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Préface

Les plans d’expérience sont de plus en plus utilisés dans l'industrie et dans
les laboratoires de recherche. Ils permettent en effet de modéliser au mieux
un phénomene aléatoire, le plus souvent complexe, a I'aide d’'un minimum
d’essais. Ils s’incrivent donc dans la démarche constante d’amélioration de la
qualité ou de la productivité.

Cet ouvrage a pour but de présenter les bases théoriques de la méthode
des plans d’expérience. Il se positionne entre les ouvrages pratiques pour
ingénieurs (tres riches en exemples mais masquant le plus souvent la théorie)
et les ouvrages pour mathématiciens (de lecture parfois trop ardue pour les
non-spécialistes). Il est structuré autour d’une vision globale des techniques
de planification en abordant les grands themes suivants :

plans d’expérience pour facteurs quantitatifs,
plans d’expérience pour facteurs qualitatifs,
plans d’expérience en blocs,
plans d’expérience pour mélanges,
plans d’expérience optimaux.
Ces diverses techniques sont illustrées a I’aide d’une multitude d’exemples pra-

tiques. La plupart des résultats mathématiques sont aussi démontrés dans des
annexes, ceci permet au lecteur d’avoir divers niveaux de lecture de 'ouvrage.

Il s’adresse a un public varié : étudiants de second cycle universitaire
ou d’école d’ingénieurs, chercheurs souhaitant approfondir certaines con-
naissances théoriques sur les plans d’expérience, ingénieurs voulant mieux
maitriser et comprendre les fondements de la planification des expériences
ou encore étudiants de cycles techniques scientifiques de type BTS, IUT ou
licences professionelles (en omettant dans ce cas les annexes théoriques).

Ce livre a été initialement développé sur la base de notes de cours rédigées
pour un enseignement en Master 2éme année MSID (Méthodes Stochastiques



XIV Préface

et Informatiques pour la Décision) de 1'Université de Pau et des Pays de
I’Adour ainsi que pour un enseignement & 1’école ingénieurs ENSGTI basée
aussi a Pau.

Je tiens enfin a remercier tout particulierement mes collegues Bénédicte
Puig, Astrid Jourdan et Christian Paroissin pour leur lecture minutieuse des
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Partie I

Généralités



1

La notion de plan d’expérience

1.1 Introduction

Ce premier chapitre aborde la notion générale de planification expérimentale
en utilisant peu de notions mathématiques. Il est principalement destiné
aux lecteurs novices ayant besoin, dans un premier temps, de bien cerner
la problématique et les objectifs de cette méthode.

Le chapitre débute par une présentation tres générale de la démarche
de planification expérimentale ainsi que du vocabulaire de base (facteurs,
réponse, domaine expérimental, etc...). Les principaux écueils & éviter en pra-
tique (réaliser trop d’expériences, méthode ”"un facteur a la fois”, réalisation
des expériences sans stratégie fiable, etc...) sont présentés. Cette premiere
partie est suivie par un bref historique des plans d’expérience. La structure
de 'ouvrage est ensuite présentée en précisant clairement quels sont les sujets
abordés et ceux qui ne le sont pas. Une présentation des logiciels scientifiques
pouvant étre utilisés dans le cadre des plans d’expérience (SAS, Nemrod, R,
etc...) figure aussi afin de faciliter le choix du lecteur souhaitant réaliser de
tels traitements informatiques.

Un exemple d’étude classique menée a l'aide d’un plan d’expérience est
proposé pour terminer le chapitre. Cette étude, réalisée a 1’aide du logiciel
Nemrod, permet au lecteur d’avoir une premiere idée des techniques utilisées
lors de la mise en oeuvre pratique d’un plan d’expérience. Des références sont
de plus données tout au long de cet exemple afin de pouvoir se reporter aux
divers chapitres correspondants.

Le lecteur souhaitant une introduction plus orientée vers les aspects indus-
triels de la méthode des plans d’expérience pourra consulter aussi les premiers
chapitres des ouvrages de Goupy [45] ou [46], de Pillet [72] ainsi que Sado et
Sado [82].

W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 3
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_1,
(© Springer-Verlag Berlin Heidelberg 2010
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1.2 La démarche de planification expérimentale

1.2.1 Objectifs

A Pépoque actuelle bon nombre de procédés de fabrication ou d’expériences
en laboratoire deviennent de plus en plus complexes car ils dépendent d’un
grand nombre de variables difficiles a régler intuitivement. Ceci concerne, par
exemple :

le probleme de la mise au point de moteurs atmosphériques dépendant
d’un nombre croissant de réglages électroniques,

le pilotage optimal de machines-outil,
la détermination des proportions d’un mélange chimique,

la recherche des conditions environnementales optimales pour la pro-
duction agricole, etc...

Seule la réalisation d’expériences va permettre d’appréhender et de modé-
liser de tels phénomenes complexes. Si ces expériences sont effectuées sans
une méthodologie rigoureuse il est fort probable qu’elles vont soit conduire a
des impasses (modele impossible & ajuster, résultats incohérents, etc...) soit
a des résultats de qualité décevante. C’est pourquoi la méthode des plans
d’expérience est préconisée afin d’optimiser ce type de démarche. L’objectif
principal de cette méthode peut étre résumé par la devise :

”obtenir un maximum d’information
en un minimum d’expériences”

Une autre vision du probleme est la recherche de variations simultanées pour
toutes les variables controlées afin, une nouvelle fois, d’extraire un maximum
d’information en un minimum d’essais. Une telle problématique est primor-
diale dans le milieu industriel ou minimiser le nombre d’expériences a réaliser
est synonyme de gain de temps et de productivité. Réaliser des productions
de la meilleure qualité possible au cout le plus bas est de plus une quéte
universelle pour tous les fabriquants.

1.2.2 Réponse

On qualifie de réponse la grandeur qui est observée pour chaque expérience
réalisée. On supposera toujours ici que cette grandeur est numérique et qu’une
seule réponse a la fois est observée (des techniques de planification mul-
tiréponses existent aussi voir, par exemple, le chapitre 7 de Khuri et Cor-
nell [56]). Il appartient aux spécialistes du phénomene étudié de cerner au
mieux ce qui les intéresse et de fournir le type de réponse étudié ainsi que
I’objectif souhaité vis-a-vis de celle-ci. Cet objectif est dans la plupart des cas
une recherche d’extremum.
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Citons quelques exemples. Pour I'étude de I’acidité d’un jus de fruit il est
possible de mesurer son pH afin de quantifier ce probleme. L’objectif souhaité
est alors la minimisation de la réponse. Pour le cas d'une production agri-
cole la réponse est, par exemple, le rendement & ['hectare et 'objectif est de
maximiser cette réponse.

1.2.3 Facteurs

On qualifie de facteur toute variable, obligatoirement contrdélable, suscep-
tible d’influer sur la réponse observée. La différence fondamentale entre la
notion classique de variable et celle de facteur tient donc dans le fait que tout
facteur doit pouvoir étre modifié sans difficulté. Cette hypothese est obliga-
toire pour les plans d’expérience puisque nous allons par la suite proposer une
liste des expériences a réaliser. Il est donc impératif que 'expérimentateur
puisse s’y tenir en adaptant les facteurs aux diverses valeurs données. A titre
d’exemple lorsqu’une réaction chimique dépend de la pression ambiante, il
s’agit alors d’un facteur si ’expérience est menée dans un local ou la pression
peut étre modifiée ou bien d’une variable si le local n’est pas équipé d’un
tel dispositif (la pression est alors la pression atmosphérique que 'on peut
mesurer mais qu'il est impossible de faire varier).

Remarquons que les facteurs peuvent étre quantitatifs lorsqu’ils sont na-
turellement exprimés & 'aide de valeurs numériques (pression, température,
durée, etc...) ou bien qualitatifs dans le cas contraire (couleur, type de
matériau, sexe, etc...). Il est classique de transformer des facteurs qualitatifs
en facteurs quantitatifs & 'aide d’un codage approprié (par exemple en affec-
tant la valeur 0 pour "Homme” et la valeur 1 pour ”Femme” dans le cas du
sexe), tout ceci sera détaillé dans la suite.

Lorsqu'un facteur varie on dit qu’il change de niveau. La connaissance
de T'ensemble de tous les niveaux utilisés par chaque facteur est nécessaire
pour la réalisation des expériences. Supposons que le facteur quantitatif
”température” peut prendre les valeurs suivantes :

Température | 20°C | 30°C | 40°C | 50°C |

Ce facteur est alors a 4 niveaux. On qualifie souvent de niveau bas la
température minimale de 20°C' et de niveau haut la température maxi-
male de 50°C. Considérons cette fois le facteur qualitatif ”couleur” ayant les
modalités suivantes :

Couleur | bleu | vert | rouge |

Ce facteur est a 3 niveaux. Dans ce cas on ne parlera pas de niveau bas et
de niveau haut puisqu’il est impossible d’ordonner naturellement ces diverses
modalités.
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1.2.4 Domaine expérimental

Considérons un ensemble de m facteurs quantitatifs utilisés afin d’expliquer
au mieux un phénomeéne complexe. Le i-eéme facteur (pour 1 < ¢ < m) est
alors le plus souvent & valeurs dans un intervalle de la forme [a;,b;] ol a;
et b; sont respectivement ses niveaux bas et haut. En pratique cet inter-
valle est simplement la plage de variations autorisée pour le facteur. Il ap-
partient aux spécialistes du phénomene étudié de fournir ces informations
préalables. Cela peut étre, par exemple, une vitesse de rotation comprise
dans l'intervalle [500, 800] (en tours/minute) d’apres les caractéristiques d’une
machine-outil ou bien une quantité de fertilisant comprise dans U'intervalle
[10,90] (en mg/unité de surface) d’apres ’expertise des ingénieurs agronomes.
Remarquons que, d’apres ce qui vient d’étre vu dans la section précédente, les
niveaux sélectionnés pour le facteur i doivent alors obligatoirement étre des
éléments de 'intervalle [a;, b;] .

Puisque m facteurs sont considérés une expérience est donc entierement
définie par la donnée d’un vecteur de R™ contenant tous les niveaux des
différents facteurs. On appelle domaine expérimental tout sous-ensemble
de R™ (noté & par la suite) dans lequel il est possible de réaliser les expériences.
Une méthode élémentaire afin d’obtenir un tel domaine consiste simplement
a croiser les diverses plages de variations. On obtient par produit cartésien :

&= [ahbl] X [a27b2] X ... X [am,bm].

Pression
A
T e O Expérience
» bar ,O O I:l Domaine
p N expérimental
I, \\
I,/ \\
] \
, \
/ \
/ |
! 1
! ]
| |
‘. "
\\‘ //
\ 1
\\ ’/
N /
\ /
\\\ '/
1 bar N o}
O N
R - » lempérature
60 oC 80 0C

Fig. 1.1. Plan d’expérience et domaine expérimental.
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La figure 1.1 est un exemple lorsque les m = 2 facteurs ”température” et ” pres-
sion” sont considérés. Le domaine expérimental obtenu par cette méthode est
alors le rectangle grisé. Toute expérience est donc naturellement associée a un
point de ce rectangle. Si seulement 4 expériences sont réalisées un choix opti-
mal consiste a placer ces expériences aux sommets de ce rectangle. L’ensemble
des expériences proposées constitue un plan d’expérience (appelé plan fac-
toriel complet ici).

On considérera souvent par la suite des domaines expérimentaux sphériques
car ils permettent d’obtenir des propriétés mathématiques plus faciles a
manier. Dans le cadre de cet exemple le domaine considéré peut étre, par
exemple, limité par le cercle représenté en pointillés (sous réserve, bien en-
tendu, qu’il soit réellement possible de mener des expériences dans tout ce
nouveau domaine).

Remarquons enfin que lorsque les différents facteurs sont qualitatifs la
notion de domaine expérimental est cette fois plus simple puisqu’on peut
alors I'obtenir en croisant les ensembles des diverses modalités possibles pour
chacun des facteurs (une représentation graphique a donc moins d’intérét dans
ce cas).

1.2.5 Réalisation des expériences

Présentons ici sous forme d’un exemple la problématique de la réalisation
des expériences. Considérons une entreprise produisant une colle industrielle
qui a la facheuse tendance de se solidifier durant le processus de fabrication.
Afin de s’opposer a cette tendance trois additifs sont introduits durant le
procédé industriel et les débits injectés sont controlables a ’aide de trois
vannes prenant les niveaux suivants :

Faible / Moyen / Fort.

Utilisons dans la suite les codages 0, 1 et 2 afin de désigner plus facilement
ces trois niveaux respectifs. La réponse mesurée en sortie est ici une mesure
de la fluidité du produit mis au point. L’objectif est de maximiser cette quan-
tité. Supposons maintenant que cette fluidité obéit au modele mathématique
additif donné ci-dessous (ou Y désigne la réponse observée et iy, i, i3 sont
les niveaux des trois facteurs c’est-a-dire les positions des diverses vannes) :

Y =Y (ininis) = o+ 61" + 557 + 55 + g3

avec les différents effets tels que :
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fo = +120,
M=o, p"=+10, =20,
M=o, g=-20 pI=+10,
Y=o, gl =10, B =30,

;[LQQQ] = +60, 5£1'21i2] =0  sinon.

Le fait de ramener systématiquement les divers niveaux bas a 0 est une tech-
nique classique avec ce type de modele ou lorsqu’un facteur est a A modalités
il suffit alors d’en estimer les (h — 1) effets (voir le chapitre 8 pour plus de
détails). En d’autres termes on suppose donc ici a ’aide du modele postulé
que :

i) il existe un ”effet moyen général” d’une valeur de 120 (traduisant le fait
que si tous les débits sont au niveau faible alors la fluidité est de 120),

ii) les trois facteurs présentent divers ”effets simples” influencant directe-
ment la réponse mesurée (par exemple I'additif 3 seul semble avoir un effet
néfaste sur la fluidité lorsqu’il est utilisé en grande quantité puisque plus son
débit est grand plus la fluidité diminue),

ii) il existe un ”effet d’interaction” entre les additifs 1 et 2 car s’ils sont
utilisés simultanément avec un débit élevé alors une nette augmentation de
la fluidité apparait (460). Ceci peut étre dii, par exemple, & une réaction
chimique se produisant uniquement lorsque les quantités de ces deux additifs
sont assez élevées.

Remarquons qu’un tel exemple est présenté uniquement a titre pédagogique et
deux grandes hypotheses simplificatrices ont été utilisées. Premierement il est
bien entendu évident que dans la réalité le modele mathématique expliquant
le phénomene étudié est généralement inconnu. Deuxiémement on a supposé
ici que le modele mathématique est déterministe (i.e. si deux expériences
identiques sont réalisées alors les réponses observées sont les mémes). La
aussi c’est rarement le cas dans la réalité car répéter une expérience conduit
généralement a des résultats différents a cause de diverses sources de variations
externes (erreurs humaines, facteurs non-contrélés, erreurs dues aux appareils
de mesure, etc...). Des modeles plus complexes, dits modéles statistiques,
seront étudiés et utilisés dans la suite de 'ouvrage (voir le chapitre 2).

Supposons maintenant que les valeurs des différents parametres du modele
sont inconnues et qu’un utilisateur cherche a les retrouver par le biais de
I’expérimentation. Voici diverses fagons classiques pour réaliser des expériences
afin de collecter des informations sur le phénomene étudié.
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1) Utilisation de toutes les expériences

La méthode la ”"plus stre” afin d’étudier le phénomene consiste a réaliser
la totalité des expériences possibles. Ceci conduit donc (puiqu’il y a ici 3
modalités par facteur) & la réalisation exhaustive des 27 expériences présentées
dans la table 1.1 (ou la notation DV1 désigne le débit fixé pour la vanne 1,
ete...).

Table 1.1. Réalisation de toutes les expériences.

[Exp. ]| DV1 | DV2 | DV3 | Rep. |

1 Faible | Faible | Faible | 120
2 ||Moyen| Faible | Faible | 130
3 Fort |Faible| Faible | 100
4 Faible |Moyen| Faible | 100
5 ||Moyen|Moyen| Faible | 110
6 Fort |Moyen| Faible 80
7 Faible| Fort |Faible| 130
8 ||[Moyen| Fort |Faible| 140
9 Fort | Fort |Faible| 170
10 || Faible | Faible [Moyen| 110
11 {|Moyen|Faible [ Moyen| 120
12 Fort |Faible|Moyen| 90
13 || Faible [Moyen|Moyen| 90
14 ||Moyen|Moyen|Moyen| 100
15 Fort |Moyen|Moyen| 70
16 || Faible| Fort [Moyen| 120
17 ||Moyen| Fort [Moyen| 130
18 Fort | Fort |Moyen| 160
19 || Faible | Faible| Fort 90
20 ||Moyen|Faible| Fort 100
21 Fort |Faible| Fort 70
22 || Faible |Moyen| Fort 70
23 |[Moyen|Moyen| Fort 80
24 Fort |Moyen| Fort 50
25 || Faible| Fort | Fort 100
26 ||Moyen| Fort | Fort 110
27 Fort | Fort | Fort 140

Les 8 parameétres non-nuls du modele (5o, gl], 63[12]7 g], ﬁ£2]7 gl], ﬁéz] et
?22]) vont pouvoir facilement étre déterminés puisque les expériences réalisées
permettent d’établir un systeme linéaire de 27 équations. Les équations

obtenues, par exemple, & 1’aide des trois premieres expériences réalisées sont :
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Bo =120
Bo + 1) =130
Bo + B =100

Puisque aucune expérience n’a été omise, il est donc possible de déterminer les
réglages optimaux en sélectionnant tout simplement ’expérience qui conduit
a maximiser la réponse. Il s’agit ici de 'expérience 9 associée aux débits ci-
dessous :

Débit 1 : Fort / Débit 2 : Fort / Débit 3 : Faible.

Une telle démarche pose cependant le probleme du nombre d’expériences
a réaliser qui peut devenir rapidement trop important. On peut en effet sup-
poser ici que chaque expérience est longue et coliteuse a mettre en oeuvre. Il
est alors beaucoup trop lourd de réaliser concretement 27 expériences alors
que seulement 8 parametres sont a déterminer. Remarquons de plus que le
probleme est ici assez simple car seulement 3 facteurs a 3 modalités intervi-
ennent. Pour 5 facteurs a 6 modalités le nombre total d’expériences est cette
fois de 6° = 7776. Lorsque les facteurs sont quantitatifs continus (pression,
température, ...) il devient impossible de réaliser toutes les expériences disct-
inctes puisqu’il en existe une infinité.

2) Utilisation de la technique ”un facteur & la fois”

L’expérimentateur devant faire face a une situation ou la réalisation de
toutes les expériences est beaucoup trop lourde se rabat souvent sur ce type
de technique. Comme son nom l’indique elle consiste a faire varier chacun
des facteurs, I'un apres 'autre, en lui affectant toutes les modalités possibles.
Puisqu’ici chaque facteur est & 3 modalités ceci conduit donc a la réalisation
d’un total de 9 expériences données dans la table 1.2.

Table 1.2. Technique ”un facteur a la fois”.
| Exp. || DV1 | DV2 | DV3 | Rep. |
13 || Faible | Moyen | Moyen 90
14 ||Moyen| Moyen | Moyen | 100
15 Fort | Moyen | Moyen 70
11 || Moyen | Faible | Moyen | 120
14 || Moyen |Moyen| Moyen | 100
17 || Moyen | Fort | Moyen | 130
5 Moyen | Moyen | Faible | 110
14 || Moyen | Moyen [Moyen| 100
23 || Moyen | Moyen | Fort 80

La démarche suivie consiste ici & fixer systématiquement au niveau moyen les
deux facteurs ne variant pas. L’expérience numéro 14 a ainsi été répétée a
trois reprises. Dans un contexte déterministe cela n’a aucun intérét (puisque
la réponse mesurée est trois fois la méme) mais une telle démarche n’est pas
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inutile dans un contexte statistique afin de quantifier I'importance des sources
de variations externes non-controlées. Les expériences se traduisent par les 7
équations linéaires :
1 1

b 4B 5 =00

1 1 1
Bo +61" +65" +55" = 100

2 1 1
Bo +817 +051 851 = 70

o +61" +41 =120
o+ +657 +6 =130
Bo +M +5 —110

fo +011 +057 +657 = 80

On vérifie sans peine que ce systeme d’équations permet de retrouver les
valeurs exactes de 'effet moyen général ainsi que des divers effets linéaires. Par
contre Veffet d’interaction ne peut étre déterminé (ce qui est logique puisque
aucune expérience ne fait intervenir simultanément les débits forts pour les
additifs 1 et 2). Remarquons que méme si le niveau des deux facteurs fixés a
chaque expérience avait été " fort” au lieu de ”moyen” alors ’estimation de cet
effet d’interaction aurait encore été impossible car 7 équations distinctes ne
permettent pas de déterminer les 8 parametres inconnus. Ceci est le principal
défaut de ce type de technique. De maniere générale les inconvénients associés
a cette technique sont les suivants :

i) faire varier les facteurs un par un masque les éventuels effets d’inter-
actions entre plusieurs facteurs,

ii) le choix du niveau pour les facteurs ne variant pas ("moyen” ici) n’est
pas évident et peut avoir un effet sur la qualité des résultats obtenus,

iii) le plan d’expérience obtenu présente le probleme d’étre déséquilibré
dans le sens ou ici le niveau "moyen” est sur-représenté au détriment des
deux autres niveaux.

Remarquons enfin que 'utilisation de la table 1.2 conduit a une mauvaise
modélisation du phénomene étudié puisque, l'effet d’interaction étant omis, la
plus grande réponse théorique prédite par le modele vaut 140 pour la situation
suivante :

Débit 1 : Moyen / Débit 2 : Fort / Débit 3 : Faible.

D’apres la totalité des expériences de la table 1.1 il est clair que ce résultat
est faux puisqu’il ne s’agit pas du meilleur choix possible.
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3) Utilisation d’un sous-ensemble quelconque d’expériences

L’utilisateur n’ayant pas réalisé toutes les expériences pour des raisons de
cout et n’étant pas satisfait des résultats donnés par la méthode ”un facteur
a la fois” se trouve souvent désemparé et s’oriente la plupart du temps vers
le choix d’un sous-ensemble d’expériences. Ce choix est bien souvent réalisé
de maniere empirique : des expériences peuvent étre rajoutées a celles de
la technique "un facteur a la fois” dans le but d’améliorer les résultats, un
sous-ensemble d’expérience peut étre déterminé de maniere aléatoire, etc...
Généralement, tout choix d’un sous ensemble d’expériences qui n’est pas guidé
par une méthodologie rigoureuse peut entrainer les problemes suivants :

i) un tel choix peut conduire & sélectionner des expériences qui ne perme-
ttront pas d’estimer tous les parametres inconnus du modele étudié,

ii) méme si tous les parametres inconnus du modele étudié peuvent étre
estimés la qualité des résultats obtenus ne sera généralement pas optimale.

Illustrons ceci & ’aide des 9 expériences présentées dans la table 1.3. Ce choix
peut paraitre, a priori, plus judicieux que celui de la table 1.2 dans le sens ou
la configuration présentée ici est équilibrée puisque chacun des niveaux des
facteurs apparait le méme nombre de fois. Déterminons maintenant les divers
parametres du modele. L’expérience 1 permet immédiatement de retrouver la
valeur By = 120 pour 'effet moyen général. De méme les expériences 10 et 19
conduisent aux divers effets de 'additif 3 puisque :

= —10 et g = —30.

Table 1.3. Utilisation d’un sous-ensemble d’expériences.
| Exp. || DV1 | DV2 | DV3 | Rep. |
1 Faible | Faible | Faible | 120
10 || Faible | Faible [Moyen| 110
19 || Faible | Faible | Fort 90
8 ||[Moyen| Fort |Faible| 140
17 ||[Moyen| Fort |[Moyen| 130
26 ||[Moyen| Fort | Fort 110
6 Fort |Moyen|Faible 80
15 Fort |Moyen|Moyen| 70
24 Fort |Moyen| Fort 50

Les 6 autres expériences conduisent a seulement deux équations distinctes
supplémentaires données par :

e
Pyl = —a0
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On constate donc que les 9 expériences sélectionnées ici ne permettent pas
d’estimer tous les parametres du modele. Ceci est di au fait que dans la ta-
ble 1.3 les facteurs 1 et 2 sont ”liés” car ils changent de niveau en méme
temps ce qui rend impossible I'estimation de leurs effets respectifs (on mon-
trera plus tard que les expériences sélectionnées forment une fraction du plan
complet ayant une résolution trop basse pour permettre ce type d’estimation).
Il serait en pratique possible de rajouter des expériences afin de résoudre ce
type de probleme mais ce serait en contradiction avec ’objectif principal qui
est d’avoir peu d’expériences a réaliser.

4) Utilisation d’un plan d’expérience

Toutes les démarches vues précédemment présentent systématiquement un
certain nombre d’inconvénients, il est alors fortement recommandé d’utiliser
un protocole expérimental ”optimal” donné par un plan d’expérience tel que
celui présenté dans la table 1.4. Les expériences proposées ici sont choisies
selon la technique des fractions régulieres (on a en fait la fraction réguliere
du plan complet définie par la relation I =123). Il en résulte un petit nombre
d’expériences (9) permettant de réaliser l’estimation de tous les parametres
inconnus du modele (effet d’interaction compris). La qualité de ce plan
d’expérience réside a la fois dans le fait qu’il est équilibré pour les traitements
(i.e. chaque traitement est utilisé 3 fois pour chaque facteur) mais aussi pour
les couples de traitements (i.e. chaque couple de traitements est testé une
fois pour chaque couple de facteurs). C’est cette dernieére propriété (qualifiée
généralement d’orthogonalité) qui assure que, contrairement aux tables 1.2 et
1.3, il existe bien ici une expérience faisant intervenir les niveaux hauts des
facteurs 1 et 2 et permet ainsi de détecter l'effet d’interaction qui leur est
associé.

Table 1.4. Utilisation d’un plan d’expérience.
| Exp. || DV1 | DV2 | DV3 | Rep. |
1 Faible | Faible | Faible| 120
6 Fort |Moyen| Faible 80
8 ||Moyen| Fort |Faible| 140
12 Fort |Faible [Moyen| 90
14 ||[Moyen|Moyen|Moyen| 100
16 || Faible| Fort [Moyen| 120
20 ||Moyen|Faible| Fort 100
22 || Faible [Moyen| Fort 70
27 Fort | Fort | Fort 140

Un plan d’expérience consiste donc aussi a proposer peu d’expériences tout en
faisant varier tous les facteurs simultanément afin d’obtenir un maximum
d’informations (cette démarche est diamétralement opposée a celle de la tech-
nique "un facteur a la fois”). Enfin, la détermination de tous les parametres
inconnus du modele permet ici de retrouver de maniere purement théorique
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que la valeur maximale de la réponse devrait étre de 170 lorsque les différents
réglages suivants sont effectués :

Débit 1 : Fort / Débit 2 : Fort / Débit 3 : Faible.

