD1) ≤ Φq (CD2) .

Cette relation est encore vérifiée, sans difficulté, lorsque q = 0 et q = +∞ �

Proposition 10.14. Tout critère de Φq-efficacité (avec 0 ≤ q ≤ +∞) est
orthogonalement invariant, donc :

∀ P ∈ O (Rp) , Φq (CD) = Φq

(
PCDtP

)
.

Démonstration. Considérons une matrice P ∈ M (p, p) qui soit orthogonale.
On a (pour 0 < q < +∞) :

Φq(CD) =
(

1
p

TraceC−q
D

) 1
q

et donc Φq(PCDtP ) =
(

1
p

Trace(PCDtP )−q

) 1
q

.

Or puisque P est une matrice orthogonale il vient tP = P−1. Il en résulte donc
que PCDtP = PCDP−1 et cette dernière expression n’est autre que l’écriture
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de la matrice CD dans une nouvelle base définie par la matrice de passage P .
La trace étant invariante par changement de base on en déduit alors que :

Φq (PCDtP ) =
(

1
p

Trace
(
PCDP−1

)−q
) 1

q

=
(

1
p

Trace (CD)−q

) 1
q

= Φq (CD) .

D’où le résultat cherché. Concernant les cas associés à la D-efficacité (q = 0)
ainsi que la E-efficacité (q = +∞) il est possible de tenir un raisonnement
identique car, de manière plus générale, les valeurs propres sont invariantes
par changement de base �

Proposition 10.16. Soit une classe de plans d’expérience Θ et CD la
matrice d’information associée au vecteur des paramètres estimés. Notons
λ
[1]
D ≥ ... ≥ λ

[p]
D la suite pleine décroissante des valeurs propres de la ma-

trice CD et ωD,1, ..., ωD,p les éléments diagonaux de cette même matrice. Soit
un critère d’efficacité de la forme suivante :

Φ (CD) =
p∑

i=1

f
(
λ
[i]
D
)

avec f fonction convexe sur ]0, +∞[ . Supposons enfin qu’il existe un plan
d’expérience D∗ ∈ Θ tel que :

1) CD∗ = aIp avec a 	= 0, 2)
p∑

i=1

f (ωD∗,i) = min
D∈Θ

p∑

i=1

f (ωD,i) .

Le plan D∗ est alors Φ-optimal dans la classe Θ.

Démonstration. La matrice d’information CD étant toujours symétrique
elle admet donc une base orthonormale de vecteurs propres. Désignons par P
la matrice de terme général pij contenant ces vecteurs propres en colonne et
notons eij = p2ij . La base de vecteurs propres étant orthogonale on a tPP = Ip

c’est-à-dire que :

∀ j = 1, ..., p ,
p∑

i=1

eij = 1.

De plus il vient par changement de base :

CD = Pdiag
(
λ
[i]
D , i = 1, ..., p

)
tP donc ωD,i =

p∑

j=1

λ
[j]
D eij .

Par hypothèse f est une fonction convexe donc (∀ i = 1, ..., p) :
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f (ωD,i) = f

⎛

⎝
p∑

j=1

λ
[j]
D eij

⎞

⎠ ≤
p∑

j=1

eijf
(
λ
[j]
D
)

.

Remarquons que si toutes les valeurs propres λ
[1]
D , ..., λ

[p]
D sont égales alors il

y a une égalité dans la relation ci-dessus (cette condition est même l’unique
possibilité d’égalité lorsque f est strictement convexe). Il vient alors :

p∑

i=1

f (ωD,i) ≤
p∑

i=1

p∑

j=1

eijf
(
λ
[j]
D
)

=
p∑

j=1

f
(
λ
[j]
D
) p∑

i=1

eij

︸ ︷︷ ︸
=1

En d’autres termes d’après la forme du critère d’efficacité utilisé ici il vient :

∀ D ∈Θ ,
p∑

i=1

f (ωD,i) ≤ Φ (D)

avec égalité dans cette relation lorsque toutes les valeurs propres λ
[1]
D , ..., λ

[p]
D

sont égales. Considérons maintenant un plan d’expérience D∗ ∈ Θ vérifiant
les hypothèses 1 et 2 de la proposition 10.16. L’hypothèse 1 entrâıne que les
valeurs propres λ

[1]
D , ..., λ

[p]
D sont égales à la quantité a et donc :

p∑

i=1

f (ωD∗,i) = Φ (D∗) .

D’après l’hypothèse 2 le plan D∗ minimise la quantité
∑

f (ωD,i) , donc :

∀ D ∈Θ , Φ (CD∗) =
p∑

i=1

f (ωD∗,i) ≤
p∑

i=1

f (ωD,i) ≤ Φ (CD) .

Ceci démontre bien que le plan d’expérience D∗ est Φ-optimal dans la classe
Θ �

Proposition 10.19. Soit une classe Θ de plans d’expérience et, pour tout
D ∈ Θ, λD ∈ R

p le vecteur contenant la suite pleine décroissante des valeurs
propres de la matrice d’information CD. Un plan d’expérience D∗ ∈ Θ est
universellement optimal au sein de la classe Θ si et seulement si :

∀ D ∈ Θ , λD∗ �ω λD.

Démonstration. Considérons un plan d’expérience D∗ vérifiant la condition
de cette proposition. Il est prouvé dans l’ouvrage de Marshall et Olkin [63]
que :

λD∗ �ω λD ⇒ Φ (λD∗) ≤ Φ (λD)
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si et seulement si Φ est une application à la fois Schur-convexe et décroissante
par rapport à chacune de ses composantes. Or les critère considérés ici vérifient
bien ces deux contraintes (voir les hypothèses 2 et 3 de la définition 10.18)
donc le plan D∗ est bien universellement optimal. Réciproquement considérons
un plan d’expérience D∗ universellement optimal. Il vient pour tout critère Φ
vérifiant les hypothèses de la définition 10.18 :

∀ D ∈ Θ , Φ (λD∗) ≤ Φ (λD) .

Il est possible d’utiliser la famille de critère Φ[k] (pour k = 1, ..., n) tels que :

Φ[k] (λD) = −
p∑

i=k

λ
[i]
D .

On obtient alors :∀ D ∈ Θ ,∀ k = 1, ..., n ,
p∑

i=k

λ
[i]
D∗ ≥

p∑

i=k

λ
[i]
D . Ceci équivaut à

dire que λD∗ �ω λD, la proposition réciproque est démontrée �

Proposition 10.20. Soit une classe Θ de plans d’expérience et CD la matrice
d’information de D. Soit D∗ ∈ Θ un plan d’expérience tel que :
1) CD∗ est multiple de l’identité,
2) Trace (CD∗) = max

D∈Θ

Trace (CD) .

Le plan d’expérience D∗ est alors universellement optimal dans la classe
Θ.

Démonstration. Soit D∗ ∈ Θ un plan d’expérience vérifiant cette propo-
sition. Montrons qu’il est universellement optimal dans Θ c’est-à-dire qu’il
vérifie la relation suivante d’après la proposition 10.19 (avec λD ∈ R

p le
vecteur contenant la suite pleine décroissante des valeurs propres de la ma-
trice d’information CD) :

∀ D ∈ Θ , λD∗ �ω λD

⇔ ∀ D ∈ Θ ,∀ k = 1, ..., p ,
p∑

i=k

λ
[i]
D∗ ≥

p∑

i=k

λ
[i]
D . (1)

Remarquons que lorsque k = 1 les deux sommes intervenant ci-dessus ne sont
autre que les traces des matrices d’information CD∗ et CD. L’inégalité est donc
bien vérifiée dans ce cas là d’après l’hypothèse 2 de la proposition. Montrons
maintenant que le rajout de l’hypothèse 1 permet de vérifier cette inégalité
pour toute valeur de k comprise entre 1 et p. Cette hypothèse se traduit par :

∃ a ∈ R
∗ / CD∗ = aIp.
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La matrice d’information CD∗ admet donc pour unique valeur propre a d’où :

(1) ⇔ ∀ D ∈ Θ ,∀ k = 1, ..., p ,
p∑

i=k

λ
[i]
D ≤ (p + 1− k) a.

L’hypothèse 2 permet maintenant d’affirmer que :

∀ D ∈ Θ , Trace (CD) ≤ Trace (CD∗) ⇔
p∑

i=1

λ
[i]
D ≤ pa ⇔ λD ≤ a (2)

avec donc λD la moyenne des p valeurs propres de la matrice d’information
du plan D. Prouvons que (pour tout plan d’expérience D ∈ Θ et pour tout
k = 1, ..., p) :

p∑

i=k

λ
[i]
D ≤ (p + 1− k)λD ⇔ p

p∑

i=k

λ
[i]
D ≤ (p + 1− k)

p∑

i=1

λ
[i]
D

⇔ p
(
λ
[k]
D + ... + λ

[p]
D
)
≤ (p + 1− k)

(
λ
[1]
D + ... + λ

[p]
D
)

⇔ λ
[k,...,p]

D ≤ λD

avec λ
[k,...,p]

D moyenne des valeurs propres d’indices k, k + 1,...., p. Cette
dernière inégalité est toujours vraie puisque, par hypothèse, λD est constitué
par la suite pleine décroissante des valeurs propres de la matrice d’information
(donc λ

[p]
D ≤ ... ≤ λ

[1]
D ). En utilisant maintenant la relation (2) il vient :

∀ k = 1, ..., p ,
p∑

i=k

λ
[i]
D ≤ (p + 1− k)λD ≤ (p + 1− k) a =

p∑

i=k

λ
[i]
D∗ .

La relation (1) est donc toujours vérifiée, ceci démontre la proposition �

Proposition 10.21. Soit une classe Θ de plans d’expérience et CD la matrice
d’information de D telle que la somme de ses lignes ou de ses colonnes est
égale au vecteur nul. Soit D∗ ∈ Θ un plan d’expérience tel que :
1) CD∗ est complètement symétrique,
2) Trace (CD∗) = max

D∈Θ

Trace (CD) .

Le plan d’expérience D∗ est alors universellement optimal dans la classe
Θ.

Démonstration. Soit D∗ ∈ Θ un plan d’expérience vérifiant cette proposi-
tion. Tout comme pour la proposition 10.20 montrons qu’il est universellement
optimal dans Θ c’est-à-dire qu’il vérifie la relation suivante d’après la propo-
sition 10.19 (avec λD ∈ R

p le vecteur contenant la suite pleine décroissante
des valeurs propres de la matrice d’information CD) :
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∀ D ∈ Θ , λD∗ �ω λD ⇔ ∀ D ∈ Θ ,∀ k = 1, ..., p ,
p∑

i=k

λ
[i]
D∗ ≥

p∑

i=k

λ
[i]
D .

Lorsque k = 1 les deux sommes intervenant ci-dessus sont les traces des
matrices d’information CD∗ et CD. L’inégalité est bien vérifiée dans ce cas
d’après l’hypothèse 2 de la proposition. Montrons que le rajout de l’hypothèse
1 permet de vérifier cette inégalité pour toute valeur de k comprise entre 1 et
p. D’après cette hypothèse :

∃ a, b ∈ R / CD∗ = aIp + bJp.

La somme des colonnes de CD∗ est de plus égale au vecteur nul. En d’autres
termes le vecteur Ip est vecteur propre de CD∗ associé à la valeur propre
λ

[p]

D∗ = 0, d’où :

CD∗Ip = 0 ⇔ (aIp + bJp) Ip = (a + bp) Ip = 0 ⇔ b = −a

p
.

On en déduit que la matrice d’information CD∗ est donc telle que :

∃ a ∈ R
∗ / CD∗ = aQp avec Qp = Ip − 1

p
Jp.

La matrice d’information CD∗ admet donc uniquement deux valeurs propres
distinctes qui sont :

{
a d’ordre de multiplicité (p− 1) (associée à tout contraste de R

p),
0 d’ordre de multiplicité 1 (associée au vecteur propre Ip).

Toute matrice d’information admettant ici une valeur propre nulle on a :

(1) ⇔ ∀ D ∈ Θ ,∀ k = 1, ..., p− 1 ,
p−1∑

i=k

λ
[i]
D ≤ (p− k) a.

L’hypothèse 2 permet maintenant d’affirmer que :

∀ D ∈ Θ , Trace (CD) ≤ Trace (CD∗) ⇔
p∑

i=1

λ
[i]
D ≤ (p− 1) a

⇔
p−1∑

i=1

λ
[i]
D ≤ (p− 1) a ⇔ λ

[1,...,p−1]

D ≤ a (2)

avec donc λ
[1,...,p−1]

D la moyenne des (p− 1) valeurs propres non-nulles de la
matrice d’information du plan d’expérience D. Prouvons que (pour tout plan
d’expérience D ∈ Θ et pour tout k = 1, ..., p− 1) :
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p−1∑

i=k

λ
[i]
D ≤ (p− k)λ

[1,...,p−1]

D ⇔ (p− 1)
p−1∑

i=k

λ
[i]
D ≤ (p− k)

p−1∑

i=1

λ
[i]
D

⇔ (p− 1)
(
λ
[k]
D + ... + λ

[p−1]
D

)
≤ (p− k)

(
λ
[1]
D + ... + λ

[p−1]
D

)

⇔ λ
[k,...,p−1]

D ≤ λ
[1,...,p−1]

D .