Il est donc possible de déterminer les conditions optimales de fonctionnement
sans méme avoir réalisé I’expérience correspondante.

1.3 Historique

Réaliser des expériences afin d’étudier et de comprendre un phénomene est une
démarche qui remonte a la nuit des temps. Des le moyen-age Nicolas Oresme
(1325-1382) aborde cette question dans ses écrits. Inspirateur de Descartes
et Leibnitz, Francis Bacon (1561-1626) est un des précurseur de la méthode
expérimentale. En 1627 il fait, par exemple, macérer des grains de blé dans
neuf concoctions différentes afin d’étudier leur effet sur la rapidité de germi-
nation. Arthur Young (1746-1820) cherche ensuite a systématiser le procédé
et aborde la notion de répétabilité des expériences afin de prendre en compte
leur variabilité. Ses travaux concernent surtout ’agronomie et la mise en ceu-
vre de méthodes "modernes” de culture, basées plus sur l'expérimentation
que sur des préjugés ou I'habitude. Citons aussi les travaux de Cretté de
Palluel (1741-1798) qui publie en 1788 un ” Mémoire sur les avantages et
[’économie que procurent les racines employées a l’engrais des moutons a
[’étable” . L’auteur propose un protocole expérimental destiné a comparer les
mérites des pommes de terre, des turneps, de la betterave et de la chicorée dans
I'engrais des moutons de I’étable. C’est ensuite principalement au 19°™¢ siecle
que les méthodes expérimentales se démocratisent. Citons a titre d’exemple
les expériences médicales menées par Claude Bernard (1813-1878) ainsi que
son ouvrage ” Principes de médecine expérimentale”.

Les méthodes rigoureuses d’expérimentation, basées sur 1'utilisation des
plans d’expérience, sont dues aux travaux de Sir Ronald Fisher (1890-1962).
Ce brillant mathématicien, treés productif dans le domaine de la Statistique,
a été amené a s’intéresser aux techniques d’expérimentation suite & son em-
ploi, en 1919, a la ”Rothamsted Experimental Station”, centre de recherche
agronomique situé au nord de Londres. Il cherche alors a augmenter les ren-
dements agricoles en combinant divers types d’engrais, de variétés végétales,
de méthodes de cultures, de types de sols, etc... Face a I'impossibilité de
réaliser la totalité des expériences ceci 'amene a proposer des configurations
expérimentales basées sur des modeles statistiques rigoureux (tels que les
carrés latins). Ceci constitue le point de départ de la méthode théorique des
plans d’expérience. Un célebre ouvrage sur le sujet a été publié en 1935 [41].
Une synthese des travaux de Fisher dans le domaine des plans d’expérience a
été réalisée par D. A. Preece [74].
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Divers chercheurs ont par la suite marché dans les traces de Fisher
afin de promouvoir et développer ['utilisation des techniques de planifica-
tion expérimentales dans d’autres domaines que l'agronomie. Des les années
50 les travaux de Box et de ses collaborateurs (principalement sur les sur-
faces de réponse) ont entrainé bon nombre d’application pratiques. Mais ce
sont certainement les travaux de G. Taguchi qui ont permi une vaste diffu-
sion des plans d’expérience, notamment dans le milieu industriel. Travaillant,
entre autre, comme consultant pour de multiples entreprises japonaises G.
Taguchi a eu l'idée de réaliser des tables de configurations expérimentales
de référence facilement utilisables par des non-spécialistes. Il a de plus in-
clu 'expérimentation au sein d’'une démarche plus large de ”qualité totale”
amenant a la conception de produits fiables et de bonne qualité. Ses idées ont
été mises en ceuvre dans bon nombre d’industries japonaises des les années
70.

De nombreux chercheurs contemporains ont continué le développement de
cette branche de la Statistique dans des voies diverses et variées : adaptation
des plans d’expérience pour les problemes de mélanges, introduction d’effets
de blocs, utilisation de modeles non-linéaires, utilisation de modeles contenant
des effets de voisinage, plans d’expérience pour expériences simulées, etc ...

Voici une liste, non-exhaustive, d’ouvrages ayant fait avancer 1’état de 'art
dans ce domaine lors des dernieres années (ces références, ainsi que d’autres,
seront rappelées par la suite dans les divers chapitres correspondants) : Benoist
et al. [3], Collombier [19], Cox [24], Cox et Reid [25], Cornell [22], Dagnelie
[27], Dodge [29], Federer et King [39], John [52], Khuri et Cornell [56], Phan-
Tan-Luu et Mathieu [71], Pukelsheim [75], Saporta et al. [84], etc...

1.4 Guide de lecture de ’ouvrage

1.4.1 Positionnement

Cet ouvrage a pour objectif de présenter une vision tres générale de la méthode
des plans d’expérience. Pour cela un grand nombre de configurations sont
étudiées (plans pour criblage, plans & effets d’interactions, plans pour surfaces
de réponse, plans en blocs, plans pour mélanges, plans pour facteurs qualitat-
ifs, plans pour facteurs qualitatifs en blocs, etc ...) ainsi qu'un grand nombre
de notions mathématiques (estimation, prédiction, fractions régulieres, iso-
variance, efficacité ...). Cette approche est originale car beaucoup d’ouvrages
actuels sur ce sujet se cantonnent bien souvent & un théme précis (les surfaces
de réponse par exemple) et séparent souvent le cas des facteurs quantitatifs
du cas des facteurs qualitatifs. Une synthese des méthodes de planification est
ici proposée dans ces divers contextes en essayant de les unifier au maximum
(notion de ”plans usuels” par exemple).
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Des approches originales, ou rarement traitées, sont de plus proposées pour
diverses notions telles que, entre autres, le blocage d'un plan d’expérience,
I’estimation des effets de blocs, la définition rigoureuse des fractions régulieres
pour des facteurs a plus de deux niveaux, etc ... Une autre originalité de
I'ouvrage réside dans le fait que quasiment tous les résultats énoncés sont
démontrés (dans des annexes figurant a la fin de chacun des chapitres). Re-
marquons enfin que cet ouvrage offre, de par sa structure, plusieurs niveaux
de lecture. Il peut en effet étre abordé :

1) de maniere linéaire dans une approche pédagogique d’apprentissage
des techniques de planification (les compléments et démonstrations en
annexes peuvent alors étre omis),

2) de maniere approfondie en s’intéressant aux résultats théoriques
présentés en annexe (le lecteur expérimenté pourra dans ce cas omettre
la lecture des deux premiers chapitres),

3) de maniére ponctuelle en allant chercher directement I'information
nécessaire dans un des chapitres (les diverses notations sont rappelées
au début de chacun d’eux afin de les rendre relativement autonomes),

4) de maniere transversale si I'utilisateur doit se documenter sur une
notion générale abordée dans plusieurs chapitres (pour acquérir, par
exemple, des informations sur les plans en blocs on pourra se référer
a la fois aux chapitres 6 pour des facteurs quantitatifs et 9 pour des
facteurs qualitatifs).

1.4.2 Structure

Cet ouvrage est structuré en quatre grandes parties présentées brievement
ci-dessous. La premiere partie aborde un certain nombre de généralités utiles
pour une bonne compréhension de la méthode de planification expérimentale.
Elle est décomposée en deux chapitres.

Chapitre un : ”La notion de plan d’expérience”.

Il s’agit du présent chapitre. Il propose une introduction a la méthode
de planification expérimentale en présentant le cadre de cette méthode,
ses objectifs ainsi que le vocabulaire et le contexte de base. Toutes les
notions traitées ou non traitées dans cet ouvrage sont clairement ex-
posées. Un exemple, basé sur une étude complete a 'aide d’un plan
d’expérience, est proposée a la fin.

Chapitre deux : ”Outils mathématiques pour les plans
d’expérience”.

Ce chapitre a pour objet de présenter les principales notions d’algebre,
de probabilité et de statistique nécessaires a une bonne compréhension
de la mise en oeuvre et de I'analyse d’un plan d’expérience. Le lecteur
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familiarisé avec la statistique mathématique pourra sans peine omettre
une lecture approfondie de cette partie.

La deuxieme partie de I'ouvrage aborde le probleme, trés courant en pratique,
des plans d’expérience pour facteur quantitatifs. Elle est constituée des cinq
chapitres présentés ci-dessous.

Chapitre trois : "Plans d’expérience pour modeéles d’ordre un”.
Ce chapitre aborde les techniques adaptées a ’ajustement du modele
polynomial le plus simple c’est-a-dire de degré (ou d’ordre) égal a
un. Les plans factoriels, les fractions régulieres de plans factoriels,
les plans de Plackett et Burman ainsi que les plans simplexes sont
les principales structures étudiées dans ce chapitre. Les résultats ex-
plicites concernant ’ajustement du modele avec de tels plans sont
démontrés.

Chapitre quatre : "Plans d’expérience pour modeles a effets
d’interactions”.

On s’intéresse cette fois a l'ajustement des modeles polynomiaux
obtenus en rajoutant tous les termes croisés associés aux interactions
entre deux facteurs distincts. Il est alors prouvé que les plans facto-
riels complets ainsi que certaines fractions régulieres judicieusement
choisies permettent d’ajuster un tel modele de fagcon extremement sim-
ple. Une généralisation aux interactions plus complexes est proposée.

Chapitre cinq : ”Plans d’expérience pour surfaces de réponse”.
Ce chapitre aborde le probleme de ’ajustement d’un polynéme d’ordre
deux complet. Les plans d’expérience classiques (composite centrés,
Box et Behnken, efc...) sont présentés. Leur analyse est réalisée a
I'aide d’une théorie unifiée. Diverses propriétés statistiques telles que
I’isovariance par transformations orthogonales sont étudiées en détail.

Chapitre six : ”Plans d’expérience en blocs”.

Les plans d’expérience abordés dans ce chapitre permettent de
s’adapter aux situations dans lesquelles les observations ne sont pas
issues de conditions expérimentales homogenes. On partitionne clas-
siquement de tels plans en sous-ensembles homogenes appelés blocs.
Diverses techniques de construction des blocs sont présentées afin de
rester au sein d’'une classe de plans d’expérience faciles a analyser.
Une attention particuliere est portée aux plans d’expérience bloqués
orthogonalement.

Chapitre sept : ”Plans d’expérience pour mélanges”.

On s’intéresse cette fois au probleme du choix des diverses propor-
tions des composants d’un mélange. Différents modeles pour mélange
sont présentés en détail. Les réseaux de Scheffé ainsi que les réseaux
centrés de Scheffé sont ensuite étudiés afin de déterminer les divers
estimateurs des parametres des modeles mis en oeuvre.
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Une troisieme partie est consacrée aux plans d’expérience pour facteurs qual-
itatifs. Elle est constituée par les deux chapitres présentés ci-dessous.

Chapitre huit : ”Plans d’expérience pour facteurs qualitatifs”.
Ce chapitre présente les dispositifs expérimentaux adaptés a ce type
de facteurs. Le modele additif est étudié en détails principalement
concernant la propriété d’orthogonalité. Les plans d’expérience facto-
riels complets sont présentés puis la théorie des fractions régulieres est
étendue au cas de ces facteurs qualitatifs. Diverses situations ”non-
standard” (fraction pour nombre de modalités non premier, pour nom-
bres de modalités différents, etc...) sont étudiées. Le modele a effets
d’interactions est brievement présenté.

Chapitre neuf : "Plans d’expérience en blocs pour facteurs
qualitatifs”.

Tout comme pour les facteurs quantitatifs il est possible que les obser-
vations ne soient pas issues de conditions expérimentales homogenes. Il
est alors nécessaire d’effectuer des regroupements en sous-ensembles
homogenes encore appelés blocs. Les plans d’expérience permettant
d’analyser facilement un modele a effets de blocs sont présentés. Ce
chapitre s’intéresse tout particulierement aux plans en blocs complets,
aux plans en blocs incomplets équilibrés, aux plans en blocs partielle-
ment équilibrés et enfin aux plans en blocs cycliques.

Une derniére partie aborde enfin le probleme tres général de l'optimalité
des plans d’expérience. Elle est constituée par 1'unique chapitre présenté ci-
dessous.

Chapitre dix : ?Optimalité des plans d’expérience”.

Les éléments mathématiques permettant de juger de la qualité d’un
plan d’expérience sont introduits tout au long de ce chapitre. Les
notions d’optimalité uniforme, de ¢4-optimalité (incluant les A, D et
E-optimalités) ainsi que d’optimalité universelle sont présentées. Il est
pris soin d’expliciter le lien entre ces différentes optimalités ainsi que
les outils techniques permettant de rechercher des plans optimaux. La
derniere partie de ce chapitre revient sur les principales configurations
étudiées tout au long de I'ouvrage pour montrer qu’elles sont le plus
souvent optimales pour bon nombre de criteres.

Trois annexes, désignées par annexes A, B et C, figurent ensuite a la fin
de T'ouvrage. Ces différentes annexes sont dédiées aux thémes présentés ci-
dessous.

Annexe A : "Plans factoriels et représentation linéaire des
groupes”.

Cette annexe est consacrée a des rappels sur la théorie algébrique de
représentation linéaire des groupes finis ainsi qu’a son application aux
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plans factoriels complets ou bien aux fractions régulieres de ce type de
plans. Certaines démonstrations déja présentées dans divers chapitres
sont reprises dans cette nouvelle optique. Des résultats primordiaux
relatifs aux fractions régulieres sont ensuite démontrés.

Annexe B : ”"Plans d’expérience classiques”.
Cette annexe résume brievement les diverses grandes classes de plans
d’expérience présentés dans I'ouvrage.

Annexe C : "Notations utilisées”.

Cette annexe fait le bilan des diverses notations utilisées. Le lecteur est
prié de s’y reporter afin d’éviter toute confusion relative aux notations
ainsi qu’a la terminologie utilisée dans les différents chapitres.

Les références bibliographiques ainsi qu'un INDEX sont enfin regroupés a la
fin de cet ouvrage.

La plupart des chapitres contiennent un exemple final afin d’illustrer
concretement les résultats théoriques. Ces exemples sont soit tirés de la
littérature existante soit des exemples & but pédagogique (tout en restant
pour la plupart inspirés de situations déja rencontrées en réalité). Il perme-
ttent a la fois de mener une analyse complete a partir de toutes les notions
présentées mais aussi d’introduire les codes informatiques nécessaires.

Dans le but de ne pas alourdir les chapitres des compléments contenant les
démonstrations ainsi que certains aspects théoriques sont présents a la fin de
chacun d’eux. Ces compléments contiennent les démonstrations des résultats
signalés par le symbole [<].

1.4.3 Analyse des exemples

Afin de ne pas alourdir inutilement ce livre ’analyse des différent exemples est
focalisée sur la mise en oeuvre et l'interprétation des résultats découlant de la
planification expérimentale réalisée. Le lecteur ayant de bonnes connaissances
en statistique ne s’étonnera donc pas du fait qu'une analyse exhaustive
des résultats n’a volontairement pas été menée. Citons les principaux traite-
ments statistiques qui ne sont pas abordés dans les exemples mais qui peuvent
s’avérer tres utiles pour enrichir et interpréter avec rigueur toute étude.

1) Afin de juger de la qualité du modele ajusté & 1’aide d’un in-
dicateur numérique on se limite a l'utilisation du coeflicient de
corrélation linéaire multiple R2. Il est bien connu que ce coefficient est
& manier avec précaution (principalement dans les cas ou le modele
est saturé ou proche de la saturation) donc il est plus prudent de
I’accompagner en pratique par le calcul d’autres coefficients tels que

le coefficient de corrélation linéaire multiple ajusté R2, le coefficient
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PRESS (pour Prediction Error Sum of Square) mesurant cette fois les
capacités prédictives du modele, le R? de prédiction calculé & partir
du PRESS, etc...

2) Toujours pour évaluer la qualité du modele ajusté un certain nom-
bre d’indicateurs graphiques peuvent aider l'utilisateur. Il s’agit
principalement du nuage de points des résidus estimés permettant
de visualiser ou non une bonne répartition des résidus ou encore du
nuage de points des résidus studentisés plus adapté a la détection de
mesures aberrantes. De méme, des graphiques du type droite de Henry
ou QQ-plot (pour quantile-quantile) permettent de juger la validité de
I’hypothese de normalité des observations.

3) Une fois le meilleur modele déterminé le détail des diverses tech-
niques d’optimisation conduisant a la recherche du ou des extrema
n’est pas présenté. En effet en dehors du cas des modeles linéaires
particulierement simples (tels les modeles de degré un) le probléme
de loptimisation (sous la contrainte de rester au sein du domaine
expérimental) est un sujet tres vaste qui pourrait faire 'objet & lui
seul d’un ouvrage spécialisé. Le lecteur souhaitant se documenter plus
en détail sur ces diverses techniques pourra se référer au chapitre 5
de Pouvrage de Khuri et Cornell [56] concernant la méthode générale
dite ”d’analyse canonique” basée sur un changement de repere facili-
tant 'analyse d’un modele polynomial d’ordre deux. La méthode clas-
sique qualifiée de ”ridge analysis” y est aussi présentée. Concernant
Poptimisation de maniere plus générale on pourra se référer a ’ouvrage
de Ciarlet [18] pour la présentation de la technique des multiplicateurs
de Lagrange ainsi qu’un certain nombre d’algorithmes classiques (gra-
dient, relaxation, etc...).

Le lecteur souhaitant en savoir plus sur ces diverses méthodes peut aussi
consulter ’étude menée a la fin de ce chapitre ou bien se référer a la plupart
des ouvrages de statistique générale tels que celui de Saporta [83] (ou Khuri
et Cornell [56] pour une approche plus orientée vers les plans d’expérience).

1.5 Themes non abordés dans 1’ouvrage

Le but premier de cet ouvrage est de proposer au lecteur de solides bases
permettant d’appréhender la méthode des plans d’expérience sous ses aspects
les plus généraux et les plus classiques. Il en résulte qu’un certain nombre de
themes plus spécialisés ne sont pas abordés ici. Il s’agit principalement des

theémes cités ci-dessous.
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1.5.1 Plans pour modeles mixtes

Le chapitre six de cet ouvrage aborde la problématique des plans d’expérience
en blocs pour facteurs quantitatifs. Le modele considéré est alors le modele
le plus classique, appelé modele & effets de blocs fixes (puisque les effets des
traitements ainsi que les effets des divers blocs sont supposés inconnus mais
non-aléatoires).

Une alternative consiste a supposer cette fois que les effets des blocs sont
aléatoires. Le modele ainsi obtenu, mélangeant effets fixes pour les traitements
et effets aléatoires pour les blocs, est souvent qualifié de modéele mixte.
Concretement un tel modele peut étre intéressant dans toutes les situations
ol un grand nombre de blocs interviennent et on ne veut tester quun
petit nombre de blocs choisis aléatoirement dans la population totale. Un
exemple concret est proposé par Khuri [55] pour une usine produisant des
barres d’acier en continu. Il est alors tout a fait naturel de regrouper dans
ce cas en blocs les productions supposées a priori homogenes, c’est-a-dire
issues d’'un méme arrivage de matiére premieére. Ceci conduit cependant a la
distinction d’'un trop grand nombre de blocs différents. Le service qualité de
I’entreprise préfere alors vérifier la qualité de fabrication des barres produites
uniquement sur certains lots choisis aléatoirement dans la production totale.
Le modele mixte est dans ce cas mieux adapté a une telle étude que le modele
classique a effets de blocs fixes.

Les travaux de Khuri [55] ou Tinsson [99] ont montré qu'un tel modele
peut étre analysé de manieére relativement aisée a ’aide de la plupart des
plans d’expérience classiques pour modeles d’ordre deux a effets de blocs fixes
(plans composites centrés, plans de Box et Behnken, etc...). Une grande partie
de ces configurations sont présentées en détail dans cet ouvrage.

1.5.2 Plans pour modeéles non linéaires

Cet ouvrage est consacré exclusivement a 1’étude de plans d’expérience pour
modeles linéaires (polynomiaux d’ordre un ou deux le plus souvent). Cette
hypothese est tres courante des lors qu une modélisation statistique est requise
car elle permet de traduire matriciellement le probleme étudié et d’utiliser
ensuite un grand nombre de résultats théoriques établis dans le cadre linéaire.
Il est de plus naturel d’approcher une fonction inconnue, mais relativement
réguliére, par un polynéme de degré fixé afin d’obtenir ainsi un développement
limité. Lorsque cependant la fonction expliquant le phénomeéne étudié semble
étre tres irréguliere, ou bien qu'une modélisation linéaire n’a pas donné de bons
résultats, une possibilité consiste a s’orienter vers I'ajustement de modeéles
non linéaires.

Beaucoup de travaux de recherche ont abordé cette vaste problématique
(le lecteur pourra, par exemple, consulter les chapitres relatifs & ce sujet de
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Pouvrage de Saporta et al. [84], et principalement le chapitre 8 écrit par
Gauchi [43]). La difficulté principale réside dans le fait qu’il n’existe pas
de configuration ”optimale” pour l'ajustement de n’importe quel modele.
Pour chaque modele non-linéaire postulé il convient donc de mettre au
point une méthode proposant un plan d’expérience adapté. Beaucoup de ces
méthodes sont basées sur des constructions algorithmiques recherchant des
plans d’expériences optimaux selon divers critéres (voir le chapitre 10 de cet
ouvrage pour la notion d’optimalité d’un plan d’expérience). Une difficulté
supplémentaire liée a cette démarche est qu’il n’est pas forcément évident de
choisir a priori un modeéle non-linéaire bien adapté au phénomene étudié.
C’est pourquoi une autre approche de la non-linéarité consiste a utiliser tou-
jours des modeles polynomiaux mais pour modéliser cette fois non plus la
réponse mesurée mais la transformée de cette réponse par une application
bien choisie (appelée fonction de lien). On dit alors que l'on consideére un
modele linéaire généralisé. Il a été prouvé dans un article de Dossou-Gbété et
Tinsson [30] qu'un choix judicieux de ces fonctions de lien permet d’utiliser
tres facilement les plans d’expérience classiques afin d’ajuster ces nouveaux
modeles non-linéaires. Ceci permet de s’adapter de maniere rigoureuse a un
certain nombre de situations non-standard comme, par exemple, le cas de
réponses binaires.

1.5.3 Plans a effets de voisinage

Une autre grande classe de plans d’expérience est celle des configurations dites
a effets de voisinage. Dans un cadre agronomique de tels plans d’expérience
correspondent & des situations ot 'on s’intéresse & l'effet du traitement (di-
rect) appliqué & une parcelle donnée mais aussi aux traitements appliqués
aux parcelles voisines. Ces deux derniers effets sont les effets de voisinage a
droite et & gauche (lorsque ces effets n’interviennent que dans une direction).
Pour une expérience se déroulant au fil du temps 'utilisation de tels modeles
est utile lorsque la réponse de la i-eme expérience peut étre influencée par la
réponse obtenue préalablement pour la (i-1)-éme expérience (une telle situa-
tion est par exemple courante en agro-alimentaire ol une personne goltant
un aliment peut étre influencée par le dernier produit gouté). D’un point de
vue mathématique la situation s’interprete alors comme une généralisation
du contexte des plans d’expérience en blocs pour facteurs qualitatifs (voir le
chapitre 9) par adjonction d’un ou de plusieurs effets de voisinage. Ces nou-
veaux effets rendent évidemment la recherche de configurations optimales bien
plus difficile que dans le cas classique. De telles configurations (lorsqu’elles ex-
istent) sont plus lourdes en terme de nombre d’expériences que les plans usuels
a cause des effets supplémentaires introduits dans le modele.

Les premiers travaux sur cette problématique et l'introduction de plans
dits en ”cross-over” sont oeuvre de Hedayat et Afsarinejad [49] ou [50]. Le
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lecteur souhaitant approfondir ce sujet et disposer d’une bibliographie plus
importante pourra aussi consulter le theése de doctorat de Druilhet [36].

1.5.4 Plans d’expérience numériques

Le développement de l'informatique et des moyens de calcul a entrainé
I’élaboration de simulateurs de phénomeénes physiques de plus en plus com-
plexes (basés sur des lois de la physique, de la chimie, des systémes d’équations
différentielles, etc...). Il résulte de cette complexification que la réalisation
de simulations peut devenir longue en terme de temps de calcul (et donc
cofiteuse). Une des solutions permettant de résoudre un tel probléme consiste
a réaliser un ensemble de simulations bien choisies afin d’obtenir a moindre
cott des informations sur le phénomene simulé. Ce choix d’'un petit nombre
de simulations donnant un maximum d’information entre une nouvelle fois
dans la problématique des plans d’expérience.

Notons que la spécificité de ce contexte résulte de la nature déterministe
du phénomene étudié (puisque deux expériences identiques réalisées par le
simulateur vont donner deux réponses égales). Ceci ameéne & considérer des
modeles souvent différents des modeles classiques, en introduisant notamment
des corrélations spatiales. Une analyse de toute cette problématique a été
effectuée dans la these de doctorat de Jourdan [53]. Il y apparait que des plans
d’expérience adaptés & une telle situation sont, par exemple, des fractions
régulieres de plans complets (présentés dans les chapitres 3, 4 et 8 de cet
ouvrage), d’ou l'intérét, une nouvelle fois, de bien maitriser au préalable les
techniques classiques.

1.6 Logiciels pour les plans d’expérience

L’outil informatique est nécessaire a la réalisation rapide et précise d’une étude
menée a I’aide d’un plan d’expérience. Ceci peut étre utile tout d’abord pour
bénéficier d’une assistance a la création du plan d’expérience (plan classique,
plans optimaux, etc...), puis pour réaliser tous les calculs fastidieux (recherche
des estimateurs, tests d’hypotheéses, etc...) et enfin pour obtenir tous les
types de sorties conviviales existant (diagrammes de Pareto, représentations
graphiques des surfaces de réponses, etc...). Présentons ici brievement diverses
solutions logicielles.

1) Logiciels non-spécialisés.

Certains utilisateurs ne disposent parfois d’aucun logiciel spécialisé dans
le traitement des données statistiques. Les résultats présentés dans cet ou-
vrage sont cependant quasiment tous donnés de maniere explicite a I'aide de
formules mathématiques. Il est donc tout a fait possible de programmer ces
diverses formules puis de les utiliser sur des données réelles. Ceci peut étre



24 1 La notion de plan d’expérience

fait & ’aide de simples tableurs tels que Excel ou OpenOffice d’ailleurs tres
conviviaux afin d’écrire facilement le plan d’expérience ainsi que les observa-
tions. Tout langage de programmation (C, C++, Pascal, Fortran, etc...)
permet aussi de programmer aisément les divers résultats présentés.

2) Logiciels spécialisés en statistique.

Un grand nombre de logiciels spécialisés en statistique existent sur le
marché. Des codes SAS sont la plupart du temps utilisés dans cet ouvrage
afin de réaliser les traitements proposés. Ce choix a été fait par rapport aux
performances et a la richesse de ce logiciel mais aussi en tenant compte de sa
popularité dans de nombreuses entreprises. Si I'utilisation de ce logiciel n’est
pas possible I'utilisateur peut alors se tourner sans crainte vers le logiciel R
qui a la particularité d’étre totalement gratuit. D’autres logiciels statistiques
peuvent évidemment aussi étre utilisés tels que : S-Plus, SPSS, Statgraph-
ics, Genstat, eic...

3) Logiciels spécialisés en plans d’expérience.

Il est enfin possible d’utiliser des logiciels directement spécialisés dans la
problématique des plans d’expérience. Il s’agit le plus souvent de modules par-
ticuliers des logiciels de statistique présentés précédemment. Pour reprendre
Pexemple du logicial SAS le module SAS/QC (dédié au controle de la qualité)
permet d’avoir accés a de multiples procédures relatives a la construction de
plans d’expérience (ce module n’est par contre pas fourni dans le ”package”
de base SAS).

Il existe cependant un logiciel en langue francaise, Nemrod, qui est
exclusivement dédié a la construction et l'analyse des plans d’expérience.
Il présente de plus l'avantage d’étre continuellement amélioré par une
équipe active dans la "méthodologie de la recherche expérimentale”
(http://www.nemrodw.com/). Ce logiciel est utilisé, parallelement & SAS,
pour traiter certains exemples de 'ouvrage. Comme tout logiciel tres spécialisé
il présente 'avantage d’étre rapidement utilisable pour traiter une étude
menée & Paide d’un plan d’expérience et trés convivial (quelques ”clics” de
souris suffisent). Ses points forts sont de plus les plans d’expérience pour
mélanges ainsi que les sorties graphiques tres claires (2D et 3D simultanées).
Evidemment un tel logiciel va s’avérer par contre parfois difficile a utiliser
pour des situations non-standard, c’est pourquoi dans ce cas l'utilisation de
SAS (en mode programmation) sera préférable.

1.7 Présentation d’une étude

Terminons ce chapitre par la présentation compléte d’une étude menée a l’aide
de la méthode des plans d’expérience. Considérons une entreprise fabriquant
des pieces en plastique. L’objectif est la conception de pieces les plus rigides
possibles. Le phénomene étudié ici étant a priori complexe a étudier une série



1.7 Présentation d’une étude 25

d’expérimentations est réalisée afin de mieux le cerner. Chaque expérience
correspond concretement a ’arrét de la chaine de production, & un nouveau
réglage des diverses machines-outil, a la fabrication d’une ou plusieurs pieces
et enfin a I’analyse des pieces fabriquées. Tout ceci a donc un cout relativement
important, c’est pourquoi la réalisation d’un petit nombre d’expériences judi-
cieusement choisies est vivement souhaité. D’ou l'intérét de mettre en oeuvre
un plan d’expérience.

Toute 'analyse présentée dans cette partie a été menée a ’aide du logi-
ciel Nemrod (”Generation de matrices d’expérience en fonction des objectifs
et traitement des réponses expérimentales”, Version 2000, Didier Mathieu,
Jean Nony et Roger Phan-Than-Luu, LPRAI, Marseille, France) qui permet
de générer bon nombre de plans d’expérience et de réaliser la plupart des
traitements statistiques classiques.

Tout au long de cette section des références du type [voir 2.4.3] sont pro-
posées. Ceci indique au lecteur que la notion utilisée est étudiée en détails
au paragraphe 2.4.3 de cet ouvrage (i.e. au chapitre 2, quatrieme section et
troisieme sous-section).

1.7.1 Facteurs et réponse

Les ingénieurs spécialistes du phénomene étudié estiment que trois facteurs
influent principalement sur la rigidité des pieces fabriquées :

la température (mesurée par x1 en °C),
la pression dans la presse (mesurée par xo en g/cm?),
la durée de 'opération  (mesurée par x3 en secondes).

La réponse est quantifiée par I’élasticité de la piece fabriquée. L’objectif est la
minimisation de cette réponse afin d’obtenir les pieces les plus rigides possible.

1.7.2 Domaine expérimental

Concernant maintenant le domaine expérimental voici les valeurs de fonc-
tionnement classiquement utilisées sur la chaine de production :

60 <21 <70,20<25<30,5<ux3<8.

Ces diverses valeurs vont étre utilisées maintenant comme valeurs de référence
(afin de réaliser lopération dite de codage des variables). Il convient en
pratique d’étre prudent vis-a-vis de ces valeurs, le plus souvent issues de
I’expérience acquise par les utilisateurs, qui parfois peuvent aussi les induire
en erreur. C’est pourquoi une majorité des expériences vont étre réalisées en
restant dans ces plages de fonctionnement mais certaines d’entre elles seront
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hors de ces modes de fonctionnement courants (si bien entendu cela est tech-
niquement possible). Ceci pourra étre le cas ici puisque les spécialistes du
phénomene étudié donnent les valeurs suivantes associées cette fois aux con-
traintes techniques du procédé industriel (il s’agit donc des valeurs & re-
specter obligatoirement) :

30 <21 <90, 22 < 60

Ceci montre, par exemple, que la presse utilisée ne peut techniquement pas
fonctionner au dela de 60 g/cm?. Il n’y a bien sur dans I’absolu aucune con-
trainte pour la durée de 'opération z3 si ce n’est qu’elle doit étre positive.

1.7.3 Codage des facteurs

Afin de ramener chacun des facteurs & un méme intervalle, de supprimer
leurs unités, de permettre leur comparaison et enfin de simplifier I’analyse
mathématique & venir on va systématiquement les coder [voir 3.2.1]. Cette
opération classique est résumée dans la table 1.5 ou diverses valeurs initiales
et codées sont présentées. Comme indiqué précédemment les codages ont été
réalisés de maniere a ce que les valeurs 1 soient systématiquement associées
aux niveaux hauts et bas des valeurs de fonctionnement. Les valeurs codées
+1.68 figurent aussi dans ce tableau car elles vont étre utilisées par la suite.

Table 1.5. Codage des facteurs.

Température (°C') 56.6 60.0 62.5 | 65.0 | 67.5 | 70.0 | 73.4
Pression (g/cm?) 16.6 | 20.0 | 22.5|25.0|27.5|30.0|334
Durée (s) 3.98 5.00 5.75 1 6.50 | 7.25 | 8.00 | 9.02

| Valeur codée | —1.68 | —1.00 | —0.50 | 0.00 | 0.50 | 1.00 | 1.68 |

1.7.4 Plan d’expérience utilisé

Une fois les facteurs clairement identifiés et la réponse connue on peut pro-
poser un plan d’expérience, c’est-a-dire une liste d’expériences a réaliser
afin de cerner au mieux le phénomene étudié. Dans ’absolu le choix d’un
plan d’expérience n’a pas de sens tant qu’il n’est pas subordonné au choix
préalable d’'un modéle mathématique. Les modeles les plus classiques sont
les modeles polynomiaux (le plus souvent de degré inférieur ou égal & deux).

Supposons que pour ’étude réalisée ici on ait, a priori, aucune idée précise
concernant le choix d’un modele approprié. Afin de pouvoir ajuster plusieurs
modeles polynomiaux il est possible d’utiliser un plan d’expérience tres clas-
sique, de type composite centré [voir 5.3], présenté dans la table 1.6. Ce plan
d’expérience est constitué par un total de 17 expériences écrites ligne par ligne
avec les niveaux des différents facteurs sous forme codée.
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Table 1.6. Plan d’experience (de type composite centré).

N°Exp X1 X2 X3
1 —1.0000 —1.0000 —1.0000
2 1.0000 —1.0000 —1.0000
3 —1.0000 1.0000 —1.0000
4 1.0000 1.0000 —1.0000
5 —1.0000 —1.0000 1.0000
6 1.0000 —1.0000 1.0000
7 —1.0000 1.0000 1.0000
8 1.0000 1.0000 1.0000
9 —1.6818 0.0000 0.0000
10 1.6818 0.0000 0.0000
11 0.0000 —1.6818 0.0000
12 0.0000 1.6818 0.0000
13 0.0000 0.0000 —1.6818
14 0.0000 0.0000 1.6818
15 0.0000 0.0000 0.0000
16 0.0000 0.0000 0.0000
17 0.0000 0.0000 0.0000

Un tel plan d’expérience est qualifié de composite car il est constitué de trois
parties différentes utilisables pour divers types d’ajustements. La premiére
partie (expériences 1 & 8) est la partie factorielle constituée par les 8 sommets
du cube unité. La seconde partie (expériences 9 & 14) est la partie axiale con-
stituée par des points sur les axes du repere utilisé. Tous ces points sont situés
a une distance égale & 1.6818 du centre du repere (la valeur exacte étant en
fait 81/ 4) dans le but d’obtenir la propriété classique d’isovariance par trans-
formations orthogonales [voir 5.2.5]. Il s’agit ici du choix proposé par défaut
par le logiciel. Chacune de ces 6 expériences utilise donc pour un des facteurs
des niveaux hors des valeurs de fonctionnement usuelles. Enfin la derniere
partie du plan composite (expériences 15 & 17) est constituée par une triple
répétition de lexpérience qualifiée de centrale (i.e. avec tous les facteurs fixés
a leur niveau moyen). Dans un contexte statistique il est intéressant de répéter
plusieurs fois certaines expériences car la nature aléatoire du phénomene va
entrainer que les réponses observées ne seront pas égales. Ceci permet de plus
de réaliser une analyse plus fine du phénomene étudié [voir 2.5.4]. L’usage de
facteurs sous forme codée simplifie le travail d’analyse mais cette transforma-
tion est inutile pour l'utilisateur. C’est pourquoi il est courant d’éditer a la
fois le plan d’expérience avec les facteurs codés et le plan d’expérience avec
les facteurs exprimés dans leurs unités initiales.
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Table 1.7. Protocole expérimental.

N°Exp Température Pression Durée
°C g/cm 2 s
1 60.0 20.0 5.0
2 70.0 20.0 5.0
3 60.0 30.0 5.0
4 70.0 30.0 5.0
5 60.0 20.0 8.0
6 70.0 20.0 8.0
7 60.0 30.0 8.0
8 70.0 30.0 8.0
9 56.6 25.0 6.5
10 73.4 25.0 6.5
11 65.0 16.6 6.5
12 65.0 33.4 6.5
13 65.0 25.0 4.0
14 65.0 25.0 9.0
15 65.0 25.0 6.5
16 65.0 25.0 6.5
17 65.0 25.0 6.5

Cette seconde forme (table 1.7) est souvent appelée protocole expérimental
(le terme de plan d’expérimentation est aussi utilisé par le logiciel Nemrod).
Lorsque la liste des expériences est fournie au technicien devant les réaliser il
convient, bien entendu, de lui donner directement le protocole expérimental
auquel il devra se tenir.

1.7.5 Ajustement d’un modele d’ordre un

Commencgons par étudier le phénomene a ’aide du modele le plus simple
possible, en l'occurence un polynéme du premier degré (en trois variables qui
sont les trois facteurs sous forme codée). En d’autres termes on essaie donc
d’expliquer au mieux la réponse moyenne a l’aide du modele tel que :

f(x1, 22, 23) = Bo + fra1 + Poxa + P33,

On montre que pour estimer les 4 parametres inconnus de ce modele (I'effet
moyen général By ainsi que les trois effets linéaires 31, B2 et B3) il est possible
de n’utiliser que les expériences 2, 3, 5 et 8 de la table 1.6 (on dit que 'on
considére une fraction réguliere de la partie factorielle [voir 3.4]). Afin de
gagner en qualité il est possible de rajouter les expériences centrales 15, 16 et
17. Les diverses réponses observées lors de la réalisation de ces 7 expériences
sont données ci-dessous (table 1.8, colonne notée Y'1).
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Table 1.8. Plan d’expérience et réponses observées.

N°Exp X1 X2 X3 Y1
1 1.0000 —1.0000 —1.0000 63.4
2 —1.0000 1.0000 —1.0000 57.2
3 —1.0000 —1.0000 1.0000 70.2
4 1.0000 1.0000 1.0000 56.6
5 0.0000 0.0000 0.0000 54.8
6 0.0000 0.0000 0.0000 55.2
7 0.0000 0.0000 0.0000 54.6

L’analyse statistique de ce modele conduit dans un premier temps a la
table d’analyse de la variance [voir 2.5] suivante. Elle indique principalement
que le modele utilisé est mal ajusté ici puisque la somme des carrés due a
Perreur est tres importante par rapport a la somme des carrés totale.

Source de Somme des Degrés de Carré Rapport Signif
variation carrés liberté moyen

Régression 121.3100 3 40.4367 1.4478 38.4
Résidus 83.7871 3 27.9290

Total 205.0971 6

Ceci est confirmé par ’analyse plus fine complémentaire donnée ci-dessous. On
retiendra principalement la valeur du coefficient de corrélation linéaire multi-
ple [voir 2.5.2] qui est bien trop faible (0.591) pour rendre compte d’un ajuste-
ment correct. De méme la plupart des parametres estimés pour ce modele ne
sont pas significativement différents de zéro [voir 2.6] ce qui, une nouvelle fois,
confirme que 'ajustement réalisé n’est pas satisfaisant.

Ecart Type de la réponse 5.285
R2 0.591
R2A 0.183
R2pred N.D.
PRESS 3186.361
Nombre de degrés de liberté 3
Nom  Coefficient F.Inflation Ecart-Type t.exp. Signif. %
b0 58.857 1.997 29.47 <0.01***
bl —1.850 1.00 2.642 —0.70 53.7
b2 —4.950 1.00 2.642 —1.87 15.7
b3 1.550 1.00 2.642 0.59 60.0
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En conclusion il apparait donc clairement qu’un modele polynomial d’ordre
un ne permet pas d’expliquer correctement le phénomene étudié.

1.7.6 Ajustement d’un modele a effets d’interactions

Considérons ici un modele tenant compte, comme précédemment, des effets
linéaires des différents facteurs mais aussi d’éventuels effets d’interactions en-
tre couples de facteurs. Ajustons donc maintenant le polynéme d’ordre deux
incomplet suivant :

f(x1,20,23) = Bo + Brz1 + Pazwa + P33+
Braz172 + fr3x123 + BosToTs.

Afin de pouvoir estimer au mieux les 7 parametres inconnus de ce modele
(Veffet moyen général, trois effets linéaires et trois effets d’interactions) on
montre [voir 4.3] qu’il est possible d’utiliser le plan factoriel complet constitué
par les expériences 1 a 8 de la table 1.6. En conservant toujours les trois
expériences centrales supplémentaires ceci conduit donc a la réalisation du
plan d’expérience donné a la table 1.9. Pour les 11 expériences de ce plan 7
d’entre elles ont déja été menées afin d’ajuster le modele d’ordre 1 (avec la
numérotation de la table 1.9 les nouvelles expériences sont seulement celles
repérées par 1, 4, 6 et 7).

Table 1.9. Plan d’expérience et réponses observées

N°Exp X1 X2 X3 Y1
1 —1.0000 —1.0000 —1.0000 58.9
2 1.0000 —1.0000 —1.0000 63.4
3 —1.0000 1.0000 —1.0000 57.2
4 1.0000 1.0000 —1.0000 61.3
5 —1.0000 —1.0000 1.0000 70.2
6 1.0000 —1.0000 1.0000 74.5
7 —1.0000 1.0000 1.0000 52.6
8 1.0000 1.0000 1.0000 56.6
9 0.0000 0.0000 0.0000 54.8
10 0.0000 0.0000 0.0000 55.2
11 0.0000 0.0000 0.0000 54.6

L’analyse statistique de ce modele conduit cette fois a la table d’analyse de la
variance suivante. On constate une nette amélioration de I'ajustement réalisé
puisque la somme des carrés due aux résidus (i.e. & 'erreur d’ajustement) est
alors inférieure au tiers de la somme des carrés due a la régression.

Source de Somme des Degrés de Carré Rapport Signif

variation carrés liberté moyen
Régression 368.3600 6 61.3933 2.3368 21.5
Résidus 105.0981 4 26.2723

Total 473.4491 10
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Une analyse plus fine donne maintenant les résultats ci-dessous. Malgré
I’amélioration de la qualité d’ajustement constatée précédemment, le coef-
ficient de corrélation linéraire multiple a une valeur qui est encore trop faible
ici (0.778) pour que 'ajustement réalisé soit de bonne qualité. On retrouve
ce méme résultat en considérant le tableau des divers parametres estimés qui
montre que, hormis l'effet moyen général 3y, aucun d’entre eux n’est signi-
ficativement différent de zéro.

Ecart Type de la réponse 5.13
R2 0.778
R2A 0.445
R2pred N.D.
PRESS 1223.474
Nombre de degrés de liberté 4
Nom Coefficient F.Inflation Ecart-Type t.exp. Signif. %
b0 59.91 1.55 38.77 <0.0124**~
bl 2.07 1.00 1.81 1.15 31.7
b2 —4.87 1.00 1.81 —2.69 5.5
b3 1.60 1.00 1.81 0.88 43.0
b12 —0.05 1.00 1.81 —0.03 97.8
b13 —-0.07 1.00 1.81 —0.04 96.8
b23 3.93 1.00 1.81 —2.17 9.6

Les problemes d’ajustement de ce modele peuvent étre cernés plus précisem-
ment & aide du nuage des résidus. Ce nuage de points (donné ci-dessous)
représente, pour chacune des expériences réalisées, I’erreur d’ajustement com-
mise (Y —Y).

Résidus
° ® o o O ° °
1.45 1

Y Calculé

0.00 1 + + >
50.71 55.09 59.47 63.85 6823 7261
—1.45 1

—2.90 1

—4.35 1
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1.7.7 Ajustement d’un modele d’ordre deux

Considérons maintenant le modele polynomial d’ordre deux complet, c’est-
a-dire incluant aussi les effets dits quadratiques (11, 22 et (33 (on parle
encore de modele pour surface de réponse [voir 5]). Ce modele est donc donné
explicitement par :

[ (@1, 29, 23) = Bo + fra1 + Poxa + B3xs + Pr1a? + Pooxl + Bazzi+
Braz172 + fr3x123 + B23xaTs.

Un plan d’expérience classique permettant d’estimer les 10 parametres incon-
nus d’un tel modele est le plan composite centré donné ci-dessous (qui n’est
autre que le plan complet proposé précédemment aux tables 1.6 et 1.7). Il
est donc nécessaire de réaliser un total de 17 expériences mais seulement les
expérimentations allant de 9 a 14 sont nouvelles

Table 1.10. Plan d’expeérience et réponses observées.

N°Exp X1 X2 X3 Y1
1 —1.0000 —1.0000 —1.0000 58.9
2 1.0000 —1.0000 —1.0000 63.4
3 —1.0000 1.0000 —1.0000 57.2
4 1.0000 1.0000 —1.0000 61.3
5 —1.0000 —1.0000 1.0000 70.2
6 1.0000 —1.0000 1.0000 74.5
7 —1.0000 1.0000 1.0000 52.6
8 1.0000 1.0000 1.0000 56.6
9 —1.6818 0.0000 0.0000 53.2
10 1.6818 0.0000 0.0000 61.7
11 0.0000 —1.6818 0.0000 74.5
12 0.0000 1.6818 0.0000 58.0
13 0.0000 0.0000 —1.6818 57.4
14 0.0000 0.0000 1.6818 63.3
15 0.0000 0.0000 0.0000 54.8
16 0.0000 0.0000 0.0000 55.9
17 0.0000 0.0000 0.0000 54.6

L’analyse statistique conduit a la table d’analyse de la variance suivante :

Source de Somme des  Degrés de Carré Rapport Signif
variation carrés liberté moyen

Régression 751.4572 9 83.4592  357.8215  <0.01™***
Résidus 1.6334 7 0.2333

Validité 0.6534 5 0.1307 0.2667 89.9
Erreur 0.9800 2 0.4900

Total 753.0906 16
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La somme des carrés due a l’erreur est maintenant tres faible devant la somme
totale. Ceci indique que le modele semble étre maintenant bien ajusté. Le
tableau d’analyse de la variance proposé ici par le logiciel est plus complexe
que pour les deux modeles précédents car la somme des carrés due aux résidus
a été décomposée en somme due a la ”validité” et somme due a ”"I'erreur”. Il
s’agit d’'une technique permettant d’affiner I’analyse de la variance, utilisable
des lors qu’au moins une expérience a été répétée, et permettant de tester
Ihypothese Hy : ”le modele est bien ajusté en moyenne” [voir 2.6.5]. Une

analyse plus fine donne ensuite les résultats ci-dessous :

Ecart Type de la réponse 0.483
R2 0.998
R2A 0.995
R2pred 0.990
PRESS 7.164
Nombre de degrés de liberté 7

Nom  Coefficient  F.Inflation  Ecart-Type  t.exp. Signif. %

b0 55.093 0.278 197.93 <0.01***
bl 2.284 1.00 0.131 17.47 <0.01***
b2 —4.910 1.00 0.131 —37.56 <0.01***
b3 1.686 1.00 0.131 12.90 <0.01***
b1l 0.855 1.16 0.144 5.94 0.0701***
b22 3.966 1.16 0.144 27.57 <0.01***
b33 1.880 1.16 0.144 13.07 <0.01***
b12 —0.088 1.00 0.171 —0.51 62.8

b13 —0.037 1.00 0.171 —0.22 82.6

b23 —3.693 1.00 0.171 —23.20 <0.01***

Le coefficient de corrélation linéaire multiple quantifie maintenant de maniere
claire la trés bonne qualité de Iajustement (puisque R? = 0.998 ~ 1). Con-
cernant maintenant ’estimation des divers parametres inconnus du modele il
est intéressant de remarquer que seul 'effet d’interaction entre les facteurs
2 et 3 (i.e. entre la température et la pression) semble étre significativement
différent de zéro (et ceci d’apres les tests d’hypothese réalisés au niveau de la
derniere colonne [voir 2.6]). Il ne semble donc pas y avoir d’effet d’interaction
significatif entre la température et la durée ou bien entre la température et
la pression (i.e. leffet sur la réponse de la température semble étre le méme
quel que soit le niveau choisi pour la durée ou la pression). Le logiciel peut
aussi éditer maintenant le ”tableau des résidus” (donné ci-dessous) permet-
tant de juger de maniere plus précise, c’est-a-dire expérience par expérience, de
la qualité de I'ajustement réalisé. La comparaison entre les colonnes ” Yexp”
(réponses mesurées) et "Ycalc” (réponses prédites par le modele) confirme
que 'ajustement est de trés bonne qualité. Les autres colonnes proposées
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par ce logiciel évaluent la différence entre les réponses mesurées et prédites
(colonne ”Différence”) et font subir un certain nombre de transformations a
ces valeurs afin de les rendre statistiquement plus faciles & interpréter (par
exemple tout résidu dit ”studentisé” supérieur a 2 en valeur absolue traduit
un défaut d’ajustement important).

N°Exp Y exp. Y calc Différence Normée dU Student R R-Student D-Cook

1 58.900 58.646 0.254 0.525 0.670 0.914 0.901 0.169
2 63.400 63.465 —0.065 —0.134 0.670 —0.234 —0.217 0.011
3  57.200 56.927 0.273 0.565  0.670 0.983 0.980 0.196
4 61.300 61.396 —0.096 —0.198 0.670 —0.345 —0.322 0.024
5 70.200 70.018 0.182 0.377  0.670 0.656 0.627 0.087
6 74.500 74.686 —0.186 —0.386 0.670 —0.672 —0.643 0.091
7 52.600 52.449 0.151 0.313  0.670 0.545 0.515 0.060
8 56.600 56.767 —0.167 —0.346 0.670 0.545 0.515 0.060
9 53.200 53.670 —-0.470 —0.972 0.607 —1.551 —1.773 0.373
10 61.700 61.353 0.347 0.719  0.607 1.148 1.179 0.204
11  74.500 74.568 —0.068 —0.141 0.607 —0.225 —0.209 0.008
12 58.000 58.054 —0.054 —0.112 0.607 —0.179 —0.166 0.005
13 57.400 57.576 —0.176 —0.364 0.607 —0.581 —0.552 0.052
14 63.300 63.246 0.054 0.111  0.607 0.178 0.165 0.005
15 54.800 55.093 —-0.293 —0.607 0.332 —0.742 —0.716 0.027
16 55.900 55.093 0.807 1.671 0.332 2.044 2.981 0.208
17 54.600 55.093 —0.493 —1.021 0.332 -—1.249 —1.311 0.078

Les différents résidus peuvent une nouvelle fois étre représentés sous forme
graphique.

Résidus
078 4 ¢
0.52 A
*

0.26 A * .

. *

J Calculé

0.00 >

5245 56.98 6134 6579 70.24 7469

XS .
—0.26 .
e

La plus grande erreur d’ajustement commise (de l'ordre de 0.8 pour une
réponse observée de 55.9) correspond a l'une des expériences dites ” centrales”
(expériences 15, 16 et 17). Ceci était prévisible car il est impossible que la
réponse moyenne prédite au centre du domaine par le modele soit parfaite-
ment ajustée aux trois valeurs différentes obtenues lors des trois répétitions
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de Pexpérience (54.8, 55.9 et 54.6). Au sens des moindres carrés la meilleure
réponse moyenne que peut prédire le modele correspond a la moyenne de ces
trois réponses, c’est-a-dire 55.1 ici (cette valeur est d’ailleurs trés proche de
celle donnée par le modele ajusté).

1.7.8 Recherche des conditions optimales

Maintenant quun ajustement de bonne qualité a été réalisé I’étape finale
consiste a rechercher les conditions optimales pour le probleme posé, c’est-a-
dire les valeurs de la température, de la pression ainsi que la durée amenant
a minimiser ’élasticité de la piece fabriquée. D’apres les résultats obtenus
précédemment le meilleur modele au sens des moindres carrés permet d’écrire
la réponse moyenne prédite sous la forme :

Y (21,9, x3) = 55.093 4+ 2.284x1 — 4.910z2 + 1.686x3
+0.8552% + 3.966x3 + 1.88023 — 3.963x223.