Cette dernière égalité est toujours vraie puisque, par hypothèse, λD est
constitué par la suite pleine décroissante des valeurs propres de la matrice
d’information (donc λ

[p]
D ≤ ... ≤ λ

[1]
D ). En utilisant maintenant la relation (2)

il vient alors :

∀ k = 1, ..., p− 1 ,
p−1∑

i=k

λ
[i]
D ≤ (p− k)λ

[1,...,p−1]

D ≤ (p− k) a =
p−1∑

i=k

λ
[i]
D∗ .

La relation (1) est donc toujours vérifiée, ceci démontre la proposition �

Proposition 10.22. Soit un phénomène aléatoire dépendant de m facteurs
ajusté à l’aide d’un modèle linéaire d’ordre un et Θ la classe des plans en
n expériences distribuées dans le domaine expérimental B (

√
m) . Tout plan

d’expérience usuel en n expériences tel que :

s2 = n

est universellement optimal dans la classe Θ.

Démonstration. Utilisons la proposition 10.20 afin de prouver qu’un tel plan
d’expérience (désigné dans la suite parD∗) est bien universellement optimal au
sein de la classe Θ. Il faut donc montrer dans un premier temps que la matrice
d’information CD∗ = tXD∗XD∗ est multiple de l’identité. Par définition des
plans d’expérience usuels pour modèles d’ordre un (définition 3.3) on a :

CD∗ = tXD∗XD∗ = diag (n, s2, ..., s2) .

Imposer la contrainte s2 = n entrâıne bien que la matrice d’information est
multiple de l’identité. Vérifions ensuite que :

Trace (CD∗) = max
D∈Θ

Trace (CD) .

Remarquons au préalable que si D∗ est un plan usuel avec s2 = n il vient
donc :

Trace (CD∗) = Trace (nIp) = np = n (m + 1) .

Soit maintenant un plan d’expérience D en n expériences inclues dans la
boule B (

√
m) . La matrice du modèle associée à ce plan d’expérience est

XD = [In | D] donc sa matrice d’information est donnée par :
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CD = tXDXD =
[

n t
InD

tDIn
tDD

]

.

Il en résulte que :
Trace (CD) = n + Trace

(
tDD

)
.

On doit prouver ici que pour tout plan D en n expériences dans B (
√

m) :

Trace (CD) ≤ Trace (CD∗) ⇔ Trace
(
tDD

) ≤ nm.

Or les éléments diagonaux de la matrice tDD ne sont autres que les normes
au carré des colonnes de la matrice du plan D, c’est-à-dire

∑
u z2u1, ...,

∑
u z2um

(avec toujours zui désignant la i-ème coordonnée du u-ème point expérimental).
Donc :

Trace (CD) ≤ Trace (CD∗) ⇔
m∑

i=1

n∑

u=1

z2ui ≤ nm

Remarquons alors que :

m∑

i=1

n∑

u=1

z2ui =
n∑

u=1

(
m∑

i=1

z2ui

)

=
n∑

u=1

‖zu‖2 .

On a supposé ici que les expériences du plan D sont dans la boule B (
√

m)
donc :

∀ u = 1, ..., n , ‖zu‖2 ≤ m ⇒
m∑

i=1

n∑

u=1

z2ui ≤ nm.

La relation cherchée est donc bien prouvée �

Proposition 10.23. Soit un phénomène aléatoire dépendant de m facteurs
ajusté à l’aide d’un modèle linéaire à effets d’interactions d’ordre deux et Θ
la classe des plans en n expériences distribuées dans le domaine expérimental
B (

√
m) . Tout plan d’expérience usuel en n expériences tel que :

s2 = s22 = n

est universellement optimal dans la classe Θ.

Démonstration. Utilisons la proposition 10.20 afin de prouver qu’un tel
plan d’expérience (désigné dans la suite par D∗) est bien universellement
optimal au sein de la classe Θ. Vérifions dans un premier temps que la matrice
d’information CD∗ = tXD∗XD∗ est multiple de l’identité. Par définition des
plans usuels pour modèles à effets d’interaction (définition 4.1) la matrice
d’information est :

CD∗ = tXD∗XD∗ = diag (n, s2, ..., s2, s22, ..., s22) .
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Imposer la contrainte s2 = s22 = n entrâıne bien que la matrice d’information
est multiple de l’identité. Vérifions ensuite que :

Trace (CD∗) = max
D∈Θ

Trace (CD) .

Remarquons que si D∗ est un plan usuel avec s2 = s22 = n il vient donc :

Trace (CD∗) = Trace (nIp) = np avec ici p = 1 + m + C2
m.

Soit maintenant un plan D en n expériences inclues dans la boule B (
√

m) .
La matrice du modèle associée à ce plan est XD = [In | D | DI ] donc :

CD = tXDXD =

⎡

⎣
n t

InD t
InDI

tDIn
tDD tDDI

tDIIn
tDID

tDIDI

⎤

⎦ .

Il en résulte que :

Trace (CD) = n + Trace
(

tDD
)

+ Trace
(
tDIDI

)
.

On doit prouver que pour tout plan D en n expériences inclues dans B (
√

m)
il vient :

Trace (CD) ≤ Trace (CD∗) ⇔ Trace
(
tDD

)
+ Trace

(
tDIDI

) ≤ n (p− 1) .

Les éléments diagonaux de la matrice tDD sont encore
∑

u z2u1, ...,
∑

u z2um

(voir la démonstration de la proposition 10.22) et de même les éléments di-
agonaux de la matrice tDIDI sont les normes au carré des colonnes de la
matrice DI c’est-à-dire les

∑
u z2uiz

2
uj pour tout i < j. Il en résulte que :

Trace (CD) ≤ Trace (CD∗) ⇔
m∑

i=1

n∑

u=1

z2ui +
∑∑

i<j

n∑

u=1

z2uiz
2
uj ≤ n (p− 1) = nm + nC2

m.

Il a déjà été prouvé à la proposition 10.22 que l’on a toujours :

m∑

i=1

n∑

u=1

z2ui ≤ nm (1)

Montrons maintenant que pour tout plan d’expérience dans B (
√

m) on a :

∑∑

i<j

(
n∑

u=1

z2uiz
2
uj

)

≤ nC2
m. (2)

Considérons au préalable le problème d’optimisation sous contraintes suivant
(pour u = 1, ..., n fixé) :
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(P ) : Maximiser
∑∑

i<j

z2uiz
2
uj avec

m∑

i=1

z2ui ≤ m.

Il est clair ici, vu la forme de la fonction à optimiser, que le maximum sera at-
teint lorsque les diverses coordonnées zui des points zu seront les plus grandes
possibles (en valeur absolue), c’est-à-dire lorsque les points zu seront situés à
la surface de la boule B (

√
m). Il est donc possible de remplacer la contrainte∑

z2ui ≤ m par la contrainte
∑

z2ui = m. En utilisant la technique des mul-
tiplicateurs de Lagrange on vérifie sans peine que toutes les coordonnées zui

(i = 1, ..., m) doivent donc être égales en valeur absolue pour atteindre cet
objectif. La contrainte imposée est de plus de rester à la surface de la boule
B (

√
m) donc on considère maintenant des points zu tels que :

∀ j = 1, ..., m , zui = ±1.

On montre sans difficulté que tout point critique de cette forme maximise bien
la fonction étudiée à la surface de la boule B (

√
m) et la valeur du maximum

est égale à C2
m (c’est-à-dire au nombre de termes intervenant dans la dou-

ble somme). On en déduit que pour tout plan d’expérience dans le domaine
B (

√
m) il vient :

∑∑

i<j

(
n∑

u=1

z2uiz
2
uj

)

=
n∑

u=1

⎛

⎝
∑∑

i<j

z2uiz
2
uj

⎞

⎠ ≤
n∑

u=1

C2
m = nC2

m.

La relation (2) est donc prouvée. En combinant maintenant les relations (1)
et (2) on en déduit que pour tout plan D en n expériences inclues dans la
boule B (

√
m) on a bien :

Trace (CD) ≤ Trace (CD∗)

La proposition est démontrée �

Proposition 10.24. Soit un phénomène aléatoire dépendant de m facteurs
ajusté à l’aide d’un modèle linéaire d’ordre deux. Pour tout plan d’expé
rience usuel on a les résultats suivants pour l’estimation de tous les paramè-
tres du modèle :
1) La A-efficacité du plan d’expérience est donnée par :

Φ1 (CD) =
1
p

[
(m− 1)
s4 − s22

+
m

s2
+

m (m− 1)
2s22

+
n + s4 + (m− 1) s22

Δ1

]

en notant Δ1 = n (s4 + (m− 1) s22)−ms22.

2) La D-efficacité du plan d’expérience est donnée par :
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Φ0 (CD) =
(
(s4 − s22)

m−1
sm
2 s

m(m−1)/2
22 Δ1

)−1/p

3) La E-efficacité du plan d’expérience est donnée par :

Φ∞ (CD) = min
(

1
s4 − s22

,
1
s2

,
1

s22
,

2
Δ2

)

en notant Δ2 = ns4 + (m− 1) s22 −
√

(n− s4 − (m− 1) s22)
2 + 4ms22.

Démonstration. Considérons un plan usuel D. En écrivant le vecteur des
paramètres inconnus ainsi que la matrice du modèle sous la forme tβ =
(β0 | tβQ | tβL | tβI) et X = [In | DQ | DL | DI ] la matrice d’information rel-
ative à l’estimation de β est donnée par :

CD =

⎡

⎢
⎢
⎣

n s2
t
Im 0 0

s2Im (s4 − s22) Im + s22Jm 0 0
0 0 s2Im 0
0 0 0 s22Im(m−1)/2

⎤

⎥
⎥
⎦ .

La structure diagonale par blocs de cette matrice permet d’affirmer qu’elle
admet pour valeurs propres :

1) s2 d’ordre de multiplicité m,

2) s22 d’ordre de multiplicité m (m− 1) /2.

Les autres valeurs propres sont maintenant celles du premier bloc et sont
données d’après le lemme 10.A par :

3) (s4 − s22) d’ordre de multiplicité (m− 1) ,

4)
(
A +

√
B
)

/2 d’ordre de multiplicité 1,

5)
(
A−√

B
)

/2 d’ordre de multiplicité 1 avec :

A = n + s4 + (m− 1) s22 et B = (n− s4 − (m− 1) s22)
2 + 4ms22.

Les valeurs de Φ1 (CD) , Φ0 (CD) et Φ∞ (CD) données dans la proposition
sont obtenues à partir des expressions des critères d’efficacité en fonction des
valeurs propres de la matrice d’information (voir les paragraphes 10.4.2, 10.4.3
et 10.4.4) �

Proposition 10.25. Soit un phénomène aléatoire en m facteurs, un plan
d’expérience D et Θ (k1, ..., kb) la classe des plans usuels en b blocs, de tailles
respectives k1, ..., kb, obtenus à partir du plan D. S’il existe dans cette classe
un plan bloqué orthogonalement alors il est D-optimal dans la classe
Θ (k1, ..., kb).



10.8 (Compléments) Démonstrations 479

Démonstration. Considérons un plan d’expérience usuel obtenu à partir de
la décomposition du plan initial D en b blocs constitués par respectivement
k1, ..., kb expériences. Il a déjà été prouvé au chapitre 6 que le déterminant de
la matrice des moments généralisée est donné par :

Det (tXX)

=

(
b∏

l=1

kl

)

sm
2 s

m(m−1)
2

22 (s4 − s22)
m−1

[
s4 + (m− 1) s22 −m

∑b
l=1 klμ

2
l

]
.

Cherchons des conditions sur les blocs permettant d’obtenir la D-optimalité,
c’est à-dire maximisant la valeur de Det (tXX) . Remarquons que :

C = C (D) = sm
2 s

m(m−1)
2

22 (s4 − s22)
m−1

ne dépend que de la géométrie du plan d’expérience initial D. Cette quantité
ne dépend donc pas de la façon dont les blocs sont construits. L’objectif est
alors de maximiser :

Det
(
tXX

)
= C

(
b∏

l=1

kl

)[

s4 + (m− 1) s22 −m

b∑

l=1

klμ
2
l

]

.

Déterminons des conditions sur les divers moments par blocs μ1, ..., μb per-
mettant d’atteindre cet objectif. Prenons garde au fait que, par définition,
la quantitié μl dépend de la taille kl du bloc considéré. Afin d’utiliser des
variables indépendantes des kl notons :

∀ l = 1, ..., b , δl = klμl =
∑

bloc l

x2
ui.

La quantité à maximiser devient :

Det
(
tXX

)
= C

(
b∏

l=1

kl

)[

s4 + (m− 1) s22 −m

b∑

l=1

δ2l
kl

]

.