Ce modele a été volontairement simplifié par élimination des deux effets
d’interactions jugés non significatifs dans l’analyse précédente (ceci permet
de manipuler plus facilement cette expression réduite tout en gardant une
qualité d’ajustement quasiment similaire). La problématique est maintenant
la recherche du minimum d’une fonction de plusieurs variables sous la con-
trainte de rester dans le domaine expérimental. Tout point critique d’une telle
fonction (i.e. tout point annulant les dérivées partielles) a pour coordonnées
x1, To et x3 solutions du systeme d’équations :

oY

. (x1,29,23) =0

aYl 2.284 +1.710z, =0

T (21, 2,23) =0 & § —4.910 + 7.93225 — 3.963z5 = 0

(;{2 1.686 + 3.760x5 — 3.96322 = 0
Y

6_1'3 (l’l,IQ,ng) = O

Ce systeme d’équations admet alors une unique solution donnée par :
x1 = —1.336 , x5 = 0.834 , x3 = 0.431.

On vérifie aisément que ce point critique est bien un minimum (global) de la
fonction Y. Ce point est de plus situé dans le domaine expérimental donc il
constitue bien la solution cherchée pour le probleme. On verifie de plus par
un simple calcul que la réponse moyenne prédite par le modele en ce point est
donnée par :
Y (—1.336,0.834,0.431) ~ 51.8.

Une valeur aussi faible pour I’élasticité n’a jamais été obtenue lors des 17
expériences réalisées donc ce résultat est a priori tres intéressant. Remar-
quons que le minimum a été recherché ici par dérivation et il a été ainsi
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immédiatemment déterminé car le point critique obtenu est a la fois un ex-
tremum et un point du domaine expérimental. Ceci n’est pas toujours le
cas (on peut en effet obtenir par exemple un point selle annulant toutes les
dérivées partielles aussi bien qu’un extremum hors du domaine expérimental).
Il est alors nécessaire d’utiliser dans de tels cas des méthodes d’optimisation
plus générales (multiplicateurs de Lagrange, analyse canonique, etc...) ou
bien des techniques algorithmiques de recherche approchée d’extrema. Des
représentations graphiques telles que celle proposée a la figure 1.2 (avec une
représentation simultanée en deux et trois dimensions pour plus de clarté)
permettent aussi de cerner la position du minimum cherché.

Durée X3
8.0 1 1.069 517/'.%055.0 53.0
040
0
65 | [
- . 0. . ; |
/. : :
Dusée | [ ' |
/55.0 |
5.0 - -1.00 /
T I I Pression
20.0 25.0 30.0
Pression

Fig. 1.2. Réponse moyenne prédite (z; = —1.336 fixé).

1.7.9 Conclusion

Cette étude a montré qu’'un modele polynomial d’ordre deux complet semble
modéliser correctement le phénomene étudié ici. Il apparait que les condi-
tions expérimentales optimales, c’est-a-dire celles permettant de minimiser
I’élasticité du produit sont obtenues pour les niveaux codés suivants :

21 =—1.336, 12 = 0.834 , 5 = 0.431.

En revenant aux unités initiales ceci correspond donc aux réglages donnés
ci-dessous :

Facteur 1 | 58.3 °C

Facteur 2 | 29.2 g/cm?
Facteur 3 | 7.1 s
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Il convient maintenant de réaliser concretement une ou plusieurs expériences
en fixant ces niveaux la afin de vérifier si I’élasticité obtenue correspond bien
a la valeur moyenne prédite par le modele, c’est-a-dire a :

[Yopr =518
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Outils mathématiques pour les plans
d’expérience

2.1 Introduction

Ce chapitre présente les notions mathématiques de base utiles pour une bonne
compréhension de la méthode des plans d’expérience.

Les notions algebriques les plus courantes en statistique sont abordées
dans un premier temps. Il s’agit principalement des notions d’algebre linéaire
que sont le calcul matriciel, les projections orthogonales ainsi que ’analyse
spectrale d’une matrice. Quelques notions de base concernant les groupes sont
aussi énoncées. Il sera parfois nécessaire par la suite d’aller plus loin avec la
structure de groupe (notamment par utilisation de la théorie de représentation
linéaire des groupes finis pour la construction de fractions réguliéres) mais ceci
fait l'objet d’une annexe a la fin de 'ouvrage.

Il convient ensuite de maitriser quelques notions élémentaires de prob-
abilité, notamment 1'utilisation de variables aléatoires vectorielles ainsi que
I’expression de leurs moments d’ordre un ou deux.

Les notions de statistique utilisées sont traitées dans une section suivante.
La définition d’un estimateur, d’un modele statistique ainsi que de I’estimation
au sens des moindres carrés pour un modele linéaire sont présentées. Ceci
étant posé les techniques de base d’analyse de la variance sont explicitées afin,
entre autres, d’étre capable de juger de la qualité d’'un modele ajusté. Enfin
quelques éléments concernant la notion de test d’hypothese sont introduits.
Ceci sera d’un grand intérét afin de pouvoir juger de la significativité ou non
des parametres estimés.

Remarquons enfin qu’il n’est pas possible de rappeler ici toutes les notions
de mathématiques utiles et que le lecteur pourra, le cas échéant, se référer a des
ouvrages d’algebre linéaire concernant les notion d’espace vectoriel, d’image
ou de noyau d’une application linéaire, etc...

W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 39
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_2,
(© Springer-Verlag Berlin Heidelberg 2010
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2.2 Algebre

2.2.1 Calcul matriciel

La plupart des plans d’expérience sont utilisés avec des modeles que 1’on
peut facilement décrire en utilisant les outils du calcul matriciel classique.
Rappelons que 1’élément de base est une matrice, c’est-a-dire un tableau A
contenant n lignes et p colonnes. On note A € M (n,p) et A = (a;;) avec
a;; € R terme général de la matrice pour i € {1,2,...,n} et j € {1,2,...,p}
(on utilisera par la suite les notations plus simples i = 1,...,n et j =1,...,p).
La matrice A peut aussi étre vue comme la représentation d’une application
linéaire de R™ dans RP dans deux bases données. Les opérations classiques a
connaitre sont données a la suite :

1) La somme de A € M (n,p) et B € M(n,p) est R=A+ B € M(n,p)
avec :
Vi= 17...,71, Vj:L...,p, Tij :aij—&—bij.

2) Le produit de A € M (n,p) et B € M (p,m) est R = AB € M (n,m)

avec :

p
Vi= 1, Ny Vj = 1, e Mo, Ty = Zailblj-
=1

3) La transposée de A € M (n,p) est R="A € M (p,n) avec :
Vi= 17...,]9 , V_] = 17...77’L , Tig = Qyjg.

4) L'inverse de A € M (n,n) (si elle existe) est 'unique matrice A~1 vérifiant

la relation :
AA Y =A"TA=1,.

Il sera souvent utile dans la suite de déterminer facilement si une matrice est
inversible ou non. Ceci amene a chercher le rang de la matrice considérée,
c’est-a-dire la dimension de ’espace vectoriel engendré par ses colonnes (i.e.
rg (A) = dim (Im A)). On dit alors qu'une matrice A est de plein rang si et
seulement si son rang est maximal, c’est-a-dire lorsque :

rg (A) = nombre de colonnes de A.

Un résultat classique d’algebre linéaire énonce qu’'une matrice carrée est in-
versible si et seulement si elle est de plein rang. Etant donnés deux vecteurs
u,v € R™ on appelle produit scalaire (usuel) le réel :

n
(u|v) ="tuv = Zuzvz
i=1

La norme du vecteur u est alors définie par :
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Il est tres courant lors de I'analyse d’un plan d’expérience d’avoir a effectuer
des produits matricels de la forme !X X. Une telle matrice (appelée matrice
de Gram) est obtenue & 'aide des produits scalaires de tous les couples de
colonnes. En effet, si X € M (n,p) avec ¢y, ..., ¢, ses vecteurs colonnes on a
donc X = [c1 | ... | ¢p] et XX a pour terme général :

Vi,j=1,..,p, (tXX)ij = (¢ | ¢j).
Il est souvent utile d’énoncer des conditions simples de régularité pour ce type

de matrice. Le résultat suivant est tres classique (sa démonstration figure dans
la plupart des livres d’algebre linéaire).

Lemme 2.1. Pour toute matrice X on a rg (*XX) = rg(X) donc :

("X X est régulicre) < (X est de plein rang) .

2.2.2 Projection orthogonale

Considérons ’espace vectoriel R™ muni du produit scalaire usuel. La notion de
projection orthogonale sur un sous-espace vectoriel engendré par les colonnes
d’une matrice X va étre d’une grande utilité par la suite. Rappelons le résultat
suivant (dont la démonstration est aussi trés classique) :

Proposition 2.2. Pour toute matrice X € M (n,p), de plein rang, le pro-
jecteur orthogonal de R" sur Im X a pour expression matricielle :

P=Punx) =X ("XX) X
De méme, on démontre facilement que (I, — P) est le projecteur orthogonal
de R™ sur le sous-espace vectoriel (Im X)™ .
2.2.3 Analyse spectrale

Il sera parfois utile de réaliser ’analyse spectrale d’'une matrice carrée. Il s’agit
alors de déterminer I’ensemble de ses valeurs et vecteurs propres. Rappelons
que si A € M (p,p) on dit que X est une valeur propre de A si et seulement
si il existe un vecteur u € R? — {0} tel que :

Au = Au.

Un tel vecteur est qualifié de vecteur propre associé a .
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On appelle spectre de A I'ensemble de ses valeurs propres. S’il est pos-
sible de déterminer une base de RP formée de vecteurs propres la matrice
A est alors diagonalisable sur cette base avec pour éléments diagonaux les
valeurs propres. Une des multiples utilisations des valeurs propres consiste
a déterminer facilement la trace ainsi que le déterminant d’une matrice
carrée. On démontre en effet que ces deux quantités sont invariantes par
changement de base. Si {A1,...,\p} est le spectre de la matrice diagonalis-
able A il vient immédiatement par passage a la base de vecteurs propres :

P
Trace (A) = Z Ai et Det (A) = |4] = H/\
i=1

2.2.4 Matrices particuliéres

Présentons ici brievement trois classes de matrices carrées particulieres qui
seront d’un grand intérét par la suite.

1) Les matrice symétriques. Une matrice A € M (p, p) est dite symétrique
si et seulement si A = A (i.e. la matrice reste inchangée si ses lignes sont
transformées en colonnes). Un résultat classique énonce que toute matrice
symétrique est diagonalisable. Ceci est particulierement intéressant en statis-
tique ot des matrices de la forme !X X sont souvent utilisées; elles sont donc
toujours symétriques.

2) Les matrices orthogonales. Une matrice A € M (p, p) est dite orthogonale
si et seulement si *AA = I, (ou de maniére équivalente A*A = I,). D’apres les
résultats du paragraphe 2.2.1 une matrice est donc orthogonale si et seulement
si chacune de ses colonne a pour norme 1 et les produits scalaires de tous les
couples de colonnes distinctes sont nuls. Remarquons que, par définition, toute
matrice orthogonale A est inversible avec :

ATt =1tA

3) Les matrices symétriques définies positives. Une matrice symétrique
A € M (p,p) est dite définie positive si et seulement si :

Vo cRPavecx #0, ‘zAx > 0.

De maniére moins contraignante une matrice symétrique A € M (p, p) est dite
semi-définie positive si :

VaxeRP, tzAz > 0.

Le lecteur souhaitant plus d’informations sur l'origine de ces définitions pourra
consulter dans les ouvrages d’algebre linéaire de base (par exemple Queysanne
[76]) la notion de forme quadratique. Il est intéressant de traduire ces deux
hypotheses en terme de valeurs propres. On montre alors qu’'une matrice di-
agonalisable est définie positive (resp. semi-définie positive) si et seulement si
toutes ses valeurs propres sont strictement positives (resp. positives ou nulles).
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2.2.5 Notion de groupe

Rappelons ici la définition ainsi que certaines notions élémentaires concer-
nant les groupes. Le lecteur pourra aussi consulter, par exemple, 'ouvrage
de Queysanne [76] pour des généralités ou bien 'ouvrage de Calais [17] s’il
désire appronfondir ces notions. Etant donné un ensemble G muni d’une loi
de composition interne notée * (i.e. pour 2,y € G, x *xy € G) on dit que G
est un groupe (et on note (G, )) si les trois axiomes suivants sont vérifiés :

1) la loi * est associative : V x,y,2 € G, (xxy)xz=x * (y * 2),

2) il existe un élément e dans G tel que : V2 € G ,exz =xxe = .
On dit que e est I’élément neutre de (G, *).

3) tout élément de G est symétrisable :

VeeG,dzteGtelquerxz =z txx=e.
Etant donné un groupe (G, *) on utilise souvent un de ses sous-groupes. On dit
que (H, *) est un sous-groupe de (G, x) , et on note H < G, si et seulement
si H est une partie non-vide de G (i.e. H # @ et H C G) vérifiant :

Ve,yeH,zxyeH e YzeH,z 'eH.

Lorsque la loi * est de plus commutative (i.e. V z,y € G, xxy = y*z) le
groupe est alors qualifié d’abélien (ou commutatif). Lorsque le groupe est
constitué de n € N* éléments il s’agit d’'un groupe fini d’ordre n.

2.3 Probabilités

2.3.1 Variables aléatoires réelles

On considére toujours dans la suite des variables aléatoires réelles (v.a.r.) ab-
solument continues, c’est-a-dire admettant une densité de probabilité (notée
f) par rapport & la mesure de Lebesgue sur R. Dans certains cas il est
nécessaire de connaitre exactement la loi des v.a.r. étudiées (par exemple
pour réaliser des tests d’hypotheses), on supposera alors couramment qu’elles
sont de loi normale. On supposera aussi que ’on utilise toujours des v.a.r.
admettant une espérance mathématique et une variance selon la définition
classique suivante :

1) L’espérance mathématique de la v.a.r. Yest : E(Y) = /tfy (t) dt.
R

2) La variance de la v.a.r. Y est :

Var (V) = E [(Y —E (Y))Q} —E(Y?) - [E(V)?.
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L’espérance donne une caractéristique de position de la v.a.r. (elle est con-
fondue avec la notion usuelle de moyenne d’'un échantillon lorsque la taille de
celui-ci tend vers U'infini). La propriété suivante de linéarité de 1’espérance est
souvent utile :

EX4+Y)=EX)+E(Y) etVaeR, E(aX)=0aE(X)
ainsi que le résultat classique :
X et Y indépendantes = E(XY)=E(X)E (V).

Concernant la variance, il s’agit cette fois d’un indicateur de la dispersion
(autour de la moyenne) de la variable aléatoire. La variance est une forme
quadratique vérifiant les principales propriétés suivantes :

Var (X) > 0 et (Var (X) =0 < X = Cte),
Va,b € R, Var (aX + b) = a® Var (X),
X et Y indépendantes = Var (X +Y) = Var (X) + Var (V).

On considére aussi souvent ’écart-type oy = /Var (Y) au lieu de la vari-
ance. Il a pour principal avantage d’étre exprimé avec les mémes unités que
Y (alors que si Y est exprimée, par exemple, en m la variance est elle en m?).

2.3.2 Vecteurs aléatoires

On dit que Y est un vecteur aléatoire de R” si et seulement si les coor-
données du vecteur Y =* (Y1, ..., Y;,) sont des variables aléatoires réelles. On
généralise les notions d’espérance et de variance, désignées par E et V dans le
cas vectoriel par :

1) L’espérance mathématique du vecteur aléatoire Y est :
EY)="(EM),...E(Y,)).
2) La matrice des covariances du vecteur aléatoire Y est :
V(Y)=E[(Y ~E(Y) (Y ~E(V))].

La notion de linéarité de I’espérance conduit dans le cas vectoriel a la propriété
supplémentaire suivante :

E(AY) = AE (Y) si A est une matrice non-aléatoire.

En ce qui concerne la matrice des covariances remarquons que V (V) est con-
stituée par les éléments suivants (V i,j = 1,...,n avec i # j) :

Var (V;) = E (Y?) — [E (¥3)]? sur la diagonale,
Cov (Y;,Y;) = E(Y}Y;) — E(Y;) E (Y;) hors de la diagonale.
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On généralise de méme le fait que la variance est une forme quadratique en
remarquant que :

V(AY) = AV (Y)'A si A est une matrice non-aléatoire.

2.4 Statistiques

2.4.1 Notion d’estimateur

Considérons un phénomene aléatoire dépendant d’un parametre 3 € R in-
connu. Suite & n expériences qui sont des réalisations des v.a.r. Y7,..., Y, on
appelle estimateur de 3 toute v.a.r. Y telle que Y = f(Y1,...,Y,) avec f
fonction connue (en d’autres termes f ne doit pas dépendre du parametre 3
inconnu). On désigne classiquement un estimateur de (3 par la notation B
Deux propriétés classiques d’un estimateur sont :

Définition 2.3. On dit que :
1) un estimateur de (3 est sans biais si et seulement si : E(B) = 8,

2) si Bl et BQ sont deux estimateurs sans biais de 3 alors ,(;’1 est plus efficace
que Bg st et seulement si : Var (Bl) < Var (Bg)

Un estimateur de § de bonne qualité est donc un estimateur a la fois sans biais
(”centré” sur la cible & atteindre) et le plus efficace possible (le moins dispersé
possible autour de cette cible). Considérons ’analogie graphique suivante avec
0 assimilé au centre d’une cible et les observations aux divers impacts (on
admettra ici que la notion d’efficacité est identique dans le cas d’un estimateur
biaisé) :

Fig. 2.1. Fig. 2.2.
Estimateur biaisé peu efficace. Estimateur biaisé efficace.
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Fig. 2.3. Fig. 2.4.
Estimateur sans biais peu efficace. Estimateur sans biais efficace.

Lorsque la condition 1 de la définition 2.3 n’est pas vérifiée le biais est la
quantité E(ﬁ) — 8 (non nulle dans ce cas). Un bon estimateur doit aussi
étre convergent, c’est-a-dire que B doit tendre vers (8 lorsque la taille de
I’échantillon tend vers +o0co. Cette propriété n’est pas détaillée ici car la notion
de convergence des variables aléatoires n’est pas abordée dans cet ouvrage
(voir, par exemple, Saporta [83]).

2.4.2 Modele statistique

Considérons un phénomene aléatoire dépendant de m variables et supposons
que l'on cherche & modéliser au mieux ce phénomene. La démarche statistique
consiste alors a effectuer n expériences, judicieusement choisies dans le cas des
plans d’expérience. Chacune d’entre elles est repérée par un point x € R™ (ceci
est possible si les variables étudiées sont quantitatives, pour le cas qualitatif on
utilise un sous-ensemble de N). En désignant par Y (x) la réponse mesurée
en x on suppose classiquement que cette réponse résulte de la somme de la
loi de réponse f en z (i.e. la réponse réelle recherchée) et du résidu € en z
(i.e. Perreur commise). Donc :

Y(z) = f(z)+e(x).

Le résidus peut rendre compte de bon nombre de causes telles que des erreurs
dues a l'expérimentateur, un mauvais modele postulé, I'oubli de certaines
variables, etc... On suppose généralement que les résidus sont des variables
aléatoires réelles vérifiant les trois hypotheses suivantes :

centrage, (Vzx, E(e(x))=0),
indépendance, (donc V z # o/, Cov (e (z) ,e (z')) = 0), (H)
homoscédasticité, (V x, Var (e (1)) = o?).

Ces trois hypotheses ont pour but de simplifier I’analyse des modeles étudiés.
Concretement, '’hypothese de centrage impose que les erreurs commises
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sont ”de moyenne nulle”, ceci est naturellement le cas si les erreurs sont
bien aléatoires (cette hypothése va par contre poser probleme lorsque les
résidus présentent une structure particuliere). L’hypothese d’indépendance
est vérifiée des lors que les expériences réalisées le sont de maniere réellement
indépendante les unes des autres. Enfin, 'hypothese d’homoscédasticité im-
pose que erreur commise est de méme amplitude tout au long du processus
(cette hypotheése peut poser probleéme pour, par exemple, une machine se
dégradant au fur et & mesure de son utilisation).

Un probleme classique consiste a estimer au mieux les parameétres inconnus
du modele donné par la fonction f (on supposera désormais qu’ils sont au
nombre de p). Voici quelques exemples de modeles :

1)m=2,p=2, f(x1,22) = 1 + Bor1,
2) m=3,p=>5, f(x1,22,23) = f121 + Box2 + G325 + Baz173 + B5 exp (z1),
3)m=2,p=23, f(x1,22) = 1 + Bax1 + sin (Bz372) .

Il convient de distinguer les modele linéaires (i.e. linéaires par rapport aux
coefficients inconnus, comme les deux premiers) des modeéles non-linéaires
(le troisieme). Mathématiquement, un modele est linéaire par rapport aux
parametres 3; (¢ = 1,...,p) si et seulement si chacune des dérivées partielles
of (x) /06; (i = 1,...,p) ne dépend plus de 3;. Etant donné un phénomene
aléatoire a expliquer, il n’est généralement pas simple de proposer un modele
adéquat. La fonction f est trés souvent inconnue (ou trop complexe). C’est
pourquoi il est courant de ’approcher a I’aide d’une classe de fonctions usuelles
(développements de Taylor, séries de Fourier...).

2.4.3 Modélisation linéaire

On considere ici un modele statistique dépendant de m variables avec f fonc-
tion linéaire par rapport a p parametres inconnus. Si n expériences ont été
réalisées, repérées par les points (z,),_; ,, de R™ on a donc :

Vu=1,.,n,Y (z4) = [ (zu) + € (24).

Puisque f est une fonction linéaire par rapport aux parametres inconnus, on
peut donc aussi écrire ce modele matriciellement sous la forme suivante :

Y=X0(+¢

avec Y € R™ vecteur des observations, ¢ € R™ vecteur des résidus, § € R?
vecteur des parametres inconnus du modele et X € M (n,p) matrice du
modele. Les hypotheses (H) se traduisent alors simplement par :

E(e) =0et V(e) = 0?1,. (H)
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Ceci implique donc, d’apres les propriétés vues précédemment, que :

E(Y)=XBet V(Y)=0?l,.

En conséquence, X 3 est donc la réponse moyenne donnée par ce modele.

| Exemple

On mesure ici le rendement Y d’une réaction chimique en fonction de
la température ¢ et on envisage d’utiliser le modele linéaire suivant

appelé modele quadratique :

Y (t) = Bo + But + Brat® +e(t).

On réalise 5 expériences et les résultats suivants sont obtenus (les
rendements sont en % et les températures en °C') :

t

10

15

20

25

30

Y

15

35

40

33

10

Le modele linéaire associé se traduit pour les 5 expériences réalisées

par le systeme d’équations ci-dessous :

15 = By 4+ 1061 + 100811 + €
35 = [y + 1561 + 2250611 + ¢
40 = By + 2081 + 4000811 + €
33 = (o + 2501 + 6250611 +e(2
10 = By + 3051 + 900811 + € (3

(
(
(
(
(

10)
15)
20)
5)
0)

Ce systeme peut étre réécrit matriciellement Y = X3 + ¢ en posant :

15
35
Y=|40], X =
33
10

Onadoncici:n=5 m=1et p=3.

110 100
115225
120 400
125625
1 30 900

75:

Bo
o
Pu

et € =

NN N TN T
[
S ot O
NN AN N N

M o M O, O
(=N

W DN

Comme illustré dans cet exemple, les lignes de la matrice du modele sont
donc associées aux diverses expériences réalisées alors que ses colonnes sont
associées aux divers parameétres inconnus du modele postulé (la premiere
colonne de X donne les coefficients multipliant Gy lors des 5 expériences, la
seconde colonne fait de méme pour 31 et la derniére est associée a (11).
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2.4.4 Estimation au sens des moindres carrés

Une fois le modele posé le probleme consiste maintenant a déterminer un
estimateur 3 de ( le "meilleur” possible. Une démarche classique consiste a
chercher B de maniere a ce que le vecteur des réponses observées Y et le vecteur
des réponses moyennes prédites Y =X B soient les ”plus proches” possi-
bles. Ceci conduit a ’estimateur des moindres carrés de (3 selon la définition
suivante (ou |.|| est la norme usuelle de R™) :

Définition 2.4. On dit que ,@ est l’estimateur des moindres carrés de 3
st et seulement si B minimise la fonction :

QB) =y —Xp|”.

L’estimateur des moindres carrés de 3 donne le minimum de la fonction @ et
ce minimum vaut alors :

R NP N n N2
@(8) = |y -x8 =y ¥ = 3 (vi-¥) -
i=1
Ceci montre que cette quantité est bien liée a l'erreur (quadratique) commise
entre les réponses observées Y; et les réponses moyennes prédites par le modele
Y;. Concernant la détermination pratique de cet estimateur, on montre que :

Proposition 2.5. [<] Soit le modéle statistique Y = X3+ ¢ avec X matrice
de plein rang. L’estimateur des moindres carrés de (8 est donné par :

f=("xx)""txY.

Sauf indication contraire, on supposera toujours dans la suite que X est une
matrice de plein rang p. L’égalité (tXX)ﬁ = 'XY traduit les équations
dites normales. Le vecteur des réponses moyennes prédites par le modele est
alors :

Y = XB=PY avec P = X ('XX)''X.

Géométriquement, Y est donc la projection orthogonale de Y sur Im X. Les
propriétés suivantes découlent de la proposition 2.5 :

Proposition 2.6. [<] Si les hypothéses (H) sur les résidus sont vérifides et
si B est 'estimateur des moindres carrés de 3 alors :
1) 3 est un estimateur sans biais de 3,

2) 3 admet pour matrice des covariances : V (B) =o? (’5XX)_1 .

Ce dernier résultat montre donc que la qualité de ’estimateur obtenu dépend
directement de la matrice du modele utilisé. Un des objectifs de la planification
expérimentale est la recherche d’une matrice X telle que XX soit la plus
simple possible avec B le moins dispersé possible.
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| Exemple

En reprenant 'exemple du paragraphe 2.4.3 on obtient :

5 100 2250 133
XX = | 100 2250 55000| et!XY = | 2600
2250 55000 1421250 55000
Il en découle que :
. 15.8 —1.68 0.04
(‘XX) =|-168 0.187 —4.57.107°

0.04 —4.57.107% 1.14.10~*

Les estimateurs des moindres carrés du modele étudié sont obtenus
par la relation 3 = (’SXX)_1 t XY, ils sont donnés dans la colonne ” Es-
timat.” du tableau suivant. De méme, la colonne ” Fc. type” contient
les écart-types associés & ces estimateurs (obtenus avec les racines

carrées des éléments diagonaux de (‘X X )71) :

Param. | Estimat. | Ec. type
5o —66.60 3.970
51 10.96 0.430
P11 —0.28 0.0lc

Remarquons que le vecteur des réponses observées Y est a comparer
au vecteur des réponses moyennes Y prédites par le modele avec :

15 15.0
35 34.8
Y=140| et Y = X3 = |40.6
33 32.4
10 10.2

2.4.5 Prédiction de la réponse moyenne

Une fois B déterminé ’expérimentateur est souvent intéressé par l'utilisation
du modele obtenu afin de prédire la réponse moyenne en un point quel-
conque (ou aucune expérience n’a été réalisée). Ceci est primordial lorsque
la modélisation doit conduire, par exemple, a la recherche des conditions
expérimentales susceptibles de maximiser (ou minimiser) la réponse étudiée.

| Exemple |

Toujours avec ’exemple des paragraphes précédents, quel rendement
prédit le modele pour une température de 12°C' 7
Le meilleur modele obtenu au sens des moindres carrés est :
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Vte[10,30] , Y () = —66.6 + 10.96¢ — 0.28t> = ‘g (t) 3

en notant ‘g () = [1¢¢*]. On en déduit que le rendement prédit
pour une température de 12°C est égal a :

Y (12) = tg (12) B = 24.6.

La méthode présentée dans cet exemple est généralisable sans difficulté et la
prédiction de la réponse moyenne au point x € R™ est donnée par :

avec g (z) € RP vecteur de régression c’est-a-dire tel que *g () est construit
de maniere identique aux lignes de la matrice X. Connaissant la valeur de la
réponse moyenne prédite au point x la qualité de cette prédiction est quantifiée
a l’aide du résultat suivant :

Proposition 2.7. [<] La qualité de la prédiction Y (x) = 'g () § réalisée au
point x € R™ est mesurée par :

1

VarY (z) = o2 ‘g (z) ("XX)  g(2).

On constate donc que la qualité de la prédiction au point x € R™ dépend :

1) du point choisi,
2) de la dispersion du résidu,
3) de la matrice du modeéle X utilisée.

Ceci montre, une nouvelle fois, que la qualité des prédictions obtenues dépend
de la fagon dont les expériences ont été menées via la matrice X.

2.5 Analyse de la variance

2.5.1 Décomposition fondamentale

Une fois le modele ajusté, le probleme de la qualité de 'ajustement obtenu se
pose alors. Il est possible d’obtenir des indicateurs numériques permettant de
quantifier ceci a 'aide des techniques dites d’analyse de la variance. Ces
techniques reposent sur des décompositions judicieuses en sommes de carrés.
Désignons dans la suite par Y la réponse moyenne observée et par Y* le
vecteur des réponses observées centrées (i.e. le vecteur ayant pour éléments
Y; =Y pour i = 1,...,n). Remarquons que si I, est I'indicatrice d’ordre n (i.e.
le vecteur de R™ dont toutes les composantes sont égales & 1) alors :

_ 1 _
Y=",YetY* =Y —YI,.
n
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On définit ensuite les trois sommes classiques suivantes (la notation SS venant
de l'anglais Sum of Squares) :

1) On appelle somme totale des carrés (centrés) la quantité :

n n

SST =3 () =Y (v:-7¥)".

=1 =1

2) On appelle somme des carrés due a ’erreur la quantité :

SSE:znz(n—ﬁ)2.
1=1

3) On appelle somme des carrés due a la régression la quantité :

n

SSR:Z(ﬁ—7)2.

=1

On montre que ces trois quantités sont liées par la relation suivante :

Proposition 2.8. [<] 5i P = X ('XX) "'X est le projecteur orthogonal de
R"™ sur Im X et si I,, C Im X alors les sommes de carrés SST, SSE et SSR

s’écrivent :
SST ='YY —nY", SSE ="'V (I, — P)Y et SSR ="'V PY — nY".
1l en découle la décomposition fondamentale suivante :
SST =SSR+ SSE.

Pour Y vecteur aléatoire de R™ et A € M (n,n) matrice non-aléatoire, on
appelle nombre de degrés de liberté de ‘Y AY le rang de la matrice A.
Cette notion de degrés de liberté provient de la loi usuelle du khi-deux. En
effet, on montre (voir, par exemple, ouvrage de Searle [88]) que si Y est un
vecteur aléatoire de loi gaussienne N (M,U2In) et si A est la matrice d’un
projecteur alors ‘Y AY suit une loi du khi-deux décentrée, de parametre de
décentrage (1/2)*uApu, avec un nombre de degrés de liberté égal a rg (A).
Les degrés de liberté associés aux différentes sommes de carrés sont donnés
ci-dessous. Il en découle les sommes moyennes des carrés (avec la notation MS
pour Mean Square) :

Proposition 2.9. [<]| Les sommes de carrés SST, SSE et SSR sont as-
sociées, respectivement, & (n—1), (n—p) et (p—1) degrés de liberté. Ceci
permet de définir les sommes moyennes de carrés par :

SSE ot MSR — SSR

MSE = .
n—op p—1

On a maintenant pour ’exemple de la réaction chimique :
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| Exemple

Il vient icin =5, p =3 et Y = 26.6 donc :
SST =1701.2, SSE = 0.8 et SSR = 700.4

Le tableau d’analyse de la variance est alors :

Source ddl | S. Carrés | M. Carrés
Régression | 2 700.4 350.2
Erreur 2 0.8 0.4
Total 4 701.2

Remarque. Les résultats présentés ci-dessus ne sont vrais que si I, C Im X.
Cette hypothese n’est pas contraignante en pratique car elle est en particulier
vérifiée des lors que l'on utilise un modele incluant un terme constant (i.e.
Bo pour 'exemple du paragraphe 2.4.3) ce qui implique que X contient une
colonne constituée uniquement de 1. Si cependant I’hypothese I, C Im X
n’est pas vérifiée alors la décomposition fondamentale n’est plus vraie. On
peut encore conserver cette décomposition mais il faut considérer les sommes
de carrés non-centrées suivantes :

SSt = zn:yf , SSe = zn: (Yi - Yi)Q ot SSr = ifff.
=1 1=1

=1

On montre, de maniere similaire au cas centré, que S.St est associée a n ddl,
SSe & (n—p) ddl et enfin SSr est associée & p ddl.

2.5.2 Coefficient de corrélation linéaire multiple

La décomposition fondamentale de la proposition 2.8 permet d’évaluer la
qualité de l'ajustement du modele utilisé. En effet, le modele est d’autant
meilleur que SSE est faible (le cas ”limite” SSE = 0 correspondant a un
modele prédisant les résultats expérimentaux sans la moindre erreur). On in-
troduit alors le coefficient suivant :

Définition 2.10. On appelle coefficient de corrélation linéaire multiple
le réel :

_SSR __ SSE
- SST T SST
Il découle immédiatement de la proposition 2.8 que :

R2

0< R?2<1.

Le modele ajusté est d’autant plus ”proche” des réponses observées que R?
est proche de 1. Un seuil classique consiste a valider le modele des lors que
R? > 0.95.
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| Exemple |

Pour la réaction chimique on obtient R? ~ 0.999. Le modele quadra-
tique utilisé est donc de tres bonne qualité. Ce résultat est confirmé
graphiquement par la figure 2.5 ol la parabole ajustée est tres proche
du nuage des 5 points observés.

40

20+

10 20 30
t

Fig. 2.5. Ajustement d’un modele linéaire.

Inversement, on montre qu’avec le modele polynomial du premier
degré Y (t) = o + [t + € (t) on obtient alors R? ~ 0.021. Un tel
modele n’est donc absolument pas adapté au phénomene étudié (cf.
droite en pointillés de la figure 2.5).

2.5.3 Estimation de o2

Un autre intérét des techniques d’analyse de la variance est d’obtenir une
estimation de la dispersion inconnue o2 des résidus. On a alors le résultat
classique suivant :

Proposition 2.11. [<] Lorsque X est une matrice de plein rang p, un esti-
mateur sans biais de la variance des résidus o2 est :

62 = MSE =

n—p
On démontre que cet estimateur est généralement tres efficace (notamment
lorsque les observations suivent une loi normale). Ce résultat permet donc



2.5 Analyse de la variance 55

d’effectuer un calcul explicite de toutes les quantités faisant intervenir la valeur

inconnue o2 en la remplacant par estimateur 2.

| Exemple |

Toujours pour ’exemple de la réaction chimique, il vient :

62 = MSE = 5 =0.4.

On en déduit les valeurs suivantes pour les dispersions des estimateurs
des parametres du modele :

Param. | Estimat.| Ec. type
5o —66.60 2.51
51 10.96 0.27
P11 —0.28 0.007

2.5.4 Décomposition plus fine de SSE

Il a été montré précédemment que la quantité SSE quantifie 'ampleur de
Ierreur globale commise lors de ’ajustement. Cette erreur peut cependant
découler de plusieurs sources différentes. Deux causes principales sont soit le
choix d’un mauvais modele soit une grande variabilité des résultats observés
(qui peut étre due, par exemple, & oubli de variables influentes). Une tech-
nique classique afin de distinguer ces deux sources d’erreur consiste a réaliser
un certain nombre de répétitions d’expériences. Désignons alors par n* le
nombre total de conditions expérimentales distinctes (par exemple le nom-
bre de températures distinctes pour la réaction chimique) et supposons que
Pexpérience i (1 < i < n*) a été répétée ¢; € N* fois. Pour la i-éme expérience
notons les ¢; réponses observées sous la forme suivante :

VA

i 5 i g eee i

Il découle de ces hypotheses que le nombre total d’expériences réalisées est :

*

n
n = E C;.

=1

Dans la suite Y désigne le vecteur des observation écrit dans ’ordre suivant :

Vo= (Y )

n* g ceey Ip*

Notons enfin, pour 1 < i < n*, Y; la réponse moyenne observée pour les ¢;
répétitions de la i-eme expérience, donc :

v_ly oy
n—Ci;n :
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Ces notations généralisent bien le cas classique, sans répétition, qui correspond
acy =c =..=cp =1 (netn* sont identiques). Lorsque 'expérience 4
n’est pas répliquée (¢; = 1) on notera, comme précédemment, Y; au lieu de
Yi(l). On définit classiquement les deux nouvelles sommes suivantes (avec les
notations LOF pour Lack Of Fit et PE pour Pure Error) :

1) On appelle somme des carrés due au manque d’ajustement la quan-
tité :

SSLOF = an (%-7)".
i=1

2) On appelle somme des carrés due a ’erreur pure la quantité :

SSPE = i Z (v - ?i)2 .

i=1 u=1

On montre alors que (en désignant par J,, = I,'T,, la matrice carrée d’ordre
n composée par 'unique valeur 1) :

Proposition 2.12. [<] Si P* désigne le projecteur orthogonal de R™ sur
Uimage de la matrice indicatrice des répétitions (c’est & dire que P* =
diag (rflJTl,r;lJT27 ,r;}JTN)) et P est le projecteur orthogonal de R™
sur Im X alors les sommes de carrés SSLOF et SSPE s’écrivent aussi :

SSLOF ='Y (P* — P)Y et SSPE ="'Y (I, — P*)Y.
1l en découle la décomposition suivante :
SSE =SSLOF + SSPE.

Les sommes de carrés SSLOF et SSPFE sont de plus associées respectivement
a (n* —p) et (n —n*) degrés de liberté, donc les sommes moyennes des carrés
associées verifient :
SSLOF SSPE
MSLOF = ——— et MSPE = .

n*—p n—n*

Cette décomposition permet de distinguer la part de SSE qui est due au choix
d’un mauvais modele (SSLOF) de celle qui, par contre, découle de variations
non-controlées (SSPE).



2.5 Analyse de la variance

| Exemple

Reprenons 'exemple du rendement de la réaction chimique mais sup-
posons maintenant que I’expérience a été dupliquée pour la tempéra-
ture 10°C' et a donné les résultats suivants :

15120 | 25
35140 | 33

t | 10
Y | 10

10
20

30
10

On a donc toujours n* = 5 conditions expérimentales différentes (i.e.
5 températures distinctes) mais n = 6 expériences réalisées. Pour les
réplications il vient ¢y =2 et co =c3 =c4 =c5 =1 avec :

VM =10 et ¥, =20 donc V; = 15.

Ceci conduit au tableau d’analyse de la variance suivant :

Source ddl | S. Carrés | M. Carrés
Régression (ssr) | 2 812.5 406.3
Erreur (SSE) 3 50.8 16.9
Pure. (ssPE) | 1 50.0 50.0
Ajus. (ssLor) | 2 0.8 0.4
Total 5 863.3
Il en découle que :
SSE
52 = MSE =169 et R*> =1— ——— = 0.941.
7 ¢ SST
Concernant le modele ajusté, on obtient :
Param. | Estimat. | Ec. type
Bo —66.60 13.66
051 10.96 1.59
P11 —0.28 0.04

Le modele ajusté est identique & celui du paragraphe 2.4.4 (ou il n’y
avait pas de répétition). Ceci est di au fait que la méthode utilisée
est celle des moindres carrés dite ordinaire, c’est-a-dire que toutes
les observations ont un poids identique. Il en résulte que, pour la
température 10°C, le modele ajusté a pour objectif de passer au
plus pres de la réponse moyenne observée (i.e. 15 %) qui est iden-
tique a celle du cas sans répétition. Le modele ajusté obtenu est
de bonne qualité (faible valeur de SSLOF) mais la précision des
résultats obtenus souffre de la grande variabilité constatée lors de
Pexpérience dupliquée (forte valeur de SSPFE). La dispersion associée
a chaque parametre estimé est donc maintenant beaucoup plus im-
portante qu’au paragraphe 2.5.3. Cette forte imprécision peut s’avérer
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problématique mais le fait de dupliquer une expérience et de mesurer
une réponse pouvant varier du simple au double montre qu’il y a un
probléme au niveau de ’analyse du phénomene étudié (toutes les vari-
ables importantes ont-elles été considérées 7).

2.6 Tests d’hypotheses

2.6.1 Exemple introductif

Considérons une unité de production de composants électroniques. Il est
préférable, pour la qualité des produits fabriqués, que ’hygrométrie moyenne
dans les locaux soit fixée & un niveau de 40%. Afin de juger si cette con-
dition est vérifiée ou non on mesure a divers moments de la journée n taux
d’hygrométrie qui sont des réalisations des variables aléatoires réelles Y1, ...,Y,,.
Désignons par 6 le taux moyen d’hygrométrie (inconnu) et par 6 un estimateur
sans biais découlant des observations. Un tel estimateur est classiquement :

i=1

Intuitivement il est clair que les conditions seront satisfaisantes si 0 est proche
de 40 alors que le taux d’hygrométrie mesuré posera probléme dans le cas con-
traire. Toute la difficulté pratique réside dans la traduction de ’hypothese "0
est proche de 40” car 6 est une quantité aléatoire (donc susceptible de varier).
Réaliser un test d’hypothese consiste a proposer une stratégie permettant de
faire un choix entre ici les hypotheses :

é:

S|

Ho : 70 =40" et Hy : 70 # 407,

Supposons maintenant que les observations sont des réalisations indépendantes
d’une méme loi normale N (6, 0) avec Iécart-type o connu (pour simplifier).
Il découle alors des propriétés de la loi normale que 6 suit lui-méme une loi
normale d’espérance 6 (on a bien un estimateur sans biais) et d’écart-type
a/+/n. 1l est donc possible de prendre une décision en utilisant la statistique
de test 6 sous I’hypothese Hy. En effet, si Hy est vraie on peut affirmer que :

A o
0~ N|(40,— ).
( vn )
La distribution de @ est donc bien connue et il est possible de déterminer une
région critique, c’est-a-dire une région dans laquelle 6 a tres peu de chances

de se trouver si Hy est vraie. Il s’agira ici (par symétrie de la loi normale)
d’une région de la forme :

CRy = ]—00,40 — ko[ U 40 + kq, +00]
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ou k, est déterminé de maniere a ce que 6 ait une probabilité égale a o de se
trouver dans cette région. L’utilisateur va choisir une valeur de «, en déduire
la région critique C'R,, et enfin utiliser la regle de décision suivante :

siY € CR, alors on rejette Hy,
siY ¢ CR, alors on accepte Hy.

La quantité o mesure la probabilité de rejeter Hy alors que cette hypothese
est vraie (on a donc tout intérét & prendre de faibles valeurs pour «).

2.6.2 Cas général

De maniere générale un test d’hypothése est une méthode permettant, a
partir des résultats observés expérimentalement, de choisir entre deux hy-
potheses. Les étapes d’un test sont données dans le cheminement ci-dessous.

1) Formulation des deux hypothéses.

Il convient de formuler clairement, au préalable, les hypotheses associées au
probléme posé. Ces deux hypotheses sont désignées par la suite par Hy (hy-
pothese nulle) et H; (hypothese alternative). On supposera qu’'une des deux
est forcément vraie et qu’elles sont incompatibles (Hy N H; = @). Un choix
fréquent consiste & prendre pour H; la négation de Hy (Hy = Hy).

2) Détermination d’une statistique de test.

La méthode des tests d’hypothéses consiste ensuite a élaborer une statistique
de test T (quantité aléatoire ne dépendant pas du ou des parametres inconnus
du probleme). Cette quantité doit étre adaptée a la nature des hypotheses
postulées et doit surtout étre assez simple pour que sa loi de probabilité soit
connue lorsque Hj est supposée vraie.

3) Détermination d’une région critique.

La loi de T étant connue lorsque Hy est vraie il est maintenant possible de
construire une région critique C'R,, c’est-a-dire un ensemble de valeurs de T'
ayant une probabilité d’apparition égale a « sous 'hypothese Hy.

4) Décision finale.

La derniere étape consiste a déterminer une estimation ¢ de T & partir de
I’échantillon des valeurs observées. On appliquer alors la regle de décision
suivante :

sit € CR, alors on rejette Hy (et donc on accepte Hy),
sit ¢ CR, alors on accepte Hy.

Puisque deux hypotheses coexistent avec chaque fois deux décisions possi-
bles (acceptation ou rejet), un test d’hypothese conduit aux quatre situations
possibles suivantes faisant intervenir les probabilités « et & :
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Décision Probabilité associée
Accepter Hy quand Hy est en réalité vraie 1—a
Rejeter Hy quand Hy est en réalité fausse 1—-a
Rejeter Hy quand Hj est en réalité vraie «
Accepter Hy quand Hy est en réalité fausse a

Les deux premieres probabilités (1 — a et 1 — &) correspondent & de bonnes
décisions (elles ont donc tout intérét & étre élevées) alors que les deux derniéres
(v et @) sont associées a des décisions éronées. Il est aussi possible d’exprimer
ces différentes probabilités a I’aide de probabilités conditionnelles puisque :

P(CRQ|H0):1—04 e P(CRalHl)Zl—&
P(CR, | Hy) =« P(CR, | Hy) =a

Le réel « est appelé probabilité d’erreur de premiére espéce et on qualifie
alors le test d’hypothese utilisé de test de niveau «. De méme, a est appelé
probabilité d’erreur de deuxiéme espéce et (1 —a) est la puissance du
test. En pratique, le niveau « du test est fixé par 1’utilisateur alors que &
est inconnu. Des valeurs trés courantes sont 0.05 (on a donc 5% de chances de
rejeter a tort Hp) 0.1 ou encore 0.01. Nous n’entrons pas ici dans plus de détails
concernant la théorie générale des tests d’hypotheses mais, le niveau étant
fixé, il se pose maintenant le probleme de la puissance du test utilisé. L’idéal
est de mettre en ceuvre un test d’hypothese optimal, c’est-a-dire maximisant
la puissance pour une valeur donnée de la probabilité d’erreur de premiere
espeéce (le lecteur souhaitant aller plus loin sur ces notions peut, par exemple,
se référer au livre de Saporta [83]).

2.6.3 Test de validité du modéle

Exploitons ici les résultats de I'analyse de la variance afin d’effectuer un test
relatif a l'utilité du modele postulé. En d’autres termes, il s’agit de tester
I’hypothese :

Hy : "tous les parametres du modele (sauf (o) sont nuls” contre H; = Hy.

La formulation de H; est donc il existe au moins un des parametres du modele
(différent de 3p) non nul”. En d’autres termes, choisir Hy équivaut donc & en
déduire que le modele postulé est totalement inadapté au phénomene étudié
car seul le parametre constant 3y est utile. On démontre que si les observations
sont des réalisations indépendantes d’une loi normale, la statistique :

_ SSR/(p—1) MSR

= SSE/(n—p) MSE

suit, sous ’hypothese Hy, une loi de Fisher avec (p — 1) et (n — p) degrés de
liberté. La construction d’une région critique est donc possible a partir de la
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connaissance des fractiles fo p—1.n—p de la loi de Fisher & (p — 1) et (n —p)
ddl (i.e. des valeurs ayant une probabilité égale & o d’étre dépassées par une
telle loi). Il en résulte le test suivant (avec ¢ valeur de T' obtenue & partir de
I’échantillon observé) :

Proposition 2.13. Un test d’hypothése de Hy : ”tous les paramétres du
modéle (sauf o) sont nuls” contre Uhypothése Hy = Hy peut étre réalisé a
laide de la statistique :

~ MSR
" MSE’

La régle de décision est alors donnée par (avec fop—1,n—p fractile de la loi de

Fisher a (p—1) et (n—p) ddl) :

on rejette Hy au niveau o si t > fo p—1n—p-

2.6.4 Test de significativité des parametres

Considérons un modele linéaire dont le vecteur des parametres inconnus [ est
estimé par la méthode des moindres carrés. On a alors (voir le paragraphe
2.4.4) :

B=(Xx)"XY etV (8) =o? ((XX) .
Supposons que les observations sont des réalisations indépendantes d’une loi
normale. Il résulte de cette hypothese que si ﬁz désigne la i-eme composante
de 57 on peut affirmer que ﬁz suit une loi normale d’espérance 3; et de vari-

ance Var (51) L’objectif est ici de tester la significativité (i.e. l'utilité) du
parametre §; dans le modele postulé. Il en résulte que ’on considere les hy-
potheses :

0 - ”,6)1' = 0” contre H1 : ”,6)1' }é 0.

Le parametre (3; est considéré comme non-significatif si I’hypothese Hy est
choisie. Afin de déterminer une statistique de test on estime Var (BZ) a laide

des résultats du paragraphe 2.5.3 et on considere :

Bi bi

(Var (Bi))lm I

avec a;; i-eme élément diagonal de (!X X) " et 62 = MSE = SSE/(n—p).

Sous I’hypothese Hy, la statistique T" suit une loi de Student a (n — p) degrés
de liberté. La construction d’une région critique est possible a partir de la
connaissance des fractiles fo -, de la loi de Student & (n — p) ddl (i.e. des
valeurs ayant une probabilité égale & o d’étre dépassées par une telle loi). On
en déduit que (avec t valeur de T obtenue & partir de ’échantillon observé) :
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Proposition 2.14. Soit §; le i-éme élement du vecteur des paramétres in-
connus du modele linéaire utilisé. Un test d’hypothése de Hy : ”3; = 07
contre Hy : 7 3; £ 07 peut étre réalisé a l'aide de la statistique :

7B
avec ai; i-eme €élément diagonal de (tXX)il. La regle de décision est alors
donnée par (avec fo)2n—p fractile de la loi de Student a (n —p) ddl) :

on rejette Hy au niveau o si [t| > 1o /2 —p-

2.6.5 Test d’ajustement du modele

Supposons ici qu’au moins une des expériences a été répliquée. Il est alors
possible d’aller plus loin qu’au paragraphe 2.6.3 afin de juger de la qualité du
modele utilisé. En effet on peut maintenant évaluer le défaut d’ajustement
du modele, c’est-a-dire sa capacité ou non a bien décrire en moyenne le
phénomene étudié. Mathématiquement, on dit que le modele postulé est mal
ajusté si :

on suppose que E (V) = X alors qu’en réalité E (V) = X5 + X*3*

avec 3* vecteur des parametres négligés a tort (il s’agit souvent dans le cas
polynomial de parametres de plus haut degré qu’il n’aurait pas fallu omettre).
Une telle situation a déja été rencontrée au paragraphe 2.5.2 ou ’ajustement
d’une droite (i.e. d’un modele de degré 1) était forcément de mauvaise qualité
car le nuage de points avait une forme parabolique (i.e. il fallait en réalité
rajouter un terme quadratique). Testons maintenant I’hypothese :

Hj : ”le modele est bien ajusté en moyenne” contre H; = Hy.

Remarquons que du point de vue mathématique, ’hypothese Hy se traduit
par :

Hy:” (I, — P)X*8* =0 avec P = X ("X X) ™' 'X.
En d’autres termes, si le modele est bien ajusté le terme X*3* ne va pas ap-
porter d’information nouvelle par rapport a X 8 et donc sa projection orthog-

onale sur (Im X)= doit étre nulle. On démontre alors que si les observations
sont des réalisations indépendantes d’une loi normale, la statistique :

_ SSLOF/(n* —p) MSLOF
- SSPE/(n—n*)  MSPE

suit, sous ’hypothese Hy, une loi de Fisher avec (n* — p) et (n — n*) degrés de
liberté. Il en résulte que (avec t valeur de T' obtenue & partir de 1’échantillon
observé) :
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Proposition 2.15. Un test d’hypothése de Hy : 7 le modéle est bien ajusté

en moyenne” contre Uhypothése Hy = Hy peut étre réalisé & laide de la
statistique :

_ MSLOF

- MSPE "’

La régle de décision est alors donnée par (avec fon+—pn—n+ fractile de la loi
de Fisher a (n* —p) et (n—n*) ddl) :

on rejette Hy au niveau « si t > fo pr—pn—n=.

2.6.6 Exemples

Terminons par des exemples d’utilisation de ces tests d’hypotheses. Les
tableaux d’analyse de la variance usuels sont alors complétés, dans un pre-
mier temps, en rajoutant la statistique de test correspondante (colonne ” St.
Test”).

Comme cela a été montré au paragraphe 2.6.2, il est courant de fixer le
niveau du test d’hypothese avec des valeurs égales le plus souvent a 0.05,
0.02 ou 0.01. Ces valeurs correspondent aux tabulations usuelles des lois de
Student ou de Fisher et permettent de mener a bien les tests d’hypotheses
sans disposer de moyens de calcul. L’utilisation de tables est cependant in-
satisfaisante car, par exemple, le fait de rejeter une hypothese au niveau 5%
n’est pas ”optimale” dans le sens ol ce méme test réalisé au niveau 3% au-
rait peut étre permis de rejeter aussi cette hypothese. En d’autres termes il
serait donc intéressant de pouvoir tester I’hypothese pour de multiples valeurs
du niveau « afin d’obtenir la probabilité égale au niveau minimal du test
permettant de rejeter I’hypothese Hy. Les logiciels de statistique permettent
d’effectuer facilement un tel traitement et ces probabilités figurent dans la
colonne ” Proba.” des différents tableaux. Une telle probabilité est aisément
déterminable d’un point de vue théorique. En effet soit un test associé a une
statistique T', de loi de probabilité connue sous I’hypothese Hy, avec une regle
de décision du type :

”on rejette Hy au niveau a si t > f,”

ou f, est un fractile de niveau « de la loi suivie par T'. La valeur minimale o*
de o permettant de rejeter Hy est alors clairement obtenue lorsque ¢t = fqux.
Or, f, étant un fractile il vient (toujours en supposant H vraie) :

PT>fo]=a" @ P[T>tl=a"<a" =1-P[T<{].