Au sein de la classe Θ (k1, ..., kb) la valeur de (
∏

kl) est constante et on a
toujours C ≥ 0 (voir le paragraphe 6.2.3). On en déduit que l’objectif se
réduit à :

Minimiser f (δ1, ..., δb) =
b∑

l=1

δ2l
kl

sous la contrainte
b∑

l=1

δl = S2

(la contrainte découle des relations entre moments et moments par blocs d’un
plan d’expérience). La méthode des multiplicateurs de Lagrange conduit à la
conclusion que le minimum de cette fonction est obtenu si et seulement si :
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δ1
k1

=
δ2
k2

= ... =
δb

kb
.

Par définition de la quantité δl la plus grande valeur possible de Det (tXX)
est donc obtenue au sein de la classe Θ (k1, ..., kb) si et seulement si :

μ1 = μ2 = .... = μb

c’est à dire si et seulement si le plan d’expérience est bloqué orthogonalement
�

Proposition 10.26. Soit un phénomène aléatoire en m facteurs, un plan
d’expérience D et Θ la classe des plans usuels en b blocs obtenus à partir du
plan D. S’il existe dans cette classe un plan bloqué orthogonalement en
blocs de même taille alors il est D-optimal dans la classe Θ.

Démonstration. Considérons cette fois tous les blocages possibles en b blocs
(de tailles quelconques) obtenus à partir du plan d’expérience initial D. On
vient de voir précédemment que lorsque les tailles k1, ..., kb des blocs sont
fixées il faut imposer à la configuration d’être bloquée orthogonalement afin de
maximiser Det (tXX) par rapport aux moments par blocs et il vient (puisque
μ1 = ... = μb = s2/n) :

Det
(
tXX

)
= C

(
b∏

l=1

kl

)[

s4 + (m− 1) s22 −m
s22
n

]

.

La quantité obtenue est alors maximale si et seulement si le problème
d’optimisation suivant est résolu :

Maximiser g (k1, ..., kb) =
b∏

l=1

kl sous la contrainte
b∑

l=1

kl = n.

La méthode des multiplicateurs de Langrange conduit au résultat classique
disant que le maximum est atteint si et seulement si :

k1 = k2 = ... = kb = (n/b) .

Ceci démontre bien la proposition �

Proposition 10.27. Soit un phénomène aléatoire en m facteurs ajusté à
l’aide d’un modèle linéaire d’ordre deux en blocs, Θ une classe de plans
d’expérience usuels et Θ (k1, ..., kb) la classe de ces mêmes plans décomposés
en plans usuels en blocs de tailles respectives k1, ..., kb. Si D est un plan
d’expérience D-optimal dans Θ pour le cas sans bloc et si D peut être bloqué
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orthogonalement alors le plan d’expérience D est encore D-optimal dans
la classe Θ (k1, ..., kb) pour le modèle à effets de blocs.

Démonstration. Considérons un plan d’expérience usuelD qui est D-optimal
dans la classe des plans (sans bloc) Θ. On peut donc dire que D maximise au
sein de la classe Θ la quantité :

Det (tXX)

= nC
[
s4 + (m− 1) s22 − ms2

2
n

]
avec C = sm

2 s
m(m−1)

2
22 (s4 − s22)

m−1
.

Soit maintenant D′ un plan d’expérience de Θ décomposé en b blocs de tailles
k1, ..., kb. D’après les résultats obtenus dans la démonstration de la proposition
10.25 on sait que si D′ est bloqué orthogonalement il vient (en désignant par
X∗ la matrice du modèle ainsi obtenue) :

Det
(
tX∗X∗) = C

(
b∏

l=1

kl

)[

s4 + (m− 1) s22 − ms22
n

]

.

Il a été prouvé dans la démonstration de la proposition 10.25 qu’une telle
valeur est maximale, uniquement atteinte par les configurations bloquées or-
thogonalement. On en déduit alors que pour toute configuration quelconque
de la classe Θ (k1, ..., kb) on aura :

Det
(
tX∗X∗) ≤ C

(
b∏

l=1

kl

)[

s4 + (m− 1) s22 − ms22
n

]

.

En faisant le lien entre l’efficacité pour le modèle classique et l’efficacité pour
le modèle à effets de blocs on obtient immédiatement :

Det
(
tX∗X∗) ≤ 1

n

(
b∏

l=1

kl

)

Det
(

tXX
)

avec égalité si et seulement si le plan d’expérience est bloqué orthogonalement.
L’utilisation d’un plan d’expérience bloqué orthogonalement obtenu à partir
d’un plan initial D D-optimal (i.e. maximisant Det (tXX)) permet donc bien
de maximiser la valeur de Det (tX∗X∗) au sein de la classe Θ (k1, ..., kb) �

Proposition 10.28. Soit un phénomène aléatoire faisant intervenir un fac-
teur qualitatif à h modalités analysé à l’aide d’un plan d’expérience en b blocs.
Soit Θ la classe des plans d’expérience binaires en blocs de même taille k pour
l’estimation des effets des traitements. Tout plan d’expérience en blocs in-
complets équilibrés (BIBD) est alors universellement optimal dans la
classe Θ.
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Démonstration. Pour l’estimation des divers effets des traitements il a été
montré au chapitre 9 que la matrice d’information de tout plan d’expérience
D ∈Θ est :

CT = tXT P(ImB)⊥XT

avec XT matrice des indicatrices des traitements et P(ImB)⊥ matrice du pro-

jecteur orthogonal sur (ImB)⊥. Une telle matrice d’information ne peut ja-
mais être diagonale (car la somme de ses colonnes est toujours égale au vecteur
nul). Utilisons alors la proposition 10.21 afin de prouver qu’un BIBD est bien
universellement optimal au sein de la classe Θ. Il faut donc montrer dans
un premier temps que la matrice d’information du BIBD est complètement
symétrique. Il a été prouvé au chapitre 9 que pour tout plan d’expérience
de type BIBD (h, b, k, r, λ) la matrice d’information CT est complètement
symétrique avec de manière explicite :

CT =
(

r − r

k
+

λ

k

)

Ih − λ

k
Jh.

Vérifions ensuite que la trace de CT est maximale dans Θ pour tout BIBD.
Considérons ici un plan d’expérience binaire quelconque en b blocs de taille
k pour h traitements. La matrice d’information pour l’estimation des traite-
ments est donnée pour tout plan d’expérience de la classe Θ par :

CT = tXT P(ImB)⊥XT = tXT XT − 1
k

(
tXT B

) (
tBXT

)
.

On sait que la matrice tXT B n’est autre que la matrice d’incidence (notée
classiquement N) donc :

CT = tXT XT − 1
k

N tN.

Or (voir le paragraphe 9.2.2) les termes diagonaux de la matrice tXT XT ainsi
que de la matrice de concordance N tN sont pour tout plan binaire r1, ..., rh

avec ri nombre d’occurences du traitement i dans le plan d’expérience. Il vient
donc pour tout plan de la classe Θ :

Trace (CT ) =
h∑

i=1

ri − 1
k

h∑

i=1

ri = n

(
k − 1

k

)

.

Cette trace est constante sur la classe Θ, la trace de la matrice d’information
de tout BIBD est bien maximale dans la classe Θ �
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Annexes



A

Plans factoriels et représentation linéaire des
groupes

Cette annexe est consacrée à l’interprétation algébrique des fractions régulières
de plans d’expérience factoriels. Ceci permet une bonne compréhension des
principaux résultats énoncés dans les chapitres 3, 4, 5 et 6 relatifs aux plans
d’expérience pour facteurs quantitatifs ainsi qu’au chapitre 8 pour des facteur
qualitatifs. L’objectif est de présenter ici les bases de cette théorie ainsi que les
principaux résultats. Pour une vision plus complète on pourra se référer aux
ouvrages de Serre [90] ou Rauch [79] concernant la théorie de représentation
linéaire des groupes finis ainsi qu’à l’ouvrage de Collombier [19] pour une
application plus détaillée de cette théorie aux fractions de plans factoriels.

A.1 Représentation linéaire des groupes finis

Considérons un espace vectoriel V , de dimension n, sur le corps des nombres
complexes C et un groupe fini G muni d’une loi de composition interne notée
multiplicativement. On note dans la suite |G| le cardinal du groupe G (i.e.
le nombre de ses éléments). Rappelons que GL (V ) désigne le groupe linéaire
sur V, c’est-à-dire le groupe constitué par les isomorphismes de V dans V
(la loi interne étant la composition des applications notée ◦). Une base de V
étant fixée, chaque élément de GL (V ) peut être représenté par une matrice.
La représentation linéaire des groupes consiste à identifier un groupe fini à un
groupe de matrices selon la définition suivante :

Définition A.1. On appelle représentation linéaire d’un groupe fini G
tout morphisme ρ du groupe G dans le groupe GL (V ) . En d’autres termes :

ρ : G → GL (V ) et ∀ g, h ∈ G , ρ (gh) = ρ (g) ◦ ρ (h) .

L’espace vectoriel V est appelé espace de la représentation, sa dimension
est le degré de la représentation.

On note dans la suite ρg au lieu de ρ (g) afin de ne pas alourdir les notations.
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Définition A.2. Soient ρ et ρ′ deux représentations linéaires du groupe G
dans les espaces vectoriels V et V ′. On dit qu’elles sont isomorphes s’il
existe un isomorphisme linéaire τ de V dans V ′ vérifiant :

∀ g ∈ G , ρg = τ−1 ◦ ρ′g ◦ τ.

Matriciellement, cette définition dit que si deux représentations sont isomor-
phes alors il existe une matrice de passage permettant de ramener une des deux
représentations à l’autre par simple changement de base. Deux représentations
isomorphes sont donc identifiables de manière naturelle (et ont même degré).
Etant donné une représentation la question se pose alors de savoir si elle ad-
met des sous-représentations (i.e. des représentations obtenues à partir d’un
sous-espace vectoriel de V ). Ceci conduit à la notion suivante :

Définition A.3. Soit ρ : G → GL (V ) une représentation linéaire du groupe
fini G. On dit qu’elle est irréductible si aucun sous-espace vectoriel propre
de V n’est stable par G.

On montre ensuite qu’il n’est pas nécessaire de connaitre tous les ρg afin de
caractériser une représentation. En effet, la connaissance de la trace de ces
isomorphismes est suffisante. Ceci amène la définition des caractères d’une
représentation :

Définition A.4. Soit ρ : G → GL (V ) une représentation linéaire du groupe
fini G. On appelle caractère de cette représentation tout vecteur de C

|G|,
noté χρ (ou simplement χ), tel que ses composantes sont données par :

∀ g ∈ G , (χρ) (g) = Trace (ρg) .

Remarquons que quelle que soit la représentation ρ la composante associée à
l’élément neutre 1 du groupe G vérifie (puisque ρ est un morphisme) :

(χρ) (1) = Tr (ρ1) = Tr (IdV ) = n.

Considérons maintenant deux caractères χ et χ
′
d’un même groupe fini. Leur

produit scalaire est alors défini de la manière naturelle suivante :

〈χ | χ′〉 =
1
|G|

∑

g∈G

χgχ
′
g =

1
|G|

tχχ′.

Les relations ci-dessous, dites d’orthogonalité des caractères, sont toujours
vérifiées (voir l’ouvrage de Serres [90] pour une démonstration) :
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Proposition A.5. Pour tout groupe G fini on peut dire que :

1) si χ est le caractère d’une représentation irréductible alors :

〈χ | χ〉 = 1.

2) les caractères χ et χ′ de deux représentations irréductibles non-
isomorphes sont orthogonaux:

〈χ | χ′〉 = 0.

On manipule souvent dans la suite des groupes obtenus comme produit
cartésien de deux ou plusieurs autres groupes. Rappelons que si G1 et G2 sont
deux groupes finis, de cardinaux respectifs |G1| et |G2|, munis d’une même loi
de composition interne (notée multiplicativement) alors le groupe produit
(direct) de G1 et G2 est l’ensemble :

G1 ×G2 =
{(

g1
g2

)

/ g1 ∈ G1 et g2 ∈ G2

}

muni du produit d’Hadamard comme loi de composition interne :

∀ g1, h1 ∈ G1 et ∀ g2, h2 ∈ G2 ,
(

g1
g2

)

�
(

h1

h2

)

=
(

g1h1

g2h2

)

.

Remarquons que (G1 ×G2,�) est un groupe fini d’ordre |G1| . |G2| . Il sera
souvent utile de déterminer de manière simple les caractères de tels groupes.
Ceci est possible en utilisant l’opérateur de produit tensoriel :

Définition A.6. Soient deux vecteurs u ∈ R
n et v ∈ R

m. On appelle produit
tensoriel de u et v le vecteur de R

nm noté u⊗ v défini par :

u⊗ v =

⎛

⎜
⎜
⎜
⎝

v1u
v2u
...

vmu

⎞

⎟
⎟
⎟
⎠

.

Remarque. Attention au fait que la définition proposée ici ne correspond
pas à l’ordre usuel des éléments du produit tensoriel de deux vecteurs. En
effet on désigne classiquement par u ⊗ v le vecteur dont les éléments sont
u1v, u2v, ..., unv. En d’autres termes, ce que nous écrivons ici u⊗v correspond
à v ⊗ u dans d’autres ouvrages. On utilisera cependant cette convention car
elle permet d’avoir des résultats très faciles à écrire dans la suite.

Considérons maintenant deux groupes finis G1 et G2 associés à deux
représentations linéaires ρ1 et ρ2 dont les caractères sont connus. Le problème
se pose d’en déduire les caractères du groupe produit G1 × G2. On montre
que :
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Proposition A.7. Si χ1 et χ2 sont deux caractères des groupes G1 et G2

alors χ1 ⊗ χ2 est un caractère du groupe produit G1 ×G2.

Terminons enfin par les propriétés spécifiques des groupes commutatifs
(voir aussi le paragraphe 13 de l’ouvrage de Hall [47]) :

Proposition A.8. Soit un groupe abélien fini G d’ordre h. Ce groupe admet h
représentations irréductibles (non-isomorphes) de degré un et l’ensemble
des caractères constitue un groupe abélien fini (pour le produit d’Hadamard),
noté G∗, isomorphe à G. Le groupe G∗ est appelé dual de G.

A.2 Application aux plans à deux niveaux

A.2.1 Cas des plans factoriels complets

Considérons un plan d’expérience factoriel complet à m facteurs (sans aucune
réplications centrales) et deux niveaux par facteur. Comme cela a été montré
au chapitre 3 il est donc constitué par les expériences situées aux sommets
du cube [−1, 1]m , c’est-à-dire l’ensemble des points {−1, 1}m

. Il est possi-
ble de munir cet ensemble de la loi de composition interne qu’est le produit
d’Hadamard de R

m. Cette loi est associative et commutative, elle admet un
élément neutre (I) et tout élément de {−1, 1}m est son propre symétrique.
D’où :

Proposition A.9. Tout plan factoriel complet à m facteurs peut être identifié
au groupe abélien ({−1, 1}m

,�) .

Déterminons maintenant les caractères du groupe ({−1, 1}m
,�) . Comme il

s’agit d’un groupe produit il suffit donc de connaitre uniquement les caractères
du groupe ({−1, 1} ,×) obtenu lorsque m = 1. Ce groupe étant abélien d’ordre
2 admet deux représentations irréductibles et donc deux caractères distincts.
Comme on a toujours χ (1) = 1 la table des caractères de ce groupe est obtenue
immédiatement par :

élémt. du groupe caractère χ0 caractère χ1

-1 1 −1
1 1 1

Ecrivons maintenant les produits tensoriels de χ0 avec χ1. On obtient alors
la matrice suivante qui n’est autre que la matrice du plan factoriel complet à
deux facteurs écrite selon l’ordre de Yates :

[
χ1 ⊗ χ0 χ0 ⊗ χ1

]
=

⎡

⎢
⎢
⎣

−1 −1
1 −1

−1 1
1 1

⎤

⎥
⎥
⎦
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De même, écrivons maintenant tous les produits tensoriels à trois vecteurs ne
faisant intervenir qu’une fois χ1. Ceci donne la matrice ci-dessous qui est cette
fois la matrice du plan factoriel complet à trois facteurs :

[
χ1 ⊗ χ0 ⊗ χ0 χ0 ⊗ χ1 ⊗ χ0 χ0 ⊗ χ0 ⊗ χ1

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1
1 −1 −1

−1 1 −1
1 1 −1

−1 −1 1
1 −1 1

−1 1 1
1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Ce raisonnement est généralisable sans difficulté pour m facteurs et on obtient
le résultat suivant avec δij le symbole de Kronecker (i.e. δij = 1 si i = j et
δij = 0 sinon) :

Proposition A.10. Soit un plan d’expérience factoriel complet à m facteurs
et D la matrice de ce plan écrite selon l’ordre de Yates. La colonne de D
associée à l’effet linéaire βi est aussi le caractère du groupe ({−1, 1}m

,�)
donné par :

m⊗

k=1

χδik

On vient donc de voir qu’il est possible d’identifier les m colonnes de la
matrice d’un plan factoriel complet à m caractères du groupe ({−1, 1}m ,�) .
Montrons maintenant qu’il en est de même pour les colonnes des effets
d’interactions. Ces colonnes sont obtenues en réalisant le produit d’Hadamard
des colonnes des effets linéaires intervenant dans l’interaction considérée. Util-
isons le résultat suivant (évident à démontrer) liant les opérateurs produit
d’Hadamard et produit tensoriel :

Lemme A.11. Soient a, b, c et d quatre vecteurs de R
n. Alors :

(a⊗ b)� (c⊗ d) = (a� c)⊗ (b� d) .

Reprenons maintenant l’exemple du plan factoriel complet à 3 facteurs
et déterminons la colonne de la matrice X du modèle associée à l’effet
d’interaction β12. Elle est obtenue en réalisant le produit d’Hadamard des
colonnes associées à β1 et β2 ce qui donne d’après le lemme A.11 :

(χ1 ⊗ χ0 ⊗ χ0)� (χ0 ⊗ χ1 ⊗ χ0) = (χ1 � χ0)⊗ (χ0 � χ1)⊗ (χ0 � χ0) .

On a les règles de calculs suivantes (d’après la définition de χ0 et χ1) :

χ0 � χ0 = χ0 , χ1 � χ1 = χ0 et χ0 � χ1 = χ1
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donc :
(χ1 ⊗ χ0 ⊗ χ0)� (χ0 ⊗ χ1 ⊗ χ0) = χ1 ⊗ χ1 ⊗ χ0.

On vérifie de même que :
⎧
⎨

⎩

la colonne associée à β13 est χ1 ⊗ χ0 ⊗ χ1,
la colonne associée à β23 est χ0 ⊗ χ1 ⊗ χ1,
la colonne associée à β123 est χ1 ⊗ χ1 ⊗ χ1.

En d’autres termes si A est l’ensemble des indices utilisés pour l’interaction
étudiée (par exemple A = {1, 2} pour β12), la colonne correspondante dans
la matrice du modèle est obtenue par produit tensoriel des χi où i = 1 si i
est dans A et i = 0 sinon. Ce résultat est généralisable sans difficulté et on
obtient alors la proposition suivante étendant la proposition A.10 aux effets
d’interactions :

Proposition A.12. Considérons un plan d’expérience factoriel complet à m
facteurs de matrice D écrite selon l’ordre de Yates. Soit une interaction à k
facteurs et A l’ensemble des k indices intervenant dans cette interaction. La
colonne associée à cette interaction dans la matrice X du modèle est aussi le
caractère du groupe ({−1, 1}m ,�) donné par :

m⊗

k=1

χIA(k)

Tout ceci permet alors d’énoncer le résultat principal suivant :

Proposition A.13. Considérons un plan d’expérience factoriel complet à
m facteurs et soit X la matrice du modèle contenant toutes les interactions
possibles. On peut alors affirmer que :

1) le carré de la norme de toute colonne est égale à 2m,

2) deux colonnes distinctes de X sont toujours orthogonales.

Démonstration. Les résultats énoncés ici sont la conséquence directe des
relations d’orthogonalité des caractères énoncées à la proposition A.5. En
effet, il suffit de remarquer que si X est la matrice du modèle contenant
toutes les interactions possibles (d’ordre 2, 3 ... m) alors elle est constituée
par les colonnes suivantes :

1)
m⊗

k=1

χ0 = I2m associée à l’effet moyen général β0,

2)
m⊗

k=1

χδik
associées aux m effets linéaires βi,

3)
m⊗

k=1

χIA(k) associées à toutes les interactions possibles βij , βijk, etc...
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On obtient donc ainsi 2m vecteurs distincts et chacun d’eux est un caractère du
groupe ({−1, 1}m

,�) . Ce groupe ayant pour cardinal 2m il s’agit donc de tous
les caractères de ce groupe et la proposition A.13 découle alors directement
des relations d’orthogonalité des caractères (proposition A.5) �

Application 1

Autre démonstration de la proposition 3.7 :

”Tout plan factoriel complet est un plan d’expérience usuel pour un modèle
d’ordre un, vérifiant de plus s2 = 2m”.

On peut dire que :

1) la colonne associée à l’effet linéaire βi (i = 1, ..., m) est orthogonale à la
colonne associée à β0 donc [i] = 0,

2) les colonnes associées aux effets linéaires βi et βj (i, j = 1, ..., m avec i 	= j)
sont orthogonales donc [ij] = 0,

3) la colonne associée à l’effet linéaire βi (i = 1, ..., m) a une norme carrée
égale à 2m donc n

[
i2
]

= 2m.

Tout plan factoriel complet est donc bien un plan d’expérience usuel pour un
modèle d’ordre un (rajouter d’éventuelles réplications centrales ne change en
rien les résultats précédents).

Application 2

Autre démonstration de la proposition 3.10 :

”Les colonnes de D, matrice d’un plan factoriel complet, sont des con-
trastes non-unitaires de {−1, 1}2m

et le produit d’Hadamard de k colonnes
distinctes de D est aussi un contraste non-unitaire de {−1, 1}2m”.

On peut dire que :

1) la colonne associée à l’effet linéaire βi (i = 1, ..., m) est orthogonale à la
colonne associée à β0 donc [i] = 0. En d’autres termes, la colonne associée à
βi est bien un contraste non-unitaire de {−1, 1}2m

.

2) considérons la colonne de X obtenue en réalisant le produit d’Hadamard de
k colonnes distinctes de D. Cette colonne est donc associée à une interaction
d’ordre k et la proposition A.13 assure qu’elle est en particulier orthogonale
à la colonne associée à β0, il s’agit donc bien d’un contraste non-unitaire de
{−1, 1}2m

.
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Application 3

Autre démonstration de la proposition 4.4 :

”Tout plan factoriel complet est un plan d’expérience usuel pour un modèle
à effets d’interactions d’ordre deux, vérifiant de plus s2 = 2m et s22 = 2m”.

On peut dire que :

1) concernant les moments impairs, on a l’orthogonalité entre les couples de
colonnes associés aux effets suivants (i, j, k, l = 1, ..., m avec i < j < k < l) :

βi et β0 donc [i] = 0,
βij et β0 donc [ij] = 0,
βij et βi donc

[
i2j

]
= 0,

βij et βk donc [ijk] = 0,
βij et βik donc

[
i2jk

]
= 0,

βij et βkl donc [ijkl] = 0.

Ceci montre bien que tous les moments impairs sont nuls jusqu’à l’ordre 4.

2) la colonne associée à l’effet linéaire βi (i = 1, ..., m) ainsi que la colonne
associée à l’effet d’interaction βij (i, j = 1, ..., m avec i < j) ont une norme
carrée égale à 2m donc :

n
[
i2
]

= 2m et n
[
i2j2

]
= 2m.

Tout plan factoriel complet est donc bien un plan d’expérience usuel pour un
modèle à effets d’interactions d’ordre deux (rajouter d’éventuelles réplications
centrales ne change en rien les résultats précédents).

A.2.2 Cas des fractions régulières

Le paragraphe précédent a montré tout l’intérêt de la théorie de représentation
linéaire des groupes finis afin de formaliser la construction ainsi que les princi-
pales propriétés des plans factoriels complets. Etendons maintenant ceci aux
fractions régulières de plans factoriels. Commençons tout d’abord par donner
la définition algébrique des fractions régulières.

Définition A.14. Soit un plan factoriel complet à m facteurs identifié au
groupe abélien G = {−1, 1}m muni du produit d’Hadamard . On appelle frac-
tion régulière (principale) tout plan d’expérience associé à un sous-groupe
S de G.

Illustrons ceci par un exemple pour m = 3 facteurs. Le tableau ci-dessous
est la table des caractères du groupe G = {−1, 1}3 c’est-à-dire la matrice du
modèle contenant toutes les interactions (on note, pour des raisons de place,
χijk au lieu de χi ⊗ χj ⊗ χk). Chaque élément du groupe G est identifié aux
trois valeurs (en gras dans le tableau) prises par χ100, χ010 et χ001 (i.e. à ses
coordonnées dans le plan d’expérience d’après la proposition A.10).
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Elément χ000 χ100 χ010 χ001 χ110 χ101 χ011 χ111

(-1,-1,-1) 1 -1 -1 -1 1 1 1 -1

(1,−1,−1) 1 1 −1 −1 −1 −1 1 1
(−1, 1,−1) 1 −1 1 −1 −1 1 −1 1

(1,1,-1) 1 1 1 -1 1 -1 -1 -1

(−1,−1, 1) 1 −1 −1 1 1 −1 −1 1
(1,-1,1) 1 1 -1 1 -1 1 -1 -1

(-1,1,1) 1 -1 1 1 -1 -1 1 -1

(1, 1, 1) 1 1 1 1 1 1 1 1

Considérons alors non plus le groupe G mais le sous-groupe S constitué des
éléments suivants :

S = {(1, 1, 1) , (1,−1,−1) , (−1, 1,−1) , (−1,−1, 1)} .

La fraction régulière du plan factoriel complet associée à S est alors obtenue
en ne conservant que les expériences (i.e. les lignes du tableau) associées aux
éléments de S. Les expériences retenues figurent dans la table en caractères de
grande taille. En désignant par G∗ le dual du groupe G (voir la proposition
A.8) on définit maintenant l’orthogonal du groupe S dans G∗ par (voir Lang
[62]) :

Définition A.15. Soit un sous-groupe S de G = {−1, 1}m. On appelle or-
thogonal de S (dans G∗) l’ensemble, noté S⊥, des caractères χ de G∗ tels
que χ (g) = 1 pour tout g ∈ S. Donc :

S⊥ = {χ ∈ G∗ / g ∈ S =⇒ χ (g) = 1} .