Les valeurs a* (appelées p-values dans la terminologie anglo-saxone) données
dans la colonne ” Proba.” sont donc égales & 1 — Fp (t) ot Fr est la fonction de
répartition associée a la statistique 7' sous 'hypothese Hy. Une autre vision
des choses consiste a dire, comme cela est présenté dans 'ouvrage d’Azals et
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Bardet [1], que la valeur a* est donc la ”valeur critique de « qui fait basculer
le résultat du test”.

Afin de rendre la lecture des probabilités a* plus lisibles, la convention
d’écriture suivante est proposée :

on note () °°° lorsque 0.05 < o™ < 1,

)

on note (a*) *°° lorsque 0.01 < a* < 0.05,

on note (a*) **° lorsque 0.001 < o* < 0.01,
(@)

on note (a*) **® lorsque 0 < a* < 0.001.

*

En d’autres termes, plus le résultat du test d’hypothése est significatif, plus il
est associé a un nombre important de disques pleins. Un utilisateur souhaitant
travailler avec le niveau (tres classique) de a = 5% peut donc utiliser tous les
résultats associés a *°°, **° ou encore *°°.

Reprenons maintenant les diverses modélisations de ce chapitre pour le ren-
dement de la réaction chimique.

| Exemple |

Considérons I'ajustement d’une droite (paragraphe 2.5.2). On obtient
le tableau d’analyse de la variance complété suivant :

Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 1 14.4 14.4 0.06 0.8182 °°°
Erreur 3 686.8 228.9
Total 4 701.2

Le test de validité du modele ne permet pas de rejeter ici significative-
ment hypothese nulle ”tous les parametres du modele (sauf §y) sont
nuls”. En d’autres termes, ajuster une droite n’apporte pas un gain
de qualité par rapport au simple ajustement d’une constante. Ceci est
de plus confirmé par les tests de significativité des deux parametres
du modele qui ne donnent pas de bons résultats :

Param. | Estimat. | Ec. type | St. Test | Proba.
Bo 31.40 20.30 1.55 | 0.2196°°°
51 —0.24 0.96 —0.25 | 0.8182°°°

Ces résultats montrent que le modele utilisé ici est un mauvais modele,
incapable d’expliquer correctement le phénomene étudié (une telle
conclusion avait déja été tirée & partir du coefficient R?).

Considérons maintenant 1’ajustement d’une parabole (voir le para-
graphe 2.5.2). On obtient alors le tableau d’analyse de la variance
suivant :
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Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 2 700.4 350.2 875.5 | 0.0011 **°
Erreur 2 0.8 0.4
Total 4 701.2

On peut cette fois rejeter tres significativement (avec une probabilité
d’erreur de premiére espéce de 0.11%) I’hypothése nulle ”"tous les
parametres du modele (sauf 8y) sont nuls”. Le modele utilisé est donc
(au moins en partie) adapté au phénomene étudié. L’analyse indi-
viduelle des facteurs montre de plus que chacun d’entre eux peut étre
supposé significatif car les hypotheses nulles ”Gy = 07, 731 = 0” et
7311 = 0” peuvent étre rejetées avec, chaque fois, une probabilité
infime de se tromper.

Param. | Estimat. | Ec. type |St. Test | Proba.
Bo —66.60 2.51 | —26.49 | 0.0014°°*°
61 10.96 0.27 | 40.09 | 0.0006°**
b1 —0.28 0.007 | —41.41 | 0.0006°**

Considérons enfin le dispositif expérimental ou ’expérience correspon-
dant & la température de 10°C a été dupliquée (voir le paragraphe
2.5.4).

Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 2 812.5 406.3 23.99 | 0.0143 *°°
Erreur 3 50.8 16.9 0.008 | 0.9921 °°°

Pure. 1 50.0 50.0
Ajus. 2 0.8 0.4
Total 5 863.3

Concernant le tableau d’analyse de la variance ou celui des facteurs
estimés, on peut tirer les mémes conclusions que dans ’exemple
précédent mais avec des niveaux des test d’hypotheses en augmen-
tation. Par exemple ’hypothese nulle ”tous les parametres du modele
(sauf By) sont nuls” pouvait étre rejetée précédemment au niveau 1%
alors que maintenant un tel niveau ne permet plus de le faire. Les
résultats obtenus ici restent cependant assez corrects pour en déduire
que le modele utilisé est bon. Cependant, la décomposition plus fine de
SSE permet maintenant de tester I’hypothese Hy ”le modele est bien
ajusté en moyenne”. On constate alors, tres clairement, qu’il n’est
pas possible de rejeter significativement Hy. Ceci montre donc, une
nouvelle fois, que le défaut d’ajustement constaté ici est di aux varia-
tions de la réponse (puisque pour 10°C' le rendement varie du simple
au double lorsqu’on répete 'expérience) et non pas au modele qui, en
moyenne, est donc tres bien ajusté.

65
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Param. | Estimat. | Ec. type | St. Test Proba.
Bo —66.60 13.66 —4.87 | 0.0165 *°°
061 10.96 1.59 6.91 | 0.0062 **°
B11 —0.28 0.04 | —6.91 | 0.0062 **°
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2.7 (Compléments) Démonstrations

Proposition 2.5. Soit le modéle statistique Y = X8+ & avec X matrice de
plein rang. L’estimateur des moindres carrés de (§ est donné par :

B=(xx)"xY.

Démonstration. On cherche § minimisant [|Y — Xg||* ou, de maniére
équivalente, ||Y — X3]|. Or, la distance entre Y et X3 est minimale si et
seulement si X 3 est la projection orthogonale de Y sur Im X. Comme le pro-
jecteur orthogonal sur Im X s’écrit matriciellement Py, xy = X (tXX)_1 tX,
on en déduit que I'estimateur des moindres carrés de 3 est donné par :

XB=Pumx)Y = X ((XX) XY
La multiplication & gauche par !X donne alors :

IXXH=XX('XX) XY o f=(XX)'Xy m

Proposition 2.6. Si les hypothéses (H) sur les résidus sont vérifiées et si
est 'estimateur des moindres carrés de 3 alors :

1) 3 est un estimateur sans biais de 3,
2) 3 admet pour matrice des covariances : V (B) =o? (tXX)_1 .

Démonstration. Utilisons les propriétés de I’espérance mathématique et de
la matrice des covariances vues au paragraphe 2.3.2. Pour 'espérance de (3,
on sait d’apres (H) que E (V) = X3 donc il vient :

E(5) =E[(Xx)"'XY] = ("XX) T XE(Y) = 5.
De méme, I'hypothese (H) nous dit aussi que V (V) =02 (!X X) " donc :
V(8) =v[(xX)TXY] = (XX) XV () X (XX) T =0? (XX) 7
d'ott le résultat W

Proposition 2.7. La qualité de la prédiction Y (z) = tg(x) 3 réalisée au
point x € R™ est mesurée par :

VarY (z) = 02 tg () (tXX)_lg(a:).

Démonstration. Les propriétés de la matrice des covariances vues au para-
graphe 2.3.2 entrainent que :
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V(@) ="g@)B=V[V@)|="9@)V(8)g).

OorvVv (B) = g2 (‘SXX)71 d’apres la proposition 2.6, d’ou le résultat puisque
\% [l}' (m)} n'est autre que VarY (z) B
Proposition 2.8. §5i P = X (’5XX)_1 tX est le projecteur orthogonal de R™

sur ImX et si I, € ImX alors les sommes de carrés SST, SSE et SSR
s’écrivent :

SST ='YY —nY", SSE ="'V (I, — P)Y et SSR ="'YPY — nY".
1l en découle la décomposition fondamentale suivante :
SST =SSR+ SSE.

Démonstration. Matriciellement, on peut dire que :
SST ="' (Y = ¥1,) (Y —=Y1,) =YY = V'V, - V'L,Y + Y 'L,L,.

Or 'YL, = 'I,Y = ¥ et I,L, = n, donc : SST =YY —nY".
De méme, il vient pour SSE puisque Y = PY et (I, — P)2 = I, — P (par
idempotence car I,, — P est un projecteur) :

SSE:t(Y—?) (Y—f/) =Y (I, — P)(I, — P)Y =Y (I, — P)Y.
Pour SSR on a enfin :
SSR=" (if - ?ﬂn) (Y - 7Hn) =YY — V'V, + VLI,
Or 'YY = ! (PY)(PY) = 'YPPY = 'YPY et comme I, C ImX on en
déduit que PI,, =1I,, donc :
W1, ='YPIL, =YL, =nY.

—2
Ceci entraine bien que SSR = 'Y PY —nY "~ et la décomposition fondamentale
est alors bien démontrée W

Proposition 2.9. Les sommes de carrés SST, SSE et SSR sont associées,
respectivement, ¢ (n — 1), (n —p) et (p — 1) degrés de liberté. Ceci permet de
définir les sommes moyennes de carrés de la maniére suivante :

SSR

MSE:SS—E et MSR =
n—op p—1



2.7 (Compléments) Démonstrations 71

Démonstration. D’apres la proposition 2.8 on sait que SST' = Y Y
Comme cependant Y = (1/n)'I,Y, on a donc aussi :

1
SST =ty (In - —Jn> Y avec J,, = I,'L,,.
n

Or (1/n)J, =1, (tlln]In)71 T,, est le projecteur orthogonal sur ImI,. Il en
découle que (I,, — 1/n.J,) est le projecteur orthogonal sur (Im1,,)" , donc il a
pour rang (n — 1). On a de méme :

— 1
SSR='YPY —nY =1ty (P - —Jn) Y
n

donc SSR est associée a (p — 1) ddl (en effet le vecteur I,, est, par hypothese,
dans I'image de P et il se retrouve donc aussi dans le noyau de P — (1/n) J,
et le rang de P — (1/n) J,, est alors égal & (p — 1)). Le résultat est immédiat
concernant SSE W

Proposition 2.11. Lorsque X est une matrice de plein rang p, un estimateur
sans biais de la variance des résidus o2 est :

62 =MSE =

n—p
Démonstration. Considérons tout d’abord une variable aléatoire vectorielle
Y telle que E (V) = p et V(Y) = V. 1l vient, par linéarité de l'espérance :

V=E[Y -w'Y —p]=EX'Y)-p'pn

On en déduit que, pour toute matrice carrée A non aléatoire de dimension
compatible avec Y, la forme quadratique 'Y AY a pour espérance :

E('"YAY) =E[Tr ('"YAY)] =E [Tr (AY'Y)] car Tr (AB) = Tr (BA).
D’ou :
E('"YAY) =Tr [AE (Y'Y)] =Tr [A(V + p'n)] = Tr (AV) + *uAp.

Appliquons maintenant ce résultat a Y donnée par un modele linéaire de la
forme Y = X3 + . Les hypothéses (H) entrainent que (voir le paragraphe
2.4.3) :

E(Y)=XBet V(Y)=0?l,.

Comme SSE =Y (I,, — P)Y il vient donc :
E(SSE)=Tr[o*(I, — P)L,] +'8'X (I, — P) XB.

Remarquons maintenant que :
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1) un projecteur admet pour valeur propre uniquement 0 ou 1 (c’est une
conséquence directe de l'idempotence). Il en découle que la trace d’un pro-
jecteur est toujours égale a la dimension de son image. Comme (I, — P) est

le projecteur orthogonal de R™ sur (Im X )J‘ et que X est supposée de rang
égal a p, on en déduit que :

Tr [02 (I, — P) 1] = 0*Tr (I, — P) = 0*dim [(ImX)L} =02 (n—p),
2) le fait que (I, — P) soit le projecteur orthogonal de R™ sur (Im X)" en-
traine immédiatement que (I,, — P) X3 =0,

En conclusion, la proposition est bien démontrée puisqu’il a été prouvé que :
» prop puisq 1% q

E(SSE)=0*(n—p) W

Proposition 2.12. Si P* désigne le projecteur orthogonal de R™ sur l'image
de la matrice indicatrice des répétitions (c’est a dire que P* =

diag (rl_ljrl,rgle, ,r;*ljrn*)) et P est le projecteur orthogonal de R"™
sur Im X alors les sommes de carrés SSLOF et SSPE s’écrivent aussi :

SSLOF ='Y (P* -~ P)Y et SSPE ="'Y (I, — P*)Y.
1l en découle la décomposition suivante :
SSE =SSLOF + SSPE.

Les sommes de carrés SSLOF et SSPFE sont de plus associées respectivement
a (n* —p) et (n —n*) degrés de liberté, donc les sommes moyennes des carrés
associées vérifient :

MSLOF = szﬁ et MSPE = SSPE

n*—np n—n*

Démonstration. Commencgons par détailler les deux résultats suivants.

1) Résultat préliminaire 1 : définition et écriture de P*. Soit la matrice
R € M (n,n*) des indicatrices des répétitions (i.e. la matrice formée de 0
et de 1 telle que la colonne j repere toutes les répétitions de la j-ieme unité
expérimentale). Pour, par exemple, n* = 3 unités expérimentales telles que
cp =co=1et c3g=2,il vient :

100
010
001
001

Il en découle que le projecteur orthogonal sur I'image de R est donné par la
matrice diagonale par blocs suivante (en notant J, = I,,'I,) :
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P* = R(*RR) ™" 'R = diag (1/c1Jey, 1/caey, o 1 /Cnrde,.) .
2) Résultat préliminaire 2 : Im P C Im P*. Ceci est équivalent & prouver que
ImX CcImR. Or:
ImnX CImR <= (ImR)" C (ImX)" <= Ker'R C Ker'X.

La derniere relation concernant ’inclusion des noyaux est évidente. Détaillons
1 sur 'exemple précédent. On a alors (avec g (x) vecteur de régression au point
x, voir le paragraphe 2.4.5) :

1000

FR=10100| et ‘X =[g(z1) g(22) g(x3) g (x3)].
0011

Donc KertR = {a(0,0,1,—1), a € R} est inclu dans Ker‘X puisque les
colonnes 3 et 4 de cette dernieére matrice sont identiques. Ce raisonnement
est généralisable sans difficulté.

Explicitons maintenant la forme de SSPE. Par définition, SSPE est égale
a la norme au carré du vecteur u tel que :

ty = (Y;U_?l, Ly oy Ly oy L e _y—n*).

Comme

PY ="(Yy, ... Y1, . Yo, ...
onadoncu=Y — P*Y et alors :

SSPE = ||(I, — P Y|> =tY (I, — P*)’Y =Y (I, — P*)Y.

aYn*)

En effet, (I, — P*)2 = I, — P* car I, — P* est le projecteur orthogonal de
R" sur (ImR)™. Le rang de P* étant égal & n*, SSPE est donc associée
a (n —n*) ddl. Concernant SSLOF on peut dire, de méme, qu’il s’agit par
définition de la norme au carré du vecteur v tel que :

tv: (5}1_?17 7?1_?1; 75}”* _ﬁu 75}”* _ﬁ>

ou Y’l — Y] est répété c; fois, ..., Yn* — Y« est répété c,- fois. Il en découle
que :
SSLOF = ||(P — P*) Y||2 =ty (P—P"(P-P")Y.

Le résultat préliminaire 2 entraine que P*P = PP* = P et donc :
SSLOF ='Y (P* - P)Y.

La décomposition SSE = SSLOF + SSPE est alors évidente. Pour terminer,
on remarque que SSLOF est associée & (n* — p) ddl. Ceci découle, par exem-
ple, de la somme directe suivante (en deux sous-espaces orthogonaux) :

Im (I,, — P) = Im(I,, — P*) & Im (P* — P) W
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Plans d’expérience pour facteurs quantitatifs
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Plans d’expérience pour modeles d’ordre un

3.1 Introduction

Ce chapitre concerne les plans d’expérience pour facteurs quantitatifs et pro-
pose une étude des dispositifs expérimentaux associés a I'un des modeéles les
plus simple possible, en 'occurence le modele polynomial de degré un.

L’hypothese principale utilisée ici est que la loi de réponse f peut étre
approchée par un polynome du premier degré a m variables. Il est clair qu'un
tel modele n’est pas d'une grande richesse mais son utilisation est cependant
intéressante dans certains cas. Par exemple, utiliser un tel polynome peut
donner une bonne approximation de f lorsque le domaine expérimental est
petit. Un autre cas d’application classique est celui ou 'on dispose, a priori,
d’un grand nombre de facteurs susceptibles d’agir sur la réponse observée.
L’utilisation d’un modele plus riche est alors généralement impossible a cause
de la grande taille de celui-ci. C’est pourquoi il est courant de débuter une telle
étude par un modele facile & manipuler afin de détecter quels sont les facteurs
qui semblent étre les plus influents. On dit que l'on utilise des techniques de
criblage (ou screening avec la terminologie anglaise).

Ce chapitre est structuré de la maniere suivante. Une premiere partie
aborde des généralités concernant les plans d’expérience pour modele d’ordre
un et amene a la définition d’une classe de plans particulierement simple
qualifiée de classe des plans usuels. Les plans classiques que sont les plans
factoriels complets, les plans factoriels fractionnaires et enfin les plans sim-
plexes sont présentés. Un exemple & vocation pédagogique est détaillé a la fin
de ce chapitre et les codes SAS des principaux traitements statistiques sont
donnés.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 77
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_3,
(© Springer-Verlag Berlin Heidelberg 2010
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3.2 Généralités

3.2.1 Variables codées

Les plans d’expérience considérés ici sont a facteurs quantitatifs. Ceci im-
plique que les variables étudiées vont souvent prendre leurs valeurs dans des
intervalles de R de la forme [a,b] . Les bornes a et b sont différentes d’un fac-
teur & l'autre ainsi que d’une étude & l'autre. Afin de résoudre ce probleme
on va dans la suite systématiquement coder les variables utilisées dans le but
de ramener leurs variations & un intervalle centré de la forme [—A, A]. Etant
donnée une variable x & valeurs dans U'intervalle [a, b], la variable codée qui
lui est associée est z* & valeurs dans [—A, A] obtenue par la transformation
affine suivante :

= A [296— (a+b)]

(b—a)

Une telle transformation est intéressante si I'on utilise la méme valeur de
A pour tous les facteurs de I’étude (ainsi toutes les variables prendront leurs
valeurs dans l'intervalle commun [— A, A]). Dans la plupart des cas la valeur
A =1 est utilisée. Un facteur étant codé on appelle niveau haut la valeur
+A, niveau bas la valeur —A et niveau intermédiaire la valeur 0 (i.e. la valeur
obtenue en moyennant les deux valeurs extrémes). Voici quelques avantages
de cette transformation :

1) il est possible d’uniformiser les constructions de plans d’expérience en ra-
menant le domaine expérimental a [—A, A", ou dumoins & une région centrée
sur lorigine du repere (en effet, on n’utilise pas toujours un domaine cubique
car il est parfois plus pratique de travailler dans un domaine expérimental a
géométrie sphérique),

2) la plupart des analyses mathématiques vont étre simplifiées par I'utilisation
de deux niveaux (—A et A) ou de trois niveaux (—A4, 0 et A) qui s’expriment
tres simplement sous forme codée,

3) les effets des facteurs sont facilement comparables puisque sous forme codée
ils varient tous dans le méme intervalle [ A, A,

4) les variables codées s’expriment sans unité.

| Exemple |

Supposons que la variable ¢ (température d’entrée en °C') soit a valeurs
dans I'intervalle [60, 80] . On peut donc coder cette variable en utilisant

t* telle que :
t—70
"= —— &t =10t" + 70.
10 +

On a alors les correspondances suivantes :

t | 60°C | 70°C | 80°C
tr| -1 0 +1
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3.2.2 Modele utilisé

Considérons ici un plan d’expérience D ={z,,u = 1,...,n} & m facteurs quan-
titatifs avec donc z,, € R™ repérant les niveaux des facteurs pour I'expérience
u (1 < u < n). Supposons que ce plan d’expérience est mis en oeuvre sur
le domaine expérimental £ C R™. Utiliser un modele polynomial d’ordre un
implique donc que l'on considere le modele statistique Y (z) = f (z) + € (z)
avec la loi de réponse donnée par :

Ve el , f(z)=PFo+y B

i=1
Pour un tel modele, on dit que :

Bo (i.e. la constante polynomiale) est I'effet moyen général,
Bi (i=1,...,m) est I'effet linéaire du i-eme facteur.

Le nombre de parameétres inconnus d’un tel modele, & m facteurs, est donc :
p=m+1.

Il sera souvent utile, dans la suite, de décomposer le vecteur 3 € R™*+! des
parametres du modele en 3 = (8 | ¢8) avec donc B, € R™ vecteur des effets
linéaires. Concernant la matrice du modele X € M (n,p) elle est donnée par
(avec zy1, ..., Zum les m coordonnées du point z,) :

1211 Z12 s Z1(m—1) Z1m
1|22 222 - Z2(m—1) Z2m

1| 2(h—1)1 2(n=-1)2 - -+ Z(n—1)(m—1) Z(n—1)m
1] 2zm Zn2 - Zn(m—1) Znm
La premiere colonne de X est donc uniquement constituée par les valeurs

1 (car elle est associée & () alors que les m colonnes suivantes (associées a
01, ..., Bm) comportent toutes les coordonnées des points du plan d’expérience
utilisé. On appelle matrice du plan d’expérience la matrice a n lignes
et m colonnes (notée par la suite D) constituée par les coordonnées, écrites
en ligne, des points du plan d’expérience. Il en résulte que, pour un modele
d’ordre un, la matrice du modele est donnée par (avec I,, le vecteur de R"
constitué uniquement par les valeurs 1) :

X=[L.|D].

3.2.3 Moments d’un plan d’expérience

La notion classique de moment des points d’un plan d’expérience va étre d’une
grande utilité dans la suite afin de construire la matrice ' X X.
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Définition 3.1. On appelle moment des points du plan d’expérience
D ={zy,u=1,...,n} tout réel obtenu par la relation suivante (avec

51,52, ,5m S N) M

91902 m 51 02 Om
[1 2°2..m g ZyiZua

On dit que le moment est d’ordre 6 = d1 + ... + 0., pair si tous les §; sont
pairs, impair dans tous les autres cas.

Il en découle que pour un modele linéaire polynomial, la matrice :
Ly
M=M({D)=-"XX
n
a pour éléments divers moments des points du plan utilisé, elle est couramment
appelée matrice des moments du plan d’expérience. En particulier, cette

matrice contient tous les moments jusqu’a ’ordre 2 dans le cas d’'un polynome
du premier degré et on a plus précisement :

1 [[1]] 2] [m]

0 [12] 02 ... [1m

1 [ 'I,L, 'I,D ) .
M:E[tmn o }: 2 (12 [27] ... 2o
[m] [Im] [2m] ... [m?]

On qualifie de moments purs d’ordre 2 les moments de la forme [22]
alors que ceux de la forme [ij] (avec i # j) sont appelés moments croisés
d’ordre 2. La matrice M est primordiale dans le processus d’estimation au
sens des moindres carrés puisqu’elle apparait (& une constante pres) dans les
équations normales (cf. proposition 2.5). Il est alors évident que l'on a tout
intérét a construire un dispositif expérimental tel que la matrice M soit la plus
simple possible. Ceci ameéne & définir la notion classique de plan d’expérience
orthogonal :

Définition 3.2. Un plan d’expérience est qualifié d’orthogonal si et seule-
ment si la matrice *XX (ou de maniére équivalente M) est une matrice
diagonale.

Il est évident que pour un modele d’ordre un l'orthogonalité équivaut donc a
avoir tous les moments impairs jusqu’a I'ordre deux nuls.

3.2.4 Plans d’expérience usuels

Définissons ici une classe de plans d’expérience d’analyse aisée, incluant la
plupart des configurations classiques.
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Définition 3.3. Un plan d’expérience est qualifié d’usuel pour un modéle
linéaire d’ordre un si et seulement si :

1) tous ses moments impairs jusqu’a Uordre deux sont nuls
Vi, j=1,....,m avec i # j , [i] = [ij] = 0),

2) tous ses moments purs d’ordre deuz sont égaux ([12] = ... = [m?]).

Pour tout plan usuel D ={z,,u =1,...,n} il est donc possible de définir la
constante so par :

Vi,=1,...m,S3=n [zﬂ = szu

Il découle de cette définition que tout plan usuel pour un modele d’ordre un
est orthogonal (mais la réciproque est fausse). Les principales propriétés d’un
plan usuel sont :

Proposition 3.4. [<] Soit un plan d’expérience usuel pour un modéle linéaire
d’ordre un.

1) L’estimateur des moindres carrés de (3 est donné par :

- 1
ﬁOZY et ﬁL = —tDY

52
2) Concernant la dispersion de cet estimateur, il vient :
2 2
- o - o
Varfp=— et Vi=1,...m, Varg, = —.
n S92

3) Les composantes de B sont de plus non-corrélées entre elles.
Le résultat suivant est relatif aux propriétés de prédiction :

Proposition 3.5. [<(] Soit un plan d’expérience usuel pour un modéle linéaire
d’ordre un. En désignant par ||.|| la norme usuelle de R™, la dispersion de la
réponse prédite en x =t (x1,...,m) € € est donnée par :

. 1 1
VarY (z) = o (— +— ||x||2> .
n S92

Cette dispersion ne dépend que de la distance entre x et le centre du domaine,
c’est pourquoi tout plan d’expérience usuel pour un modéle d’ordre un est
qualifié d’isovariant par transformations orthogonales.

La propriété d’isovariance par transformations orthogonales est souvent ap-
pelée 7isovariance par rotations” dans la littérature francophone (et rotatabil-
ity en anglais). Cette terminologie est cependant inexacte car cette propriété
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traduit que pour toute transformation orthogonale T' de R™ (i.e. conservant
les distances) alors :
VarY (Txz) = VarY (z).

Attention au fait qu’une rotation est bien une transformation orthogonale
mais la réciproque est fausse. Cette propriété d’isovariance est tres intéressante
car, quel que soit le nombre de facteurs considérés, il est alors possible
d’évaluer la qualité de la dispersion au sein du domaine expérimental en
fonction d’une seule inconnue (le rayon mesurant la distance au centre du
domaine).

3.3 Plans factoriels complets
3.3.1 Définition

L’objectif de cette partie est d’étudier un des dispositifs expérimentaux les
plus simple & construire. Pour 2 facteurs (exprimés sous forme codée) il con-
siste & réaliser les 4 expériences associées aux sommets du carré [—1, 1]2. Dans
le cas de 3 facteurs il s’agit des 8 sommets du cube [—1, 1]3. Ce procédé peut
étre étendu au cas de m facteurs a 'aide de la définition suivante :

Définition 3.6. Pour m facteurs, on appelle plan d’expérience factoriel
complet toute configuration constituée des éléments suivants :
1) tous les sommets du cube [—1,1]",

2) ng réplications éventuelles du centre du domaine expérimental.