Les éléments de S⊥ sont appelés contrastes de définition de la fraction
régulière utilisée.

On a les propriétés suivantes (voir Lang [62]) :

Proposition A.16. Soit S un sous-groupe de G = {−1, 1}m et S⊥ l’ortho-
gonal de S dans G∗. Alors, S⊥ est un sous-groupe de G∗ et le nombre
d’éléments de S⊥ vérifie :

card
(
S⊥) =

card (G)
card (S)

.

Remarque. La notion de contraste de définition présentée en A.15 est bien
identique à celle introduite au chapitre 3 (définition 3.12). En effet, le groupe
S⊥ ou le groupe des contrastes de définition G sont identiques (seules les
notations diffèrent). Pour l’exemple présenté ici on a :

S⊥ = {χ000, χ111} et G = {I, 123} .
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La colonne associée à χ000 = χ0 ⊗ χ0 ⊗ χ0 correspond bien à l’effet moyen
général du modèle et la colonne associée à χ111 = χ1 ⊗ χ1 ⊗ χ1 correspond à
l’interaction 123 entre les trois facteurs étudiés.

La proposition A.16 permet de démontrer le résultat suivant (relation 1 de la
proposition 3.15) :

Proposition A.17. Soit un plan d’expérience factoriel complet à m facteurs
et une fraction régulière obtenue à l’aide de q générateurs. Une telle fraction
régulière est constituée par 2m−q expériences.

Démonstration. Le plan factoriel complet peut être identifié au groupe G =
{−1, 1}m ayant pour cardinal 2m. De même, il a été prouvé (voir la proposition
3.13) que si une fraction régulière est définie par q générateurs alors le groupe
G des contrastes de définition (ou de manière identique le groupe S⊥) est un
groupe fini de cardinal 2q. Le résultat est alors immédiat d’après la proposition
A.16 puisque :

card (S) =
card (G)
card (S⊥)

= 2m−q �

On a maintenant le résultat principal suivant permettant d’étendre la propo-
sition A.13 au cas des fractions régulières :

Proposition A.18. Considérons une fraction régulière de plan d’expérience
factoriel à m facteurs et désignons par X la matrice du modèle contenant
toutes les interactions possibles. On peut alors affirmer que :

1) le carré de la norme de toute colonne est égale à 2m−q,

2) deux colonnes distinctes de X sont soit orthogonales soit colinéaires.

Démonstration. La proposition énoncée en 1 découle immédiatement de
la proposition A.17 disant que la matrice X a 2m−q lignes. Concernant la
proposition énoncée en 2, considérons au préalable la matrice carrée, élément
de M (2m, 2m) , du modèle contenant tous les effets d’interactions du plan
factoriel complet.

Il convient de distinguer, dans un premier temps, la sous-matrice X du
modèle obtenue avec la fraction régulière considérée. Cette matrice, élément
de M (2m−q, 2m) , est obtenue en supprimant 2q lignes de la matrice complète.
Puisque la fraction régulière est identifiable à un groupe abélien fini S, d’ordre
2m−q, on peut aussi considérer ensuite la table X̃ des 2m−q caractères des
représentations irréductibles non-isomorphes de ce groupe. Cette matrice X̃,
élément de M (2m−q, 2m−q) , est obtenue en supprimant 2q colonnes de X.

On peut ainsi démontrer la relation 2 puisque pour deux colonnes distinctes
de X deux situations peuvent alors se présenter :
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1) soit les deux colonnes considérées correspondent à deux représentations
irréductibles non-isomorphes de S (i.e. les deux colonnes appartiennent à X̃)
et sont donc orthogonales (voir la proposition A.5),

2) soit les deux colonnes considérées correspondent à deux représentations
irréductibles isomorphes de S et sont colinéaires �

Remarque 1. Puisque seuls les plans factoriels à deux niveaux sont con-
sidérés dans cette section on peut donc affiner la relation 2 en disant que
deux colonnes colinéaires sont alors obligatoirement égales ou opposées. Deux
colonnes colinéaires sont de plus obligatoirement égales si l’on utilise une frac-
tion principale.

Remarque 2. Rappelons que pour déterminer tous les couples de colonnes
de X colinéaires il suffit de construire la table des confusions d’effets
telle qu’elle a été présentée au paragraphe 3.4.3. Pour l’exemple précédent où
G = {I, 123} il y a donc colinéarité des couples de colonnes suivants :

{I, 123} , {1, 23} , {2, 13} , {3, 12} .

Application

Démontrons la fin de la proposition 3.15 dont l’énoncé est :

”si D est la matrice d’une fraction régulière alors les colonnes de D sont
des contrastes de {−1, 1}2m−q

et le produit d’Hadamard de k colonnes dis-
tinctes de D (2 ≤ k ≤ m) est aussi un contraste de {−1, 1}2m−q

”.

On sait que :

1) la colonne associée à l’effet linéaire βi (i = 1, ..., m) est soit orthogonale
soit colinéaire à la colonne associée à β0. En d’autres termes, la colonne as-
sociée à βi est donc bien un contraste de l’ensemble {−1, 1}2m

(non-unitaire
uniquement dans le cas où l’on a l’orthogonalité),

2) considérons la colonne de X obtenue en réalisant le produit d’Hadamard
de k colonnes distinctes de D. Cette colonne est donc associée à une inter-
action d’ordre k et la proposition A.18 nous dit qu’elle est en particulier
soit orthogonale soit colinéaire à la colonne associée à β0. Il s’agit donc bien
d’un contraste de {−1, 1}2m

(une nouvelle fois non-unitaire uniquement en
cas d’orthogonalité).

A.3 Généralisation

Généralisons ici les résultats de la section A.2 au cas où plus de deux niveaux
interviennent pour chacun des facteurs. Ceci est donc en rapport avec le
chapitre 8 lorsque m facteurs qualitatifs à h modalités sont considérés (on
dit alors que le plan d’expérience est symétrique car le nombre le modalités
est identique pour tous les facteurs).



496 A Plans factoriels et représentation linéaire des groupes

A.3.1 Cas des plans factoriels complets

Il a été montré au paragraphe 8.2.1 du chapitre 8 qu’un plan d’expérience
pour facteurs qualitatifs peut facilement être décrit à l’aide du codage na-
turel. Dans le cas où chaque facteur est à h modalités il s’agit donc de coder
chacune des modalités par un élément de l’ensemble {0, 1, ..., h− 1} . Il en
résulte que, comme cela a déjà été énoncé dans un cas plus général à la
définition 8.7, tout plan d’expérience factoriel complet à m facteurs est con-
stitué par l’ensemble des points de l’ensemble {0, 1, ..., h− 1}m

. Remarquons
que {0, 1, ..., h− 1} peut être considéré comme l’ensemble des restes de la divi-
sion euclidienne par h. Muni classiquement de l’addition modulo h on obtient
alors le groupe (Z/hZ, +) . Lorsque m facteurs sont considérés on peut donc
réaliser l’identification suivante :

Proposition A.19. Tout plan factoriel complet pour m facteurs qualitatifs à
h modalités peut être identifié au groupe abélien ((Z/hZ)m

, +) .

Remarque. Ceci est bien une généralisation de la définition A.9 relative
aux plans factoriels complets à 2 niveaux puisque (pour un seul facteur) les
groupes (Z/2Z, +) ou ({−1, 1} ,×) peuvent être mis en bijection à l’aide de
l’isomorphisme élémentaire suivant :

φ : ({−1, 1} ,×) → (Z/2Z, +) tel que φ (−1) = 1 et φ (1) = 0.

Déterminons maintenant les caractères du groupe ((Z/hZ)m , +) . Comme il
s’agit d’un groupe produit il suffit donc de connâıtre uniquement les caractères
du groupe (Z/hZ, +) obtenu lorsque m = 1. Il s’agit d’un groupe abélien
d’ordre h qui peut aussi être vu de manière équivalente comme le groupe
cyclique Ch des racines complexes de l’unité ou encore, géométriquement,
comme le groupe des rotations d’angles multiples de (2π/h) autour d’un axe
donné. On sait alors (voir Serre [90] ainsi que la section A.1) qu’il existe h
caractères et ces caractères sont obtenus à partir du vecteur contenant toutes
les racines h-ièmes de l’unité. L’exemple suivant détaille les caractères dans
le cas où h = 3. En notant ω = ei(2π/3) une des racines troisième complexe de
l’unité les trois caractères du groupe (Z/3Z, +) sont :

élémt. du groupe caractère χ0 caractère χ1 caractère χ2

0 ω0 ω0 ω0

1 ω0 ω1 ω2

2 ω0 ω2 ω1

Remarquons que l’on a aussi plus simplement (avec les notations symboliques
des puissances par rapport au produit d’Hadamard) :

χ0 = I3 = χ0
1 et χ2 = χ1 � χ1 = χ2

1.
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Ce résultat est généralisable à toute valeur de h : à partir du vecteur χ1

on obtient tous les autres caractères en élevant ce vecteur à toutes les puis-
sances comprises entre 0 et (h− 1) . Utilisons maintenant ces caractères afin
de retrouver la matrice du plan factoriel complet pour m = 2 facteurs à h = 3
modalités. Considérons la matrice DC dont les deux colonnes sont constituées
respectivement par les caractères χ1⊗χ0 et χ0⊗χ1 du groupe

(
(Z/3Z)2 , +

)
.

Il vient alors (avec parallèlement la matrice D ci-dessous du plan en codage
naturel) :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1 0
2 0
0 1
1 1
2 1
0 2
1 2
2 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et DC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω0 ω0

ω1 ω0

ω2 ω0

ω0 ω1

ω1 ω1

ω2 ω1

ω0 ω2

ω1 ω2

ω2 ω2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On constate donc que les matrices D et DC sont identiques à l’isomorphisme
suivant près (pour tout k de {0, 1, ..., h− 1}) :

ϕ : (Ch,×) →
(

Z

hZ
, +

)

tel que ϕ
(
ei(k 2π

h )
)

= ϕ
(
ωk

)
= k.

On qualifie dans la suite DC de matrice complexe du plan. On généralise
alors sans difficulté ce type de construction dans le cas où m facteurs à h
modalités sont considérés et il vient (en désignant toujours par δij le symbole
de Kronecker) :

Proposition A.20. Soit un plan d’expérience factoriel complet pour m
facteurs à h modalités. Désignons par DC la matrice complexe de ce plan
écrite selon l’ordre de Yates et considérons les caractères χ0 et χ1 du groupe
(Z/hZ, +) tels que χ0 = Ih et χ1 = t

(
ω0, ω1, ..., ωh−1

)
avec ω = ei(2π/h). La

colonne de DC associée aux modalités du facteur i est alors aussi le caractère
du groupe ((Z/hZ)m

, +) donné par :

m⊗

k=1

χδik

Prouvons maintenant qu’un tel plan d’expérience est toujours orthogonal.
On sait que l’orthogonalité dans le cas de facteurs qualitatifs se traduit facile-
ment par le biais des matrices d’incidences Nij = tXiXj . C’est pourquoi on
cherche dans un premier temps à établir le lien mathématique existant entre
la matrice complexe du plan et les diverses matrices Xi des indicatrices des
modalités des facteurs. Considérons pour cela la matrice complexe du modèle



498 A Plans factoriels et représentation linéaire des groupes

additif XC définie naturellement par XC = [In | DC] ainsi que la matrice F
telle que (avec toujours ω = ei(2π/h)) :

F = Fh =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 . . . 1
1 ω ω2 . . . ωh−1

1 ω2 ω4 . . . ω2(h−1)

...
...

...
...

1 ωh−1 ω2(h−1) . . . ω(h−1)2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Une telle matrice est classique, elle est souvent qualifiée de matrice de
Fourier d’ordre h. Les colonnes de F forment une base orthonormée de C

h

pour le produit scalaire de la proposition A.5 (car elles sont constituées par
tous les caractères du groupe (Z/hZ, +) et ces caractères sont orthogonaux
d’après les propositions A.5 et A.8). La matrice F est donc orthogonale dans
le sens où F ∗F = hIh avec F ∗ matrice adjointe de F . Introduisons maintenant
les matrices complexes Gi définies par la relation :

∀ i = 1, ..., m , Gi = XiF

avec Xi matrice des indicatrices des modalités du facteur i. En illustrant ceci
à l’aide de l’exemple précédent pour m = 2 facteurs à h = 3 niveaux il vient :

X1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, X2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et F =

⎡

⎣
1 1 1
1 ω ω2

1 ω2 ω

⎤

⎦ .

Les matrices G1 et G2 sont donc données ici par :

G1 = X1F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ω0 ω0

1 ω1 ω2

1 ω2 ω1

1 ω0 ω0

1 ω1 ω2

1 ω2 ω1

1 ω0 ω0

1 ω1 ω2

1 ω2 ω1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

et G2 = X2F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 ω0 ω0

1 ω0 ω0

1 ω0 ω0

1 ω1 ω2

1 ω1 ω2

1 ω1 ω2

1 ω2 ω1

1 ω2 ω1

1 ω2 ω1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

On constate donc que (par exemple) la matrice G1 permet de retrouver la
colonne (en caractères gras) relative aux diverses modalités, sous forme com-
plexe, du facteur 1. Les deux autres colonnes de G1 sont engendrées par cette
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même colonne puisque, en la désignant par 1, il s’agit de 10 = I et 12 = 1�1.
Ce résultat concernant la forme des matrices Gi est généralisable sans dif-
ficulté car il est dû au fait que, par définition, la matrice de Fourier F est
elle-même engendrée par les puissances successives d’une même colonne. On
obtient donc le résultat général suivant :

Proposition A.21. Soit un plan d’expérience pour m facteurs qualitatifs à h
modalités. Désignons par Xi ∈M (n, h) la matrice des modalités du facteur i,
par F ∈ M (h, h) la matrice de Fourier d’ordre h et indroduisons les matrices
Gi ∈M (n, h) par la relation suivante :

∀ i = 1, ..., m , Gi = XiF.

En désignant par i la colonne de la matrice complexe DC relative au facteur
i on a alors (avec i2 = i� i, i3 = i� i� i, etc ...) :

Gi =
[
In i i2 ... ih−1

]
.

Remarquons que puisque la matrice de Fourier F est orthogonale il en résulte
qu’elle est toujours inversible avec de plus F−1 = (1/h)F ∗. On en déduit donc
que :

∀ i = 1, ..., m , Gi = XiF ⇔ ∀ i = 1, ..., m , Xi =
1
h

GiF
∗.

Le résultat suivant est alors immédiat :

Proposition A.22. Soit un plan d’expérience pour m facteurs qualitatifs à
h modalités. La matrice d’incidence associée aux facteurs i et j (i, j =
1, ..., m avec i 	= j) est donnée par :

Nij = tXiXj =
1
h2

(GiF
∗)∗ (GjF

∗) =
1
h2

F (G∗
i Gj) F ∗.

Application

Autre démonstration, dans le cas particulier où h1 = ... = hm = h, du
résultat suivant du paragraphe 8.3.2 :

”tout plan factoriel complet pour m facteurs qualitatifs à h1, ..., hm

modalités est un plan d’expérience orthogonal tel que :

∀ i, j = 1, ..., m avec i 	= j , λij =
n

hihj
où n =

m∏

k=1

hk”.

Pour deux facteurs i et j tels que i 	= j considérons la matrice d’incidence
Nij . D’après la proposition A.22 on a :

Nij =
1
h2

F (G∗
i Gj)F ∗
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avec Gi =
[
In i i2 ... ih−1

]
et Gj =

[
In j j2 ... jh−1

]
. Ces deux

matrices sont donc constituées par un total de 2h vecteurs colonne qui sont
tous des caractères du groupe ((Z/hZ)m

, +) . Les propositions A.5 et A.8
permettent d’affirmer que ces différents caractères sont orthogonaux entre
eux et il vient donc (avec le produit scalaire de la proposition A.5) :

∀ k, l = 0, ..., h− 1 avec (k, l) 	= (0, 0) ,
(
ik | jl

)
= 0.

Pour le cas particulier où (k, l) = (0, 0) le même caractère est alors sélectionné
dans les deux matrices et donc :

(
i0 | j0) = (In | In) = 1.

Tous ces résultats d’orthogonalité se traduisent matriciellement par :

G∗
i Gj =

⎡

⎢
⎢
⎢
⎣

n 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

⎤

⎥
⎥
⎥
⎦

.

Il en résulte que la matrice d’incidence des facteurs i et j est donc (d’après la
forme générale de F donnée précédemment) :

Nij =
1
h2

F (G∗
i Gj)F ∗ =

1
h2

⎡

⎢
⎣

n . . . n
...

...
n . . . n

⎤

⎥
⎦ =

n

h2
Jh.

Le résultat est ainsi bien démontré dans le cas où tous les facteurs sont à h
modalités puisque :

n = hm donc λij =
n

h2
= hm−2.

Remarquons que ce dernier résultat est indépendant du choix de i et j, le plan
d’expérience obtenu dans ce cas est donc uniformément orthogonal.

A.3.2 Cas des fractions régulières

Utilisons une nouvelle fois la théorie de représentation linéaire des groupes
finis afin d’étendre les propriétés vues précedemment aux fractions régulières
de plans factoriels. L’interprétation algébrique des fractions régulières est tout
d’abord donnée ci-dessous :

Définition A.23. Soit un plan factoriel complet à m facteurs qualitatifs à
h modalités identifié au groupe abélien G = ((Z/hZ)m , +) . On appelle alors
fraction régulière (principale) tout plan d’expérience associé à un sous-
groupe S de G.
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Illustrons ceci par un exemple pour m = 2 facteurs qualitatifs à h = 3
modalités. Le tableau ci-dessous est la table des caractères du groupe G =(
(Z/3Z)2 , +

)
en notant, pour des raisons de place, χij au lieu de χi ⊗ χj .

Pour simplifier la lecture on note de même simplement i au lieu de la forme
complexe ωi où ω = ei(2π/3) (on utilise donc le codage naturel des modalités
des facteurs). Chaque élément du groupe G est identifié aux deux valeurs (en
gras dans le tableau) prises par χ10 et χ01 (i.e. à ses coordonnées en codage
naturel dans le plan d’expérience d’après la proposition A.20). Pour rendre
la lecture de ce tableau plus aisée il a été aussi rajouté en première ligne une
interprétation plus intuitive de chacun des résultats à partir des colonnes 1 et
2 associées respectivement aux premier et deuxième facteur dans la matrice
du plan d’expérience factoriel complet puisque (voir le paragraphe A.3.1) :

χ0 = I3 = χ0
1 et χ2 = χ1 � χ1 = χ2

1.

Les caractères du groupe
(
(Z/3Z)2 , +

)
sont alors donnés par :

I 1 2 12 12 22 122 122 1222

Elément χ00 χ10 χ01 χ11 χ20 χ02 χ12 χ21 χ22

(0, 0) 0 0 0 0 0 0 0 0 0
(1,0) 0 1 0 1 2 0 2 1 2

(2,0) 0 2 0 2 1 0 1 2 1

(0,1) 0 0 1 1 0 2 1 2 2

(1,1) 0 1 1 2 2 2 0 0 1

(2, 1) 0 2 1 0 1 2 2 1 0
(0,2) 0 0 2 2 0 1 2 1 1

(1, 2) 0 1 2 0 2 1 1 2 0
(2,2) 0 2 2 1 1 1 0 0 2

Considérons alors non plus le groupe G mais le sous-groupe S constitué des
éléments suivants :

S = {(0, 0) , (2, 1) , (1, 2)} .

La fraction régulière du plan factoriel complet associée à S est alors obtenue
en ne conservant que les expériences (i.e. les lignes du tableau) associées aux
éléments de S. Les expériences retenues figurent dans la table en caractères de
grande taille. On définit ensuite, tout comme au paragraphe A.2.2 où seule-
ment deux niveaux intervenaient, l’orthogonal du groupe S dans G∗ par :

S⊥ = {χ ∈ G∗ / g ∈ S =⇒ χ (g) = 0} .

Remarquons alors que les notions d’orthogonal du groupe S ou bien de groupe
des générateurs de la fraction régulière (voir le paragraphe 8.4.3) sont encore
identiques (seules les notations diffèrent). Il vient pour l’exemple présenté
ici :
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S⊥ = {χ00, χ11, χ22} et G =
{
I, 12, 1222

}
.

Ceci permet alors de démontrer le résultat suivant (énoncé à la proposition
8.12 du chapitre 8) :

Proposition A.24. Soit m facteurs qualitatifs à h modalités avec h nombre
premier. Le nombre d’expériences de toute fraction régulière obtenue à l’aide
de q générateurs est alors :

n = hm−q.

Démonstration. Pour tout groupe fini G il est encore possible d’utiliser le
résultat présenté à la proposition A.16 disant (voir Lang [62]) que l’orthogonal
S⊥ de tout sous-groupe S est lui-même un sous-groupe dont le nombre
d’éléments est donné par :

card
(
S⊥) =

card (G)
card (S)

.

Or on sait que card (G) = hm (nombre d’expériences du plan factoriel com-
plet) et S⊥ et G sont isomorphes donc (voir la proposition 8.10) card

(
S⊥) =

hq. On en déduit immédiatement que :

card (S) =
card (G)
card (S⊥)

= hm−q �

Démontrons maintenant le résultat suivant, primordial afin de pouvoir faire
le lien entre fractions régulières et notion d’orthogonalité :

Proposition A.25. Soit m facteurs qualitatifs à h modalités avec h nombre
premier. Soit T la table des caractères du groupe G associé au plan facto-
riel complet et X la restriction de cette table correspondant à une fraction
régulière. Deux colonnes distinctes de X sont alors toujours soit orthogo-
nales soit colinéaires.

Démonstration. La démonstration de cette proposition est similaire à celle
de la propostion A.18 énoncée dans le cas particulier où G = {−1, 1}m

. On
sait en effet que la matrice T , élément de M (hm, hm) , est constituée de
colonnes orthogonales puisque G est un groupe abélien d’ordre hm. On a déjà
vu que considérer une fraction régulière définie par q générateurs équivaut
donc à ne garder que la matrice X ∈ M (hm−q, hm) obtenue en supprimant
hq lignes de T. Enfin la fraction régulière étant associée à un groupe abélien fini
S d’ordre hm−q on peut aussi considérer la sous-matrice X̃ ∈ M (hm−q, hm−q)
de X constituée par tous les caractères des représentations irréductibles de ce
sous-groupe. La matrice X̃ est donc obtenue en supprimant hq colonnes de X
et ses colonnes sont orthogonales. On peut ainsi démontrer la proposition A.25
puisque si l’on considère deux colonnes distinctes de X alors deux situations
peuvent se présenter :
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1) soit les deux colonnes considérées correspondent à deux représentations
irréductibles non-isomorphes de S (i.e. les deux colonnes appartiennent à X̃)
et sont donc orthogonales (voir la proposition A.5),

2) soit les deux colonnes considérées correspondent à deux représentations
irréductibles isomorphes de S et sont alors colinéaires �

Ceci permet maintenant de démontrer le résultat principal suivant (proposi-
tion 8.13 du chapitre 8) :

Proposition A.26. Soit m facteurs qualitatifs à h modalités avec h nombre
premier. Toute fraction régulière de plan factoriel complet de résolution égale
à III (ou plus) est un plan d’expérience orthogonal.

Démonstration. Justifions tout d’abord que l’utilisation d’une fraction
régulière de résolution inférieure à III est toujours incompatible avec la pro-
priété d’orthogonalité du plan d’expérience.

1) Considérons une fraction régulière de résolution I. Il existe donc au moins
un mot de longueur égale à 1 dans le groupe G. On peut supposer, sans perte de
généralité, qu’il s’agit de 1α1 . Le nombre de modalités h étant premier on est
alors assuré que les éléments 1, 12, ... , 1h−1 sont aussi dans le groupe G. Il vient
donc en particulier : I = 1. Cette relation est incompatible avec la propriété
d’orthogonalité puisqu’elle impose d’utiliser toujours la même modalité pour
le facteur 1 tout au long des expériences (ce qui est en contradiction avec la
propriété 2 de la proposition 8.4).

2) Considérons maintenant une fraction régulière de résolution II. Il existe
donc au moins un mot de longueur égale à 2 dans le groupe G. Supposons,
toujours sans perte de généralité, qu’il s’agit de 1α12α2 . On peut alors affirmer
que :

I = 1α12α2 ⇔ 1h−α1 = 2α2 .

Ceci montre donc qu’il existe forcément un lien entre les modalités des fac-
teurs 1 et 2 apparaissant dans le plan d’expérience. Ceci est une nouvelle fois
incompatible avec la propriété d’orthogonalité qui impose à chaque couple de
modalités d’apparâıtre un même nombre de fois λ12 (on peut remarquer, par
exemple, que 0 ≤ α2 < h donc la modalité 0 du facteur 1 et la modalité 1 du
facteur 2 ne peuvent pas apparâıtre simultanément).

Justifions maintenant que le plan d’expérience considéré est bien orthogonal
dès lors que l’on utilise une fraction régulière de résolution égale à III (ou
plus). Pour deux facteurs i et j distincts considérons leur matrice d’incidence
Nij . D’après la proposition A.22 il vient :

Nij =
1
h2

F (G∗
i Gj)F ∗
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avec Gi =
[
In i i2 ... ih−1

]
et Gj =

[
In j j2 ... jh−1

]
où i et j

désignent respectivement les colonnes relatives aux facteurs i et j de la matrice
complexe associée à la fraction régulière. D’après la proposition A.25 on sait
que lorsqu’une fraction régulière est utilisée alors tout couple de colonnes
choisi parmi la totalité des 2h colonnes de Gi et Gj correspond soit à deux
colonnes orthogonales (selon le produit scalaire de la proposition A.5) soit
à deux colonnes colinéaires. Tout élément de la matrice G∗

i Gj est alors un
produit scalaire ayant une des formes présentées ci-dessous.