Les sommets du cube [—1,1]™ constituent la partie factorielle du plan alors
que les (éventuelles) réplications du centre du domaine constituent la par-
tie centrale. Du point de vue mathématique, la partie factorielle est donc
I’ensemble des points obtenus a 1’aide des produits cartésiens suivants :

{—1,1} x {-1,1} x ... x {—=1,1} = {-1,1}".
Le nombre d’expériences a réaliser avec un plan factoriel complet est alors :
n=2"+ng.

Dans bon nombre d’ouvrages on désigne par plan d’expérience factoriel com-
plet la seule partie factorielle présentée ici (c’est-a-dire que ng = 0). Cette
définition est plus générale car réaliser des réplications centrales peut s’avérer
d’un grand intérét pratique (voir la suite). Un plan d’expérience factoriel com-
plet est entierement déterminé par la connaissance du nombre de facteurs et
du nombre de réplications du centre du domaine, c’est pourquoi un tel plan
sera désigné dans la suite par la notation suivante (FD venant de la termi-
nologie anglaise Factorial Design) :
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FD (2™, ng).

Afin d’uniformiser I’écriture de la matrice de ces plans d’expérience il est
possible de disposer leurs lignes suivant 1’ordre standard (encore appelé
ordre de Yates). Il s’agit de respecter les conventions suivantes pour la partie
factorielle du plan :

1) la premiere ligne de D n’est constituée que des valeurs —1 (i.e. la premiere
expérience est réalisée en fixant tous les facteurs a leur niveau bas),

2) la premiere colonne de D est obtenue en changeant de signe toutes les
lignes. La seconde colonne est obtenue en changeant de signe toutes les 2
lignes, ... , la k-iéme colonne de D est obtenue en changeant de signe toutes
les 2~ lignes.

Voici deux exemples d’illustration de cette convention.

| Exemple |

La matrice du plan F'D (227 3) est : La matrice du plan F'D (237 0) est :

a7 —-1-1-1
L1 1-1-1

-1 1-1
-1 1 1-1

D=] 1 1 D=

-1-1 1
00

1-1 1
00
0 0 -1 1 1
L . | 1 1 1]

Un important probleme d’ordre pratique concerne ’ordre des expériences a
réaliser. En d’autres termes, faut-il suivre ou non en pratique l'ordre donné
par les lignes de la matrice D ? Les techniques relatives a ce probleme ne
sont pas abordées en détails ici. Remarquons simplement que dans certaines
situations pouvant présenter un effet de dérive systématique (par exemple une
machine-outil se déréglant au fur et a mesure de son utilisation) il est plus
judicieux de randomiser 'ordre des expériences, c’est-a-dire d’effectuer les
expériences dans un ordre aléatoire (voir "ouvrage de Sado et Sado [82] ou bien
Azais et Bardet [1]). Concernant maintenant les colonnes de D remarquons
aussi qu’en pratique il est recommandé de les associer a chacun des facteurs en
fonction de leur facilité ou non a changer de niveau. Supposons que I’exemple
précédent du plan FD (23,0) est utilisé concretement pour une expérience
de cuisson industrielle dépendant de trois facteurs qui sont : la durée de la
cuisson, la pression utilisée et la température du four industriel. Si on décide
de réaliser les expériences dans ’ordre donné par les lignes de la matrice D
alors on a certainement tout intérét a affecter la troisieme colonne de D a la
température du four industriel. En effet, il est généralement long et cotiteux de
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faire varier la température d’un tel four entre ses niveaux haut et bas et donc
la troisieme colonne de D permet ainsi de ne changer cette température qu’une
seule fois durant la totalité des expériences. Pour plus de détails concernant
ces techniques, associées a ce que ’on appelle la ”méthode Taguchi”, consulter
I'ouvrage de Pillet [72].

3.3.2 Propriétés

Détaillons les principales propriétés des plans d’expérience factoriels com-
plets. Remarquons tout d’abord qu'un des avantages de ce type de plans est
d’une part leur facilité de construction et d’autre part, comme il sera
démontré par la suite par la suite, leur facilité d’analyse. A contrario, le
grand désavantage de ces configurations est leur taille qui, bien évidemment,
devient rapidement beaucoup trop grande au vu du nombre de parametres
inconnus du modele (voir la table 3.1 du paragraphe 3.4.5). L’utilisation de
tels plans d’expérience est envisageable pour un petit nombre de facteurs mais
devient quasiment impossible lorsque ce nombre est grand (il faudrait, par ex-
emple, réaliser au moins 1024 expériences pour 10 facteurs alors que le modele
considéré n’a que 11 parametres inconnus).

Pour tout plan factoriel complet on a le résultat principal suivant :

Proposition 3.7. [<] Tout plan d’expérience factoriel complet est un plan
d’expérience usuel pour un modéle linéaire d’ordre un. Il vérifie de plus :

SS9 = 2™,

Il en découle que toutes les propriétés des propositions 3.4 et 3.5 sont bien
vérifiées par tout plan factoriel complet. La forme de la matrice D entraine
de plus que les estimateurs des effets linéaires sont tres facilement calculables.
On obtient en effet chacun d’eux en réalisant une somme pondérée des obser-
vations, les poids étant ceux de la colonne de D associée au facteur considéré.

| Exemple |

Reprenons le plan factoriel FD (23, 0) vu précédemment et désignons
les 8 réponses observées par Y7, ..., Yg (Y1 correspondant & Iexpérience

de la ligne 1 de D,... Yg a celle de la ligne 8). La formule BL =
(1/52)*DY se traduit alors ici simplement par :

N 1
fo =3 (Vi + Yo+ Y5+ Va4 Y5+ Yo+ Y7+ Y5)
et les estimateurs des effets linéaires sont donnés par :

Br=(-Yi+Ya—Ys+Yi—Ys+Ys—Yr+Y)/8
Po=(-Yi-Yo+Y3+Ys— Y5 - Yo+ Y7 +Y5)/8 .
Ps=(-Y1 =Yy — Y3 — Yy + Y5 + Y5 + Y7 + Y3) /8
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3.3.3 Intérét des réplications centrales

Il a été montré, au début de cette section, qu’'un plan factoriel complet peut
éventuellement inclure ng réplications du centre du domaine expérimental.
Cette option gene souvent les expérimentateurs qui n’en voient pas l'intérét
ou qui ne savent pas quelle valeur donner a ng. Voici quelques conseils.

Avantages liés a 'utilisation de réplications centrales :

1) la qualité de 'estimation du parametre By augmente en fonction du nom-
bre d’expériences au centre puisque Var 3y est décroissante en ng (voir la
proposition 3.4),

2) la qualité des prédictions dans le domaine expérimental augmente en fonc-
tion du nombre d’expériences au centre puisque VarY (x) est décroissante en
no (voir la proposition 3.5),

3) réaliser vraiment des réplications au centre du domaine (i.e. ng > 2) permet
d’affiner ’analyse du modele en déterminant les sommes des carrés dues au
manque d’ajustement et & lerreur pure (voir 2.5.4).

Inconvénients liés a 'utilisation de réplications centrales :

1) utiliser ng réplications du centre du domaine augmente la taille du plan
d’expérience. Ceci peut étre un obstacle lorsque le plan considéré est déja de
grande taille et que les expériences sont cotliteuses,

2) réaliser des réplications centrales entraine que tous les facteurs vont devoir
prendre un troisiéme niveau (intermédiaire). Ceci peut s’avérer parfois difficile
a mettre en oeuvre de maniere économique (¢f. ’exemple précédent du four
industriel dont les variations de température sont tres longues & obtenir). II
résulte de tout ceci que si 'on décide d’utiliser des réplications centrales alors
il est conseillé d’en introduire un petit nombre (ng = 2,3 ou 4 par exemple).

Remarquons enfin que lorsque les répétitions ont lieu uniquement au centre
du domaine expérimental alors la quantité SSPE peut étre déterminée de
maniere explicite a I'aide du résultat suivant :

Proposition 3.8. [<] Soit un plan d’expérience dont les seules réplications
ont lieu au centre du domaine expérimental et sont répétées ng > 2 fois. Si
Yy est le vecteur de ces ng réponses et Yy est ce méme vecteur centré alors :

SSPE="Y5Yy = V7 |*.

L’intéret de ce résultat réside dans la simplicité des calculs a effectuer.
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| Exemple |

Supposons que les expériences ont été répétées ng = 3 fois au centre
du domaine expérimental et que les réponses mesurées sont : 10, 14 et
9. La réponse moyenne au centre est alors 11 et il vient :

10 ~1
Yo=|14| don Yy =| 3| et donc SSPE = 'Y;Vy = 14.
9 —2

Remarque. La démonstration de cette proposition ne fait pas intervenir le
type de modele choisi. Le résultat énoncé ici sera donc toujours valable dans
les prochains chapitres ot des modeles plus complexes seront étudiés.

3.4 Fractions régulieres de plans factoriels

3.4.1 Exemple

L’utilisation d’un plan d’expérience factoriel complet peut étre problématique
a cause de la taille parfois beaucoup trop grande de ce type de dispositif
expérimental. Une des solutions afin de résoudre ce probleme consiste & ne
pas considérer le plan complet dans sa totalité (i.e. les 2™ expériences) mais
seulement une fraction de celui-ci (par exemple 2™~ 1 expériences obtenues
en ne gardant que la moitié du plan, 22 en n’en gardant que le quart, etc...).
La difficulté réside dans le choix des expériences constituant cette fraction du
plan initial afin de conserver des propriétés intéressantes (orthogonalité, plan
usuel, ete...).

Ce type de problématique a été abordée pour la premiere fois dans un
article di & Tipett [101] puis développé et généralisé par de multiples autres
chercheurs. Citons les articles de Box et Hunter [13] et [14] posant les bases
relatives au cas traité ici, ¢’est-a-dire les fractions de plan factoriels a 2 niveaux
ainsi que 'ouvrage de Raktoe et al. [77].

Considérons le plan factoriel complet F.D (2470) et supposons que les
16 expériences (données par la matrice D ci-dessous) sont trop cofiteuses &
réaliser. Déterminons au préalable les vecteurs P; et P qui sont respective-
ment égaux aux produits terme a terme des 4 colonnes de D puis des trois
premieres. Une procédure utilisée afin de construire une fraction réguliere
du plan complet consiste (par exemple) & ne conserver que les expériences
(i.e. les lignes de D) associées aux valeurs +1 des composantes du vecteur P;.
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[—1-1-1-1] 1 [—17
1-1-1-1 -1 1
-1 1-1-1 -1 1
1 1-1-1 1 -1
-1-1 1-1 -1 1
1-1 1-1 1 -1
-1 1 1-1 1 -1
D=l 4 i | wn=|T] r=]
1-1-1 1 1 1
-1 1-1 1 1 1
1 1-1 1 -1 -1
-1-1 1 1 1 1
1-1 1 1 -1 -1
-1 1 1 1 -1 -1
11 11 | 1] | 1)

On retient ainsi les 8 expériences données par la matrice D :

(-1 —-1—-1-1]

1 1-1-1

1-1 1-1

-1 1 1-1
Di=1 1_.1.1 4
-1 1-1 1
-1-1 1 1

1 1 1 1]

De méme il est possible de réduire encore la taille de la fraction réguliere
en considérant a la fois les vecteurs P; et P». En gardant uniquement les
expériences associées aux composantes égales & +1 simultanément dans les
deux vecteurs on obtient ainsi la configuration de matrice D5 :

1-1-11
-1 1-11
Da=1_1.19 11
1 1 11

Les sections suivantes ont pour objectif de présenter les éléments théoriques
nécessaires a ce type de constructions.

3.4.2 Contrastes et produit d’Hadamard

Les constructions réalisées au paragraphe 3.4.1 ont utilisé le produit ”terme a
terme” des vecteurs colonne de la matrice D. Ceci se formalise algébriquement
a ’aide du produit d’Hadamard. On appelle produit d’Hadamard (noté ©®)
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Popérateur qui a deux vecteurs u et v de R? associe le vecteur ©u ® v de RY tel
que (si u = (ui)i:17._7q et v= (vi)i:17_.7q) :

uv= (uivi)i:L..,q :

Le produit d’Hadamard définit donc une loi de composition interne sur R? et
les propriétés suivantes sont immédiates (V u,v,w € RY) :

1) le produit d’Hadamard est associatif ((u ©v) @w =u© (v © w)),
2) le produit d’Hadamard est commutatif (v ©® v = v © u),

3) I, est élément neutre pour le produit d’Hadamard (v 0, =1, Ou = u).

Considérons maintenant un vecteur quelconque v € R9. On vérifie facile-
ment qu’un tel vecteur se décompose de maniere unique comme la somme
d’un vecteur a composantes égales avec un second vecteur a somme des com-
posantes nulle. Plus précisément si w € R est la moyenne des composantes de
u, on a explicitement :

u=1ul, + (u—1al,).
On dit que 'on a ainsi décomposé u comme somme de deux contrastes de R?.
De maniere plus générale, nous proposons la définition suivante :

Définition 3.9. Soit u un vecteur élément d’un espace EY. On dit que u est
un contraste de E? (i.e. un élément de ’ensemble des contrastes C (E?))
si et seulement si toutes ses composantes sont égales ou bien la somme de
ses composantes est nulle. Lorsque la somme des composantes est nulle le
contraste est dit non-unitaire.

Ce chapitre va nécessiter I'utilisation de contrastes de {—1,1}?. Un contraste
sur cet espace est soit un vecteur & composantes égales (il s’agit donc de I; ou
—I,;) soit un vecteur dont la somme des composantes est nulle, c’est-a-dire un
vecteur ayant autant de composantes égales a +1 que de composantes égales
a —1 (q est donc forcément pair). Remarquons 'importante relation vérifiée
par les contrastes de {—1,1}7 :

VueC({-1,1}) ,uou=1,
Par rapport a la matrice D du plan d’expérience, il vient :

Proposition 3.10. [<] Soit un plan d’expérience factoriel complet ¢ m fac-
teurs, de matrice D, n’ayant pas de réplications centrales. Les colonnes de D
sont alors (par construction) des contrastes non-unitaires de {—1, 1}2m.
De plus, le produit d’Hadamard de k colonnes distinctes de D (2 < k < m)

. o 2m
est aussi un contraste non-unitaire de {—1,1}" .

Ce résultat assure, par exemple, que les vecteurs P; et P, du paragraphe 3.4.1
obtenus en réalisant le produit d’Hadamard de 4 et 3 colonnes de D sont bien
des contrastes non-unitaires de {—1,1}'%.
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3.4.3 Générateurs d’une fraction réguliere

Considérons dans la suite uniquement des plans factoriels complets sans
réplications centrales (ng = 0) et identifions chacun des m facteurs au
contraste correspondant dans la matrice D. En d’autres termes, 1 désigne
dorénavant le contraste de D associée au facteur 1 (c’est-a-dire & la premiere
colonne de D), ... m le contraste de D associée au facteur m. Afin de simplifier
I’écriture des résultats a venir 'opérateur produit d’Hadamard va étre noté
multiplicativement. On notera donc 12 au lieu de 1 ® 2 ou encore 12 au lieu
de 1 ® 1. Remarquons que si l'on a plus de 9 facteurs on distinguera alors la
notation 12 (contraste associé au facteur 12) de 12 (produit d’Hadamard des
contrastes 1 et 2). Etant donné un contraste obtenu par produit d’Hadamard
de k colonnes distinctes de la matrice du plan factoriel complet D on dit
que ce contraste est de longueur (ou encore de poids) k. Avec les conven-
tions d’écriture utilisées ici les contrastes sont aussi parfois qualifiés dans la
littérature de mots composés de k lettres. Définissons tout d’abord la notion
de famille de contrastes indépendants :

Définition 3.11. Soit l'ensemble {C1,Ca,...,Cy} de q contrastes, chacun
d’eux étant soit une colonne de la matrice D d’un plan factoriel complet a
m facteurs soit le produit d’Hadamard de plusieurs colonnes. Cette famille de
contrastes est dite liée si et seulement si :

Jie{l,...q} / Ci= ©Cj avec J C{1,...,q} — {i}.
jedJ
Une famille qui n’est pas liée est une famille indépendante.

Illustrons ceci a ’aide d’un exemple :

| Exemple |

La famille {1, 2, 34} est clairement une famille de contrastes indépendants.
Par contre, la famille {12, 3,34, 4} est liée car :

3(34) = 3%4 = 4 puisque 3* = 1.

Il a été montré au paragraphe 3.4.1 qu’une fraction réguliere est définie par
la donnée d’un ou plusieurs contrastes. Par exemple, une fraction réguliere a
été obtenue alors & partir des contrastes P et Py (i.e. 1234 et 123 avec les
notations utilisées ici) en ne gardant que les expériences associées aux valeurs
+1 de ces deux contrastes. Il en résulte que les produits d’Hadamard 1234 et
123 sont égaux a l'indicatrice I dans la matrice Dy associée a cette fraction.
On résume ceci en écrivant :

[=1234 = 123.
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De maniere plus générale, une fraction réguliére de plan factoriel com-
plet est déterminée par la donnée d’une famille de g contrastes indépendants
{C1,Cy, ...,Cy}, appelés générateurs. On note alors :

1=C, =Cy=..=C,.

Remargue. Une fraction réguliére a été définie ici en ne conservant que les
expériences associées aux valeurs +1 des générateurs. Ceci correspond a la
fraction réguliere qualifiée de fraction principale. Il est cependant évident
que la méme démarche peut étre suivie en ne conservant que les expériences
associées aux coordonnées —1. Pour le premier exemple du paragraphe 3.4.1
on aurait donc pu considérer non pas la fraction réguliere telle que 1 =1234
mais la fraction complémentaire définie par —I =1234. De méme, le second
exemple aurait pu étre traité en considérant 'une des 4 fractions régulieres
définie par :
[1=1234 =123 oul=1234, —1=123,
—1=1234 =123 ou —-1=1234,1=123.

Reprenons maintenant ’exemple de la fraction réguliere engendrée par la
relation I =1234 = 123. Puisqu’on ne conserve que les expériences telles que
ces deux contrastes soient égaux a 'indicatrice, il vient :

(1234) (123) = 122%3%4 = 4 et de méme (1234) (123) =1> =1.

En d’autres termes, les deux générateurs utilisés entrainent que I =4 (i.e.
cette fraction réguliere est aussi définie par I =4 = 123 ou bien I =4 = 1234).
Ce résultat avait déja été constaté au paragraphe 3.4.1 puisque la quatrieme
colonne de D- est constituée uniquement par les valeurs +1. Algébriquement
I’ensemble des toutes les liaisons induites par les générateurs utilisés a une
structure de groupe, ce qui amene a la définition suivante :

Définition 3.12. On appelle groupe des contrastes de définition d’une
fraction réguliére, noté G, le groupe engendré par ses q générateurs.

Connaissant ’ensemble des générateurs d’une fraction réguliere comment
déterminer son groupe des contrastes de définition ?

Proposition 3.13. [<] Le groupe G engendré par les q contrastes de définition
d’une fraction réguliére est un groupe fini constitué de 29 éléments.

Illustrons ceci a ’aide d’un exemple.

| Exemple

Soit la fraction réguliere du plan factoriel complet & m = 6 facteurs
définie par :
[=123456 = 12 = 56.
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On obtient alors les 23 éléments du groupe G en considérant 1’élément
neutre I, les 3 constrastes de définition, tous leurs produits deux a
deux puis trois & trois (¢f. démonstration de la proposition 3.13) :

G = {1, 123456, 12, 56, 3456, 1234, 1256, 34} .

Le groupe G donne la totalité des contrastes égaux a I. Si 'on multiplie chacun
des éléments de G par 1 on obtient ainsi tous les contrastes égaux a 11 =1.
Tous ces constrastes sont dits confondus avec (I'effet linéaire) 1. La liste
de tous les éléments confondus avec les effets linéaires constitue la table des
confusions d’effets. Attention au vocabulaire car si 1 = 23 alors l'effet
linéaire 1 est confondu avec (I'interaction) 23; dans bon nombre d’ouvrages
ces deux contrastes sont dits aliasés. Nous déconseillons 'usage de ce terme
provenant directement de I'expression anglaise alias structure.

| Exemple |

Pour I'exemple précédent, la table des confusions d’effets est :

1= 23456 =2 =156 = 13456 = 234 = 256 = 134
2 =13456 = 1 = 2566 = 23456 = 134 = 156 = 234
3 =| 12456 = 123 = 356 = 456 = 124 = 12356 =4
4 =| 12356 = 124 = 456 = 356 = 123 = 12456 = 3
5= 12346 = 125 = 6 = 346 = 12345 = 126 = 345
6 = | 12345 = 126 = 5 = 345 = 12346 = 125 = 346

En considérant ’exemple précédent, la lecture de la table des confusions
d’effets montre que (par exemple) les effets linéaires 1 et 2 sont confondus. En
d’autres termes les colonnes de la matrice X associées a ces deux effets sont
ici égales. Ceci va poser probleme au niveau de ’analyse du modele puisque
X n’est pas de plein rang. Afin de prévenir ce genre de situation on utilise
par la suite la notion de résolution d’une fraction réguliere :

Définition 3.14. On appelle résolution d’une fraction réguliere l’entier R
égal a la plus petite longueur des éléments de G (I exclu).

Il sera montré plus tard, lors de I’analyse statistique du modele, que ’on a tout
intérét a utiliser des fractions régulieres ayant une résolution la plus grande
possible. Par convention, on écrit ’entier R en chiffres romains.

| Exemple |

La fraction réguliere définie par [ =123456 = 12 = 56 est de résolution
II. La fraction réguliere définie par 1 =1234 = 123 est de résolution I
(car G = {I, 1234, 123,4}).
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Terminons par I’énoncé d’un résultat primordial. La démonstration de ce
résultat n’est pas triviale et découle de I'interprétation algébrique d’une frac-
tion réguliere ainsi que de la théorie de représentation linéaire des groupes
finis (voir 'annexe A & la fin de l'ouvrage).

Proposition 3.15. [< (Annexe A) | Soit une fraction réguliére de matrice D
d’un plan factoriel complet a m facteurs n’ayant pas de réplications centrales,
obtenue a l'aide de q générateurs. Alors :
1) elle est constituée de 2™~ 7 expériences,
2) les colonnes de D sont des contrastes de {—1,1}2m7q et le produit
d’Hadamard de k colonnes distinctes de D (2 < k < m) est aussi un

contraste de {—1, 1}27%(1

Remarque. Ce résultat est similaire de celui énoncé a la proposition 3.10
pour les plans factoriels complets. La différence est que I'on peut obtenir des
contrastes et non uniquement des contrastes non-unitaires. La matrice d’une
fraction réguliere peut contenir des colonnes égales & I ou —I (¢f. matrice Dy
du paragraphe 3.4.1).

Concernant les notations, on précisera dans la suite le nombre d’expériences
de la fraction réguliere en notant Iym-s au lieu de I dans la définition des
générateurs. De méme, il est courant de noter 23”7 lorsqu’on utilise une
fraction réguliere d’'un plan complet a m facteurs, obtenue a l'aide de ¢
générateurs, de résolution R.

| Exemple |

Pour m = 6 facteurs, la fraction réguliere définie par I;4=123 = 456
est donc une fraction réguliere de type 2{;;.

3.4.4 Fractions réguliéres de résolution III

Revenons a l'analyse statistique des plans d’expérience étudiés. Dorénavant
une fraction réguliere d’un plan factoriel complet désigne une fraction réguliere
des sommets de {—1,1}" plus ng éventuelles réplications du centre du do-
maine. Lorsque la fraction réguliere est définie par ¢ générateurs, le nombre
d’expériences est :

n=2""94n,.

Un tel plan d’expérience sera maintenant désigné par :
FD (2" %, ng) oubien FD (2% %,ng, 1 =Cy =Cs = ... = Cy)

si 'on souhaite préciser explicitement les générateurs. Dans le but d’estimer
tous les parametres inconnus du modele d’ordre un, le résultat suivant impose
I'utilisation de fractions régulieres de résolution au moins III. Remarquons que
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ce résultat est intuitivement évident. En effet, utiliser une fraction réguliere
de résolution I entraine qu’au moins une colonne de D va étre égale a I ou —1.
De méme, une fraction réguliere de résolution II est telle qu’au moins deux
colonnes de D sont égales ou opposées. Ces deux situations entrainent que
la matrice du modele X n’est pas de plein rang et donc le modele n’est pas
estimable dans sa totalité.

Proposition 3.16. [<| Toute fraction réguliére de plan factoriel complet,
de résolution égale a III (ou plus), est un plan d’expérience usuel pour un
modeéle linéaire d’ordre un. Il vérifie de plus :

S92 = 2m—4,

Ce résultat entraine que toutes les propriétés des plans d’expérience usuels
(voir le paragraphe 3.2.4) sont directement applicables aux fractions régulieres
de résolution IIT (ou plus).

3.4.5 Taille des plans factoriels

Terminons cette étude des plans factoriels en proposant une comparaison
du nombre d’expériences a réaliser pour les plans complets et les fraction
régulieres. Le tableau suivant présente pour m facteurs (avec 2 < m < 12)
le nombre de parametres inconnus p du modele d’ordre un, la taille du plan
factoriel complet dans la colonne F' D, la taille minimale possible pour une frac-
tion réguliere de résolution III dans la colonne Frac et enfin les générateurs
utilisés afin de construire une telle fraction (ce choix n’étant pas, bien en-
tendu, unique). Le symbole x est utilisé dans les cas ol la construction est
impossible.

Table 3.1. Taille de différents plans factoriels.

p| FD | Frac Générateurs
2 facteurs | 3 4 X X
3 facteurs | 4 8 4 123
4 facteurs | 5 16 8 1234
5 facteurs | 6 32 8 124,135
6 facteurs | 7 64 8 124,135,236
7 facteurs | 8| 128 8 124,135,236,1237
8 facteurs | 9 | 256 16 125,136,147,238
9 facteurs | 10 | 512 16 125,136,147,238,249
10 facteurs | 11 | 1024 16 125,136,147,238,249,3410
11 facteurs | 12 | 2048 16 | 1235,137,1248,12349,1210,1311,2346
12 facteurs | 13 | 4096 16 | 145,179,1310,1611,256,2411,2712,367

Lorsque le nombre d’expériences est égal au nombre de parametres inconnus
(n = p) le plan d’expérience est qualifié de saturé (ou encore de minimal). 11
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n’est pas possible d’utiliser de configurations plus petites que celles-ci. C’est le
cas ici pour les fractions régulieres a 3 et 7 facteurs. Les techniques permettant
d’arriver aux choix proposés pour les générateurs des différentes fractions
régulieres seront présentées dans le chapitre suivant (paragraphe 4.5.4).