1) Produit scalaire de la forme (In, In). On a alors :

(In | In) =
(
i0 | j0) = 1.

2) Produits scalaires de la forme
(
ik | In

)
avec k = 1, ..., h − 1. D’après

les résultats précédents ce produit scalaire est non-nul si et seulement si les
colonnes ik et In sont colinéaires, c’est-à-dire si et seulement si :

∃ αi ∈ {1, ..., h− 1} multiple de k tel que In = iα1 .

Cette relation ne peut être vérifiée ici puisque la fraction régulière n’est pas
de résolution égale à I. On en déduit que les colonnes ik et In sont forcément
orthogonales et donc :

∀ k ∈ {1, ..., h− 1} ,
(
ik | In

)
= 0.

3) Produits scalaires de la forme
(
ik | jl

)
avec k, l = 1, ..., h − 1. D’après

les résultats précédents ce produit scalaire est non-nul si et seulement si les
colonnes ik et jl sont colinéaires, c’est-à-dire si et seulement si :

∃ αi ∈ {1, ..., h− 1} multiple de k tel que iα1 = jl.

Cette relation ne peut être vérifiée ici puisque iα1 = jl équivaut à In =
ih−α1jl mais la fraction régulière utilisée n’est pas de résolution égale à II.
On en déduit alors que les colonnes ik et jl sont forcément orthogonales et
donc :

∀ k, l ∈ {1, ..., h− 1} ,
(
ik | jl

)
= 0.

Tous ces résultats d’orthogonalité se traduisent donc matriciellement (tout
comme pour les plans factoriels complets) par :

G∗
i Gj =

⎡

⎢
⎢
⎢
⎣

n 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

⎤

⎥
⎥
⎥
⎦

.

Il en résulte que la matrice d’incidence des facteurs i et j est alors donnée par
(d’après la forme générale de F donnée au paragraphe A.3.1) :
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Nij =
1
h2

F (G∗
i Gj)F ∗ =

1
h2

⎡

⎢
⎣

n . . . n
...

...
n . . . n

⎤

⎥
⎦ =

n

h2
Jh.

Le plan d’expérience utilisé est donc bien orthogonal (et même uniformément
orthogonal ici) �



B

Plans d’expérience classiques

Cette annexe présente brièvement les différents plans d’expérience les plus
courants introduits dans cet ouvrage. Pour chacun d’eux les points suivants
sont détaillés :

1) présentation succinte du plan (et lien vers la section du livre associée),
2) rappel du ou des modèles statistiques ajustables,
3) principales propriétés du plan d’expérience,
4) présentation d’un exemple simple.

B.1 Plans factoriels complets

Objectif. Utiliser une configuration simple en positionnant, pour m facteurs,
les expériences au niveau de tous les sommets de l’hypercube [−1, 1]m (le nom-
bre d’expériences est donc n = 2m). Voir la section 3.3 pour une présentation
détaillée.

Modèles ajustables. Le modèle d’ordre un, le modèle à effets d’interactions
classique (interactions d’ordre 2), le modèle à effets d’interactions d’ordre
quelconque.

Propriétés. Plans à deux niveaux, plans usuels, plans isovariants (si le
modèle d’ordre un est utilisé), plans saturés (si le modèle à interactions d’ordre
m est utilisé), plans universellement optimaux.

Exemple. Pour m = 2 facteurs il s’agit de réaliser les expériences suivantes
aux sommets du carré unité :

D =

⎡

⎢
⎢
⎣

−1 −1
1 −1

−1 1
1 1

⎤

⎥
⎥
⎦ .
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B.2 Fractions régulières de plans complets

Objectif. Réduire la taille des plans factoriels en ne conservant qu’une frac-
tion des sommets de l’hypercube [−1, 1]m (c’est à dire la moitié, le quart, le
huitième, etc ...). Voir la section 3.4 pour une présentation détaillée.

Modèles ajustables. Le modèle d’ordre un si la fraction régulière est de
résolution au moins égale à III, le modèle à effets d’interactions classique
(ordre 2) si la fraction régulière est de résolution au moins égale à V (dans le
cas général le modèle à effets d’interactions d’ordre λ si la fraction régulière
est de résolution au moins égale à 2λ + 1).

Propriétés. Plans à deux niveaux, plans usuels, plans isovariants (si le modèle
d’ordre un est utilisé), plans parfois saturés (pour m = 3 ou m = 7 facteurs par
exemple dans le cas du modèle d’ordre un), plans universellement optimaux.

Exemple. Pour m = 3 facteurs la fraction régulière, de résolution III, définie
par :

I =123

est constituée des n = 4 expériences présentées ci-dessous (on ne conserve que
celles telles que x1x2x3 = +1) :

D =

⎡

⎢
⎢
⎣

−1 −1 1
−1 1 −1

1 −1 −1
1 1 1

⎤

⎥
⎥
⎦ .

B.3 Plans simplexes

Objectif. Obtenir des configurations saturées pour le modèle d’ordre un (donc
en n = m + 1 expériences lorsque m facteurs interviennent). Voir la section
3.5 pour une présentation détaillée.

Modèle ajustable. Le modèle d’ordre un.

Propriétés. Plans usuels, plans isovariants, plans toujours saturés, plans
universellement optimaux.

Exemple. Pour m = 4 facteurs on peut, par exemple, utiliser le plan simplexe
cyclique de matrice présentée ci-dessous :

D =

⎡

⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1
0.309 0.691 1.309 −1.309
0.691 1.309 −1.309 0.309
1.309 −1.309 0.309 0.691

−1.309 0.309 0.691 1.309

⎤

⎥
⎥
⎥
⎥
⎦

.
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B.4 Plans de Plackett et Burman

Objectif. Obtenir des configurations saturées pour le modèle d’ordre un (donc
en n = m + 1 expériences lorsque m facteurs interviennent) avec des niveaux
ne prenant que les valeurs codées ±1. Ces configurations n’existent que pour
un nombre de facteurs tel que m = 3 mod4. Voir la section 3.6 pour une
présentation détaillée.

Modèle ajustable. Le modèle d’ordre un.

Propriétés. Plans à deux niveaux, plans usuels, plans isovariants, plans
toujours saturés, plans universellement optimaux.

Exemple. Pour m = 7 facteurs on peut, par exemple, utiliser le plan de
Plackett et Burman de matrice présentée ci-dessous :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1 −1 −1 −1 −1
1 1 1 −1 1 −1 −1

−1 1 1 1 −1 1 −1
−1 −1 1 1 1 −1 1

1 −1 −1 1 1 1 −1
−1 1 −1 −1 1 1 1

1 −1 1 −1 −1 1 1
1 1 −1 1 −1 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B.5 Plans composites centrés

Objectif. Compléter les plans d’expérience factoriels (complets ou fraction-
aires de résolution V) de manière à pouvoir ajuster un modèle pour surface de
réponse. Ceci est possible de manière économique par ajout (dans le cas de m
facteurs) de 2m points situés sur les axes du repère à une distance commune
α du centre du domaine. Voir la section 5.3 pour une présentation détaillée.

Modèles ajustables. Le modèle d’ordre deux, le modèle à effets de blocs

Propriétés. Plans usuels, plans isovariants (pour un choix adapté de α),
plans équiradiaux (pour un choix adapté de α), plans à trois niveaux (pour
un choix adapté de α), plans bloqués orthogonalement (pour un choix adapté
de α), plans A, D ou E-optimaux (pour un choix adapté de α).

Exemple. Pour m = 2 facteurs le plan composite centré (sans expérience au
centre du domaine) est défini par la matrice présentée ci-dessous :
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1
−1 1

1 −1
1 1
α 0

−α 0
0 α
0 −α

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B.6 Plans de Box et Behnken

Objectif. Proposer des plans d’expérience pour surfaces de réponse n’utilisant
que 3 niveaux par facteur et découlant de la structure des BIBD. Voir la
section 5.4 pour une présentation détaillée.

Modèles ajustables. Le modèle d’ordre deux, le modèle à effets de blocs.

Propriétés. Plans à trois niveaux, plans équiradiaux, plans parfois usuels,
plans parfois isovariants, plans parfois bloqués orthogonalement.

Exemple. Pour m = 3 facteurs le plan de Box et Behnken (sans expérience
au centre du domaine) est défini par la matrice présentée ci-dessous :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 0
1 −1 0

−1 1 0
1 1 0

−1 0 −1
1 0 −1

−1 0 1
1 0 1
0 −1 −1
0 1 −1
0 −1 1
0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B.7 Plans simplexes augmentés

Objectif. Rajouter des points à un plan simplexe de manière à pouvoir ajuster
un modèle d’ordre deux. Les nouveaux points sont obtenus en réalisant la
somme de tous les couples de points du simplexe initial, à un coefficient mul-
tiplicatif α près. Voir la section 5.5 pour une présentation détaillée.

Modèle ajustable. Le modèle d’ordre deux.

Propriétés. Plans saturés, plans équiradiaux (pour un choix adapté de α).
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Exemple. Pour m = 3 facteurs et un plan simplexe initial qui est aussi un
plan de Plackett et Burman on obtient (avec la valeur α = −1/2 préconisée
par Morris [66]) le plan simplexe augmenté défini par la matrice présentée
ci-dessous :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 −1
1 1 −1

−1 1 1
1 −1 1
0 0 1
1 0 0
0 1 0
0 −1 0

−1 0 0
0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B.8 Plans hybrides

Objectif. Obtenir des plans d’expérience de petite taille pour l’ajustement
d’un modèle d’ordre deux. Dans le cas de m facteurs ces plans (proposés par
Roquemore [81]) sont construits à partir d’un plan composite centré pour
(m− 1) facteurs (et complétés de manière adéquate). Voir la section 5.6 pour
une présentation détaillée.

Modèles ajustables. Le modèle d’ordre deux, le modèle à effets de blocs.

Propriétés. Plans parfois usuels, plans parfois isovariants, plans parfois
saturés, plans bloqués orthogonalement.

Exemple. Pour m = 3 facteurs le plan Hybride de type 311A est défini par
la matrice présentée ci-dessous :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 −1 1/
√

2
1 −1 1/

√
2

−1 1 1/
√

2
1 1 1/

√
2√

2 0 −1/
√

2
−√2 0 −1/

√
2

0
√

2 −1/
√

2
0 −√2 −1/

√
2

0 0
√

2
0 0 −√2
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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B.9 Réseaux de Scheffé

Objectif. Proposer des plans d’expérience pour des situations de mélanges.
Les réseaux de Scheffé sont de type {m, q} où m est le nombre de composants
et q l’ordre du réseau. Il contiennent toutes les expériences dont les coor-
données barycentriques sont des multiples de 1/q. Voir la section 7.4 pour
une présentation détaillée.

Modèles ajustables. Le réseau de Scheffé de type {m, q} permet d’ajuster
le modèle pour mélanges d’ordre q.

Propriétés. Plans saturés pour le modèle d’ordre q pour mélanges.

Exemple. Pour m = 3 composants et q = 3 le réseau de Scheffé de type
{3, 3} est défini par la matrice présentée ci-dessous :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

1/3 2/3 0
2/3 1/3 0
1/3 0 2/3
2/3 0 1/3

0 1/3 2/3
0 2/3 1/3

1/3 1/3 1/3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B.10 Réseaux de Scheffé centrés

Objectif. Proposer des plans d’expérience pour des situations de mélanges.
Les réseaux de Scheffé centrés sont de type {m, q}C où m est le nombre de
composants et q l’ordre du réseau. Il contiennent tous les corps purs, tous
les mélanges binaires équilibrés, etc... jusqu’à tous les mélanges équilibrés à q
composants. Voir la section 7.5 pour une présentation détaillée.

Modèles ajustables. Le réseau de Scheffé de type {m, q}C permet d’ajuster
le modèle synergique pour mélanges d’ordre q.

Propriétés. Plans saturés pour le modèle synergique d’ordre q pour mélan-
ges, plans séquentiels ({m, 1}C ⊂ {m, 2}C ⊂ ... ⊂ {m, m}C).

Exemple. Pour m = 3 composants et q = 3 le réseau de Scheffé centré de
type {3, 3} est défini par la matrice présentée ci-dessous :
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

1/2 1/2 0
1/2 0 1/2

0 1/2 1/2
1/3 1/3 1/3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B.11 Plans factoriels complets pour facteurs qualitatifs

Objectif. Utiliser une configuration simple en réalisant, pour m facteurs à
h1, ..., hm modalités, toutes les expériences possibles (le nombre d’expériences
est donc n = h1h2...hm). Voir la section 8.3 pour une présentation détaillée.

Modèles ajustables. Le modèle additif, le modèle à effets d’interactions.

Propriété. Plans orthogonaux.

Exemple. Pour m = 2 facteurs à h1 = 2 et h2 = 3 modalités ce plan est
défini par la matrice présentée ci-dessous (en repérant les modalités en codage
naturel) :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1 0
0 1
1 1
0 2
1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B.12 Fractions régulières de plans complets pour
facteurs qualitatifs

Objectif. Réduire la taille des plans factoriels en ne conservant qu’une frac-
tion des expériences du plan factoriel complet. Voir la section 8.4 pour une
présentation détaillée.

Modèles ajustables. Le modèle additif si la fraction régulière est de
résolution au moins égale à III, le modèle à effets d’interactions si la frac-
tion régulière est de résolution au moins égale à V.

Propriétés. Plans orthogonaux, plans parfois saturés.

Exemple. Pour m = 3 facteurs ayant tous h = 3 modalités la fraction
régulière, de résolution III, définie par :

I =1223
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est constituée des n = 9 expériences présentées ci-dessous (on ne conserve
donc que celles telles que x1 + 2x2 + x3 ≡ 0 [3]) :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 1
0 2 2
1 0 2
1 1 0
1 2 1
2 0 1
2 1 2
2 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B.13 Plans en carrés latins

Objectif. Etant donnés 3 facteurs qualitifs ayant tous h modalités les plans en
carré latin ont pour objectif de proposer une configuration efficace constituées
de h2 expériences (les plans en carré gréco-latins généralisent ceci au cas de
4 facteurs et les hyper-gréco-latins au cas de 5 facteurs). Voir la section 8.6
pour une présentation détaillée.

Modèle ajustable. Le modèle additif.

Propriété. Plans orthogonaux.

Exemple. Pour m = 3 facteurs ayant tous h = 4 modalités le carré latin
suivant peut être utilisé :

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

Le plan d’expérience qui en découle est de matrice présentée ci-dessous en
repérant les modalités en codage naturel (voir la section 8.6 pour la corre-
spondance entre le carré latin et la matrice D) :
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0
0 1 1
0 2 2
0 3 3
1 0 1
1 1 2
1 2 3
1 3 0
2 0 2
2 1 3
2 2 0
2 3 1
3 0 3
3 1 0
3 2 1
3 3 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

B.14 Tables de Taguchi

Objectif. Proposer des plans d’expériences (construits par diverses méthodes)
pour la plupart des situations faisant intervenir des facteurs qualitatifs. Voir
la section 8.7.1 pour une présentation détaillée.

Modèles ajustables. Le modèle additif, le modèle à effets d’interactions.

Propriétés. Plans parfois orthogonaux, plans parfois saturés.

Exemple. La table de Taguchi L122331 permet d’étudier trois facteurs à 2
modalités ainsi qu’un facteur à 3 modalités (pour le modèle additif) à l’aide
de 12 expériences. Le plan d’expérience proposé est orthogonal, il est défini
par la matrice présentée ci-dessous (avec les modalités en codage naturel) :

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
2 0 0 1
2 0 1 0
2 1 0 1
2 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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B.15 Plans en blocs complets

Objectif. Utiliser une configuration simple dans le cas où h traitements peu-
vent être répartis en b blocs. Chaque bloc contient alors la totalité des traite-
ments possibles (pour donc n = bk expériences). Voir la section 9.3 pour une
présentation détaillée.

Modèle ajustable. Le modèle à effets de blocs pour facteurs qualitatifs.

Propriétés. Plans en blocs de même taille, plans équirépliqués, plans uni-
versellement optimaux.

Exemple. Pour h = 3 traitements à analyser en b = 2 blocs on peut considérer
le plan d’expérience en blocs complets suivant (en repérant les traitements en
codage naturel) :

0 1 2
0 1 2

Bloc 1
Bloc 2

B.16 Plans en blocs incomplets équilibrés

Objectif. Proposer des plans d’expérience de plus petite taille que les plans
en blocs complets, ne contenant pas cette fois tous les traitements dans chaque
bloc. Voir la section 9.4 pour une présentation détaillée.

Modèle ajustable. Le modèle à effets de blocs pour facteurs qualitatifs.

Propriétés. Plans en blocs de même taille, plans équirépliqués, plans uni-
versellement optimaux.

Exemple. Pour h = 3 traitements à analyser en b = 3 blocs on peut con-
sidérer le plan d’expérience en blocs incomplets (BIBD) suivant (en repérant
les traitements en codage naturel) :

0 1
1 2

0 2

Bloc 1
Bloc 2
Bloc 3

B.17 Plans en blocs partiellement équilibrés

Objectif. Proposer une classe de plans d’expérience généralisant celle des
plans en blocs incomplets équilibrés. Voir la section 9.5 pour une présentation
détaillée.

Modèle ajustable. Le modèle à effets de blocs pour facteurs qualitatifs.

Propriétés. Plans en blocs de même taille, plans équirépliqués.
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Exemple. Pour h = 4 traitements à analyser en b = 4 blocs on peut considérer
le plan d’expérience en blocs incomplets partiellement équilibré (GDD) suivant
(en repérant les traitements en codage naturel) :

0 2
0 3

1 2
1 3

Bloc 1
Bloc 2
Bloc 3
Bloc 4

Notons qu’il est impossible dans ce cas de construire un plan en blocs complets
équilibrés (BIBD).
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Notations utilisées

Voici un résumé des principales notations utilisées dans cet ouvrage. Dans
quelques rares cas une même notation est utilisée pour désigner deux notions
différentes (rencontrées dans des chapitres différents afin d’éviter tout risque
de confusion). Les deux définitions sont alors regroupées sous une même ac-
colade.

1, ..., n - la notation i = 1, ..., n est utilisé pour traduire que i ∈ {1, 2, ..., n} .

In - indicatrice d’ordre n (vecteur dont les n composantes valent 1).

b

{
nombre de blocs (∈ N

∗),
vecteur des paramètres inconnus d’un modèle pour mélanges (∈ R

p).

B - matrice (∈M (n, b)) des indicatrices des blocs.

β - vecteur des paramètres inconnus d’un modèle polynomial (∈ R
p).

β0 - effet moyen général.

βL - vecteur des effets linéaires (∈ R
m) à composantes βi.

βI - vecteurs des effets d’interactions (∈ R
m(m−1)/2) à composantes βij .

βQ - vecteur des effets quadratiques (∈ R
m) à composantes βii.

βT - vecteur des effets des traitements (∈ R
h).

β
[j]
i - effet de la modalité j du i-ème facteur qualitatif.

CD - matrice d’information du plan d’expérience D.

ci - nombre de répétitions de la i-ème expérience.

D - plan d’expérience utilisé.

D - matrice (∈M (n, m)) du plan d’expérience.

DI - matrice (∈M (n, m (m− 1) /2)) des effets d’interactions.

DQ - matrice M (n, m) des effets quadratiques.
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ε - vecteur des résidus (∈ R
n).

γ - vecteur des effetx des blocs (∈ R
b).

h - nombre de traitements.
hi - nombre de modalités du i-ème facteur qualitatif.

Jn - matrice (∈M (n, n)) formée de 1 (donc Jn = In
t
In).

K - matrice diagonale telle que K = diag (k1, ..., kb) .

kl - taille (nombre d’expériences) du bloc l (1 ≤ l ≤ b).

λij - nombre d’occurences des modalités des facteurs i et j.

m - nombre de facteurs.
M(a, b) - ensemble des matrices ayant a lignes et b colonnes.

M - matrice des moments (∈M (p, p)) du plan d’expérience.
MSE - moyenne des carrés due à l’erreur.
MSLOF - moyenne des carrés due au manque d’ajustement.
MSPE - moyenne des carrés due à l’erreur pure.
MSR - moyenne des carrés due à la régression.
μl - valeur de

[
i2
]

l
pour tout plan en blocs usuel.

n - nombre d’expériences.
n∗ - nombre d’expériences distinctes (n∗ ≤ n)
n0 - nombre d’expériences au centre du domaine.

Nij - matrice d’incidence des facteurs qualitatifs i et j.

p - nombre de paramètres inconnus du modèle utilisé.

p∗ - nombre total de paramètres du modèle utilisé (p ≤ p∗).

q

{
nombre de générateurs d’une fraction régulière,
ordre d’un réseau de Scheffé ou d’un réseau centré de Scheffé.

R - matrice diagonale telle que R = diag (r1, ..., rh) .

R2 - coefficient de corrélation linéaire multiple.
ri - nombre d’occurrences de chacunes des modalités du facteur i.

s2 - valeur de n
[
i2
]

pour tout plan usuel.

s22 - valeur de n
[
i2j2

]
pour tout plan usuel.

s4 - valeur de n
[
i4
]

pour tout plan usuel.

SSE - somme des carrés due à l’erreur.

SSLOF - somme des carrés due au manque d’ajustement.

SSPE - somme des carrés due à l’erreur pure.

SSR - somme des carrés due à la régression.

SST - somme totale des carrés centrés.
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τ - vecteur t (tβL | tβQ | tβI) .

Ur - sphère centrée (en l’origine) de rayon r.

W - matrice
[
D DQ DI

]

X - matrice (∈M (n, p)) du modèle.

Xi - matrice (∈M (n, qi)) des indicatrices des modalités du facteur i.

Y - vecteur des observations (dont les n composant sont les Yi).

Y - moyenne des observations.

Y i - moyenne des ci répétitions Y
(1)
i ...Y

(ri)
i .

Y
[j]

i - moyenne des réponses avec la modalité j du facteur qualitatif i.

Y Bl - moyenne des observations du bloc l (1 ≤ l ≤ b).
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1. Azäıs J.M. et Bardet J.M. (2006), Le modèle linéaire par l’exemple. Sci-
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d’expériences : applications à l’entreprise. Editions Technip (Droesbeke
J. J., Fine J. et Saporta G. éditeurs).
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54. Khuri A. I. (1994), Effect of blocking on the estimation of a response
surface. Journal of Applied Statistics; 21; 305-316.

55. Khuri A. I. (1992), Response surface models with random block effects.
Technometrics, 34, No 1, 26-37.

56. Khuri A.I. et Cornell J. A. (1996), Response Surfaces : designs and anal-
yses. Statistics: textbooks and monographs, Volume 152, Marcel Dekker.

57. Kiefer J. (1975), Construction and optimality of generalized Youden de-
signs. A Survey of Statistical Design and Linear Models (J.N. Srivastava
ed.), North-Holland, Amsterdam, 333-353.

58. Kiefer J. (1959), Optimum experimental designs (with discussion). J. Roy.
Statis. Soc., B21, 272-319.

59. Kobilinsky A. (1985), Coufounding in relation to duality of finite abelian
group. Linear Algebra and its Applications, 70, 321-347.

60. Kobilinsky A. et Monod H. (1991), Experimental designs generated by
group morphisms: an introduction. Scandinavian Jouranl of Statistics,
18, 119-134.

61. Lambrakis D. P. (1968), Experiments with mixtures: a generalisation of
the simplex-lattice design. Journal of the Royal Statistical Society, Ser.
B, 123-136.

62. Lang S. (1965), Algebra. Addison-Wesley.

63. Marshall A. W. et Olkin I. (1979), Inequalities : Theory of Majorization
and its Applications. Mathematics in Science and Engineering. Academic
Press.

64. Mee R. W. (2002), Three-level Simplex Designs and their use in sequential
experimentations. Journal of Quality Technology, 43, No. 2.



Bibliographie 527

65. Mitchell T. J. (1974), An algorithm for the construction of D-optimal
experimental designs. Technometrics, Vol. 16, No. 2.

66. Morris M. D. (2000), A class of three-level experimental designs for re-
sponse surface modelling. Technometrics, 42, No. 2, 111-121.

67. Nigam A. K. (1970), Block designs for mixture experiments. Annals of
Mathematical Statistics, Vol. 41, 1861-1869.

68. Parker E. T. (1959), Orthogonal Latin Squares. Proceeding Nat. Acad.
Sci. USA, Vol. 45, 859-862.

69. Park S. H. et Jang D. H. (1999), Measures for evaluating the effect of
blocking in response surface designs. Communications in Statistics, The-
ory and Methods, 28(7), 1599-1616.

70. Petersen R. G. (1985), Design and analysis of experiments. Statsitics:
textbooks and monographs. Marcel Dekker.

71. Phan-Tan-Luu R. et Mathieu D. (1997), Rédaction des chapitres 5, 6 et
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terne de l’université de Pau et des pays de l’Adour, 2000/29.

98. Tinsson W. (2007), A note on small size augmented pair designs. Sankhya,
Vol. 69, Issue 1.

99. Tinsson W. (1998), Plans d’Expérience à Facteurs Quantitatifs et Effets
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Analyse spectrale, 41
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en réseau de Scheffé centré, 267
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8. G. Robin : Algorithmique et cryptographie. 1992

9. D. Lamberton, B. Lapeyre : Introduction au calcul stochastique appliqué. 1992
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19. F. Robert : Les systèmes dynamiques discrets. 1995
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37. S. Sorin : A First Course on Zero-Sum Repeated Games. 2002



38. J. F. Maurras : Programmation linéaire, complexité. 2002
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55. P. Lopez, A. S. Nouri : Théorie élémentaire et pratique de la commande par les
régimes glissants. 2006

56. J. Cousteix, J. Mauss : Analyse asympotitque et couche limite. 2006

57. J.-F. Delmas, B. Jourdain : Modèles aléatoires. 2006
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