3.5 Plans simplexes
3.5.1 Définition

La section 3.4 a montré que 'utilisation de fractions régulieres de résolution
IIT peut s’avérer tres profitable afin d’analyser un modele d’ordre un. En
effet, les tailles des plans d’expérience obtenus alors sont raisonnables (voir la
table 3.1). 1l existe cependant des situations ol les expériences sont tellement
coliteuses ou longues a réaliser que ’on cherche systématiquement a obtenir
des configurations saturées. Un tel cas se présentant, par exemple, pour 8
facteurs peut étre problématique si I’on utilise un plan factoriel puisqu’il faut
réaliser un minimum de 16 expériences alors qu’il n’y a que 9 parametres
inconnus dans le modele postulé.

Le but de cette section est la présentation et I’analyse d’une classe de plans
d’expérience, appelés plans simplexes, ayant pour principale propriété d’étre
toujours saturés pour I'analyse du modele d’ordre un. La dénomination de ces
plans d’expérience provient du fait que, géométriquement, ils correspondent
aux sommets d’un simplexe de R™, c’est-a-dire d’une figure ayant m + 1
sommets, réguliere dans le sens ou 'angle entre deux sommets (par rapport
a lorigine du domaine) est constant avec un cosinus égal & —1/m (voir Box
[9]). Pour m = 2 facteurs il s’agit des sommets d’un triangle équilatéral, pour
m = 3 facteurs des sommets d’un tétraedre régulier, etc... Voici une définition
trés générale :

Définition 3.17. Un plan d’expérience est un plan simplexe pour m fac-
teurs si et seulement si n =m-+1 et :

1
———=X est une matrice orthogonale.
vm+1 &
En d’autres termes, la matrice (1/\/m + 1) X est une matrice carrée d’ordre

n telle que sa transposée est égale a son inverse. On vérifie aisément que si x
et x; sont deux points distincts d’un plan simplexe pour m facteurs, alors :

lzsl|* = flae|* = m et (x| 20) = ~1.

Ces résultats sont bien en accord avec la définition des plans simplexes donnée
par Box [9] en terme d’angle entre deux sommets puisque (avec 6 cet angle) :
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(s |2) _ 1

cosf) = ——= = —,
s sl m

Géométriquement, les plans simplexes sont donc constitués d’expériences a
la surface de la sphere centrée S (y/m) de rayon y/m. Notons que les plans
factoriels sont, eux aussi, constitués d’expériences a la surface de cette méme
sphere.

Concernant la construction de ce type de plans on trouve principalement
dans la littérature les trois grandes classes suivantes.

1) Plans simplexes classiques. On désigne par classique ce type de con-
struction qui est la plus courante. La matrice D vérifie alors la propriété
suivante (voir Khuri et Cornell [56]) : lorsque sa premiere ligne est supprimée
on obtient une matrice carrée triangulaire supérieure. Afin que la configura-
tion obtenue soit un plan simplexe, on vérifie aisément que D est définie par
le terme général D;; suivant :

V(m+1) /(GG +1)

sii <7,

Dij =94 =iV/m+1) /GG +1) sii=j+1,
0 sinon.
L’exemple suivant correspond a m = 4 facteurs :
5/2 5/6 5/12  4/5/20
—/5/2  /5/6 +/5/12  /5/20
D= 0-24/5/6 +/5/12 4/5/20
0 0-34/5/12 +/5/20
0 0 0 —4./5/20

2) Plans simplexes cycliques. 11 est aussi possible de construire des plans
simplexe en considérant une matrice D de la forme :

D aoll,,
Circ(er,ea,...,em)

ou Circ (e, ea, ..., €,) désigne une matrice circulante c’est-a-dire ici une ma-
trice carrée d’ordre m dont les lignes sont obtenues par permutations circu-
laires de la premiere ligne précisée entre parentheéses (voir Davis [28]). Le
probleme principal lié a ce type de construction est qu’il n’existe pas de
méthode systématique afin de déterminer une telle matrice circulante. On
pourra se référer & Crosier [26] qui a proposé des constructions pour un nom-
bre de facteurs compris entre 3 et 13 (en prenant chaque fois a = —1). Voici
celle proposée pour m = 4 facteurs :
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-1 -1 -1 -1
0.309 0.691 1.309 —1.309
D= 0.691 1.309 —1.309 0.309

1.309 —1.309 0.309 0.691
—1.309 0.309 0.691 1.309

3) Plans simplexes & trois niveaux. Considérons maintenant I’approche
proposée par Mee [64] concernant la construction de plans simplexes & trois
niveaux. Comme le nom 'indique I'objectif est de proposer des plans simplexes
simples dans le sens ou ils ne font appel qu’a trois niveaux distincts pour la
totalité des facteurs considérés. Pour cela, considérons une matrice D telle

que :
o'l
D= m .
[ﬁlm + va]

En d’autres termes D est constituée d’une premiere ligne constante (appelée
parfois ligne de base) et d’une matrice carrée completement symétrique 31, +
~Jm (i.e. d’une matrice constituée d’une seule valeur diagonale 5+ v et d’une
seule valeur extra-diagonale ). On vérifie sans grande diffculté qu’un plan
d’expérience de de cette forme est bien un plan simplexe si et seulement si :

a=1 a=-—1
B=vm+1 ou ¢ B=vm+1 .
7:(—1—\/m—+1)/m ’y:(l—\/m—i-l)/m

Voici la configuration proposée pour m = 4 facteurs (associée a la valeur
a=-1):

4 4 4 4
) 143V6 1—v5 1—-v5 1-5
D=>] 1-v51+3/5 1-v5 1—-5
1oV 1-vB1+3v5 1-45
1-v5 1-v6 1-v61+3V5

3.5.2 Propriétés

Concernant ’analyse d’un plan simplexe, il peut s’avérer parfois intéressant de
rajouter un petit nombre de réplications du centre du domaine expérimental.
Un plan simplexe désigne donc ici un des plans vu précédemment plus ng
éventuelles réplications du centre du domaine. Le nombre total d’expériences
est donc :

n=m+ 14 ng.

Un tel plan d’expérience sera désormais désigné par la notation SD (m,ng)
pour Simplex Design. D’apres la définition 3.17, pour tout plan simplexe la
matrice (1 /vm + 1) X est orthogonale (rajouter des réplications centrales ne
change en rien cette propriété). Il en découle que :
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XX = (m+1)1,.
Le résultat suivant est donc immédiat :

Proposition 3.18. Tout plan simplexe est un plan d’expérience usuel pour
un modéle linéaire d’ordre un. Il vérifie de plus :

so=m+ 1.

Ce résultat entraine que les propriétés des plans d’expérience usuels (voir le
paragraphe 3.2.4) sont directement applicables aux plans simplexes.

3.6 Plans de Plackett et Burman

3.6.1 Définition

Les fractions régulieres de plans factoriels complets présentent ’avantage de
n’utiliser que deux niveaux distincts par facteurs (hors éventuelles expériences
centrales) mais l'inconvénient de ne pas toujours étre des configurations
saturées. Réciproquement les plans simplexes sont systématiquement saturés
mais nécessitent généralement 1'utilisation de plus de deux niveaux par fac-
teur. L’objectif de Plackett et Burman [73] a été alors de proposer des plans
d’expérience ”optimaux” dans le sens ou ces deux propriétés sont vérifiées si-
multanément. Plus précisemment ces configurations sont définies ci-dessous.

Définition 3.19. Un plan d’expérience est dit de Plackett et Burman
pour m facteurs si et seulement si il s’agit d’une configuration saturée pour le
modéle d’ordre un (i.e. n = m+1) telle que la matrice du modeéle X ne contient
que les niveauxr —1 et +1 avec ses colonnes deuz-a-deuxr orthogonales.

Ce type de plan d’expérience est d’'un grand intérét pratique puisqu’il
combine & la fois nombre minimal d’expériences (donc cotit optimal) et nom-
bre minimal de niveaux (donc facilité dans les changements de niveaux des
différents facteurs).

D’un point de vue théorique Plackett et Burman [73] ont adapté la
théorie des matrices d’Hadamard (matrices & colonnes orthogonales composées
uniquement des valeurs +1) afin de construire ce type de plans d’expérience. Il
en découle tout d’abord que ce type de construction n’est possible que lorsque
le nombre de facteurs vérifie :

m = 3mod 4

(le nombre de facteurs doit donc étre égal a 3,7,11,...). Afin de construire, de
maniere générale, la matrice d’un plan de Plackett et Burman il est possible
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d’utiliser la technique suivante. La premiere ligne de la matrice du plan est
constituée (arbitrairement) par uniquement les valeurs —1. Les autres lignes
sont ensuite obtenues a partir des permutations circulaires d’une ”ligne de
base” (ey,ea,...,em) telle que : (m + 1) /2 valeurs des e; sont égales & 1 et
(m — 1) /2 valeurs des e; sont égales & —1. Voici la matrice D; d’un Plan de
Plackett et Burman ainsi construit pour m = 3 facteurs :

—1-1-1
1 1-1
Di=1_1 1
1-1 1

Matrice Dy d’un plan de Plackett et Burman pour m = 7 facteurs :

(-1 -1-1-1-1-1-1]
1 1 1-1 1-1-1
-1 1 1 1-1 1-1
-1-1 1 1 1-1 1
1-1-1 1 1 1-1
-1 1-1-1 1 1 1
1-1 1-1-1 1 1
1 1-1 1-1-1 1

Matrice D3 d’un plan de Plackett et Burman pour m = 11 facteurs :

[-1-1-1-1-1-1-1-1-1-1-1]
1-17 1-1-1-1 1 1 1-1 1
1 1-1 1-1-1-1 1 1 1-1
-1 1 1-1 1-1-1-1 1 1 1
1-1 1 1-1 1-1-1-1 1 1
1 1-1 1 1-1 1-1-1-1 1
11 1-1 1 1-1 1-1-1-1
-11 1 1-1 1 1-1 1-1-1
-1-1 11 1-1 1 1-1 1-1
-1-1-1 1 1 1-1 1 1-1 1
1-1-1-1 1 1 1-1 1 1-1
-1 1-1-1-1 1 1 1-1 1 1

D3 =

Remarquons que par rapport aux plans d’expérience vu précedemment un plan
de Plackett et Burman n’est autre qu’un plan d’expérience simplexe cyclique
(voir le paragraphe 3.5.1) obtenu dans le cas particulier ou les permutations
circulaires se font & partir d’une ligne constituée uniquement des valeurs +1.
Remarquons enfin que les configurations de matrices Dy et Dy définissent aussi
des fractions régulieres de plans factoriels. En effet, D; est aussi la matrice
du plan :
FD (2§;",0,-14,=123) .
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De méme, la matrice D5 est aussi la matrice du plan :
FD (2];*,0, —[3=126=134=237=245) .

On montre que lorsque le nombre d’expériences utilisées (n = m + 1) est égal
a une puissance de 2 alors le plan de Plackett et Burman est simultanément
un plan simplexe et une fraction réguliere de plan factoriel (voir Khuri et
Cornell [56]). Cette identification & une fraction réguliere est bien entendu
impossible dans tous les autres cas de figure. Ce sont surtout ces cas la qui
présentent un intérét en pratique, c’est-a-dire les situations ol le nombre de
facteurs m = 3mod 4 est tel que m + 1 n’est pas une puissance de 2 (m = 11,
19, 23, etc...). Par rapports aux exemples présentés ci-dessus le cas o m = 11
facteurs interviennent permet bien d’obtenir une configuration de plus petite
taille (en n = 12 expériences) que alternative d’une fraction réguliere de
résolution III de plan factoriel complet (en n = 16 expériences).

3.6.2 Propriétés

Concernant ’analyse, il peut s’avérer parfois intéressant de rajouter un pe-
tit nombre de réplications du centre du domaine expérimental. Un plan de
Plackett et Burman désigne donc ici un des plans vu précédemment plus ng
éventuelles réplications du centre du domaine. Le nombre total d’expériences
est donc :

n=m-+ 14 ng.

Un tel plan sera désormais désigné par la notation PB (m,ng). D’apres la
définition 3.19 pour tout plan de Plackett et Burman le produit scalaire de
deux colonnes distinctes de la matrice X est toujours nul (orthogonalité) et
la norme au carré d’une des colonnes de X est égale & m + 1 (puisque les
élements de X sont +1). Il en découle que :

XX = (m+1)1I,.

(en d’autres termes la matrice (1/\/m + 1) X est orthogonale comme c’était
le cas pour les plans simplexes). Le résultat suivant est donc immédiat :

Proposition 3.20. Tout plan de Plackett et Burman est un plan
d’expérience usuel pour un modéle linéaire d’ordre un. Il vérifie de plus :

so=m+ 1.

3.7 Exemple d’application

Terminons ce chapitre par un exemple d’application pratique. Considérons une
expérience agronomique dont ’objectif est d’obtenir une variété de légumes
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la plus fertile possible. Une expérience est donc ici la culture de plants de ces
légumes sous serre et la réponse est la masse moyenne des légumes récoltés
par unité de surface. Les agronomes pensent que 8 facteurs sont sucepti-
bles d’intervenir dans ce phénomene et ils souhaitent vérifier ce qu’il en est
réellement a ’aide d’une démarche expérimentale. Ces facteurs peuvent facile-
ment étre fixés en pratique, ils sont donnés dans le tableau suivant avec les
valeurs minimales et maximales qu’il est possible d’utiliser.

Minimum | Mazimum
Hygrométrie (en %) 55 85
Eclairement artificiel (en h) 1.5 4.5
Température (en °C) 17.5 32.5
Taux de CO3 (en %) 1.5 4.5
Fertilisant 1 (en g/m?) 150 450
Fertilisant 2 (en g/m?) 75 225
Fertilisant 3 (en g/m?) 55 85
Fertilisant 4 (en g/m?) 175 325

Les expériences étant ici longues a réaliser un plan d’expérience de petite taille,
en l'occurence un plan simplexe, va étre utilisé. Supposons de plus qu’il est
possible de réaliser 3 réplications du centre du domaine expérimental. La mise
en oeuvre d’un plan simplexe cyclique entraine la réalisation de 12 expériences
selon la matrice D donnée ci-apres (voir Crosier [26]).

-1 -1 -1 -1 -1 -1 -1 -1]
-05 1.5 05 1.5-1.5 -05 0.5 —-0.5
-05-05 1.5 05 1.5-1.5-05 0.5

0.5 -05-05 1.5 05 1.5-1.5-0.5
-05 05 —-05-05 1.5 05 1.5-1.5
-1.5-05 05 -05-05 1.5 05 1.5

1.5-1.5 -05 05 -05 -05 1.5 0.5

05 1.5-1.5-05 05 -05—-05 1.5

1.5 05 1.5-1.5 =05 0.5 —-0.5 —0.5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Remarquons que ce plan d’expérience est tel que chacun des facteurs est a
valeurs dans l'intervalle [—1.5,1.5]. Le lien entre variable codée et variable
initiale & valeurs dans [a, b] est donc donné par (voir le paragraphe 3.2.1) :

Voici alors le protocole expérimental (i.e. la liste des expériences a ef-
fectuer par le technicien, exprimées avec leurs unités initiales). Le vecteur Y,
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c’est-a-dire les différentes valeurs des réponses (en grammes) mesurées, est
aussi donné.

Hyg | Ecl | Tem | COy | Fel | Fe 2 | Fe 3 | Fe 4 Y
Exp 1 60 2 20 2| 200 | 100 60 | 200 172
Exp 2 65| 45| 275 | 45| 150 | 125 75| 225 162
Exp 3 65| 2.5 | 325 | 3.5| 450 75 65 | 275 139
FExp 4 751 25| 225 | 45| 350 | 225 55 | 225 201
Exp 5 65| 3.5 | 225 | 25| 450 | 175 85| 175 150
Exp 6 55| 2.5 | 275 | 25| 250 | 225 75| 325 297
Exp 7 851 1.5 | 225 | 3.5 | 250 | 125 85| 275 209
Exp 8 75| 45| 175 25| 350 | 125 65 | 325 382
Exp 9 851 3.5 | 325 | 15| 250| 175 65 | 225 87
Exp 10 | 70 3 25 3| 300| 150 70| 250 196
Exp 11 70 3 25 31 300| 150 70 | 250 188
Exp 12| 70 3 25 3| 300| 150 70| 250 206

Un exemple de programme SAS permettant d’entrer ce plan d’expérience
(dans la table SAS dénommée ”Donnees”) ainsi que le vecteur des réponses
est :

Data Donnees;
Input hyg ecl tem co2 fel fe2 fe3 fed y;
Cards;
-1.0-1.0-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 172
-0.5 1.5 0.5 1.5 -1.5-0.5 0.5 -0.5 162

expérience 7 et réponse i

188

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 206

Run;

Le tableau d’analyse de la variance pour le modeéle considéré est alors :

Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 8 63833 7979.1 128.7 | 0.0010 **°

Erreur 3 186.0 62.0 0.287 | 0.6458 °°°
Pure. 2 162.7 81.3
Ajus. 1 23.3 23.3

Total 11 64019

Ces résultats peuvent étre obtenus a I'aide de la procédure de SAS :
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Proc Reg data=Donnees;
Model y = hyg ecl tem co2 fel fe2 fe3 fe4;
Run;

Cette procédure effectue la régresssion linéaire la plus simple proposée par
SAS. Le tableau d’analyse de la variance est obtenu en sortie dans la
premiere partie des résultats (”Analyse de la variance”). Attention au fait
que cette procédure ne permet pas de décomposer la quantité SSFE a l'aide
des réplications réalisées. Ceci peut étre cependant rajouté a ’aide d’un calcul
trés simple puisque les répétitions n’ont lieu qu’au centre du domaine (voir la
proposition 3.8).

Concernant les résultats de ce tableau, on constate que le modele utilisé
ici est licite puisqu’il est possible de rejeter raisonnablement 'hypothese ” tous
les parametres du modele (sauf ) sont nuls”. Ce modele semble de plus bien
ajusté puisqu’on obtient (valeur ”R-Square” de la sortie SAS) :

9 SSE
R°=1 ST = 0.997.

Prenons cependant garde au fait que ’on utilise ici un plan d’expérience de
petite taille (12 expériences, dont 3 répétées) ce qui favorise 'obtention d’un
coefficient R? élevé. En effet, dans le cas limite oli 'on aurait utilisé un plan
d’expérience saturé (par exemple en supprimant les expériences au centre) le
probleme aurait alors été de faire passer au mieux un modele a 9 parametres
inconnus par 9 points expérimentaux. Ceci est bien entendu toujours possible
(sauf cas particulier amenant & une singularité) car I'ajustement conduit &
un systeme linéaire de 9 équations a 9 inconnues. Le modele ajusté au sens
des moindres carrés passe alors exactement par tous les points expérimentaux
donc R? = 1 (et ceci quelles que soient les valeurs des réponses observées).
Un estimateur sans biais de la variance des résidus o2 est maintenant donné
par (valeur "Root MSE” de la sortie SAS):

6% = MSE = 62 (donc & ~ 7.87).

Pour la décomposition de la somme des carrés due a l'erreur on constate
que le modele utilisé est bien ajusté en moyenne puisqu’il n’est pas possible
de rejeter cette hypothese & un niveau significatif. Réalisons maintenant une
analyse plus fine en estimant chacun des parametres du modele et en testant
leur significativité. Ceci donne le tableau ci-aprés (voir le paragraphe 3.2.4
pour les formules explicites) :
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Param. | Estimat. | Ec. type | St. Test Proba.
Bo 199.1 2.273 87.58 | 0.0001 °°*°
061 —11.94 2.625 —4.55 1 0.0199 *°°
B 14.50 2.625 5.52 | 0.0117 *°°
03 —50.72 2.625 | —19.32 | 0.0003 ***
o 0.167 2.625 0.06 | 0.9534 °°°
05 1.500 2.625 0.57 | 0.6077 °°°
B 12.06 2.625 4.59 | 0.0194 °*°°
0B —1.056 2.625 —0.40 | 0.7145 °°°
Os 63.39 2.625 24.15 | 0.0002 ***

Ces résultats figurent en deuxieéme partie de la sortie SAS de la procédure
REG présentée précédemment ("Résultats estimés des parametres”). Ces
résultats sont parfois représentés graphiquement sous forme d’un histogramme
appelé graphe des effets linéaires (voir la figure 3.1) ou encore diagramme
de Pareto.
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Fig. 3.1. Graphe des effets linéaires.

Un tel graphe présente autant de barres horizontales qu’il y a d’effets
linéaires étudiés et la barre associée au i-eme effet linéaire a pour longueur
|ﬂl| Les effets linéaires des facteurs sont ici représentés en les classant des plus
importants vers les moins importants (i.e. de s vers (34). La droite verticale
ayant pour abscisse 8.4 correspond & la valeur que doit dépasser |@| pour
que le i-eme effet linéaire soit jugé significatif avec un niveau égal au moins a
5% (voir le paragraphe 2.6.4). Remarquons que 'utilisation de cette référence
commune est ici possible car le plan est usuel donc tous les estimateurs Bi
ont méme dispersion (égale & 02/sy d’apres la proposition 3.4) et obéissent
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donc a la méme regle concernant ’acceptation ou non de leur significativité.
Remarquons enfin que, d’apres le modele utilisé, la longueur de chacune des
barres s’interpréte en pratique comme la variation de la réponse prédite (en
valeur absolue) obtenue lorsque le facteur correspondant varie d’une unité
(sous forme codée). En effet, la réponse moyenne prédite au point z est donnée
par :

m
Y (2)=Fo+ Y Biwi.
i=1
Supposons que seul le facteur j varie d’une unité (i.e. il passe du niveau

x; au niveau z; £ 1). En notant symboliquement x4 ; le point ainsi obtenu il
vient :

-~

Bj| -

Y (z1,) = Bo + Z@xl + 3, (z; £1) donc |Y (z4;) = Y (x;)
i#j

Comparons maintenant les valeurs des réponses observées (Y') avec les réponses
moyennes prédites par le modele (Y = X ). Ces résultats sont résumés dans le
tableau ci-dessous avec Uerreur associée a ces différentes prédictions (I’écart-

type).

Y obs. | Y pred. | Ec. type
Exp 1 172 171.2 7.764
Exp 2 162 161.2 7.764
Ezxp 3 139 138.2 7.764
Exp 4 201 200.2 7.764
Exp 5 150 149.2 7.764
Exp 6 297 296.2 7.764
Exp 7 209 208.2 7.764
Ezxp 8 382 381.2 7.764
Exp 9 87 86.2 7.764
Ezxp 10 196 199.1 2.273
Exp 11 188 199.1 2.273
Ezxp 12 206 199.1 2.273

Ces valeurs peuvent étre directement obtenues & ’aide du programme SAS
suivant ('option ”clm” permet d’obtenir les valeurs Y;, leurs dispersions ainsi
qu’un intervalle de confiance) :

Proc Reg data=Donnees;
Model y = hyg ecl tem co2 fel fe2 fe3 fe4d / clm;
Run;

On constate que les réponses observées et prédites par le modele sont
toujours trés proches, ceci est en accord avec la valeur élevée de R? trouvée
précédemment. Rappelons que les dispersions associées aux prédictions
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découlent de la formule suivante (puisque le plan d’expérience utilisé est iso-
variant par transformations orthogonales, voir la proposition 3.5) :

N 1 1 31 62
vmy@g:&<;+gwﬂﬁ:ka+—wﬂﬁ

Cette formule montre bien que les trois réplications centrales sont associées
& trois variances identiques, obtenues en posant ||z|| = 0. De méme, il a été
montré au paragraphe 3.5.1 que toutes les expériences d’un plan simplexe sont
situées & la surface de la sphere centrée de rayon /m. C’est pourquoi les 9
premieres expériences sont toutes associées a une dispersion identique, donnée

par :
- 31, 496
‘WHY(w::E—+—§-:6u2m;mmmw|mn2:8,

| Conclusion |

Les résultats précédents ont montré que le modele ajusté ici est de bonne
qualité et donne les informations suivantes concernant les effets linéaires de
chacun des facteurs considérés :

1) Peffet moyen général ainsi que les effets linéaires de la température et du
fertilisant 4 sont trés hautement significatifs,

2) les effets linéaires de 1’éclairement, de ’hygrométrie ainsi que du fertilisant
2 ont un effet significatif sur le phénomene étudié (moins important que
pour le cas précédent mais non-négligeable),

3) les effets linéaires associés au taux de COs, au fertilisant 1 ainsi qu’au
fertilisant 3 ne sont pas significatifs dans le modele postulé.

En tenant compte maintenant du signe de chacun des estimateurs des effets
linéaires obtenus il est possible de résumer tout ceci dans le tableau suivant
traduisant l'effet de chaque facteur sur la réponse. Plus précisément, ce tableau
rend compte de l'effet sur la réponse moyenne prédite lorsque chacun des
facteurs passe du niveau bas —1 au niveau haut +1. La conséquence peut alors
étre négligeable (~ 0), une augmentation (+), une tres forte augmentation
(+4), une diminution (—) ou encore une tres forte diminution (——).

Hyg. | Ecl. | Tem. | CO2 | Fe 1 | Fe 2 | Fe 3 | Fe 4
|Eﬁet5urY — + — | =0 | =0 + ~0 | ++

Ce tableau indique donc que, d’apres le modele ajusté, il est nécessaire de
réaliser les opérations suivantes si I’on souhaite augmenter la masse moyenne
de légumes récoltés : fixer la température & un niveau bas et le fertilsant 4 a
un niveau haut (conditions primordiales), puis fixer 'hygrométrie & un niveau
bas puis I’éclairement ainsi que le fertilisant 2 & un niveau haut. Les trois
derniers facteurs étant sans effet notable sur la réponse peuvent étre fixés de
n’importe quelle maniére (voire non-controlés).
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3.8 Résumé

Voici un résumé des principales configurations étudiées dans ce chapitre. Pour
un nombre de facteurs variant entre 2 et 12 (associés & un nombre p de
parametres inconnus & estimer) le tableau suivant présente le nombre min-
imal d’expériences a réaliser pour différents plans d’expérience. On considere
plus précisemment :

1) les plans factoriels complets (de type F'D (2™,0)),

2) les plans factoriels fractionnaires de résolution III (de type F D ( 5 O)),
3) les plans simplexes (de type SD (m,0)).

3) les plans de Plackett et Burman (de type PB (m,0)).

La taille relative § pour chaque plan d’expérience figure aussi entre par-
entheses, il s’agit de sa taille ramenée au nombre d’inconnues du modele :

n n

p m+1

Par construction tous les plans simplexes ainsi que tous les plans de Plackett
et Burman sont saturés (6 = 1) deés lors qu’ils n’intégrent aucune expérience
centrale.

p | Fact. Comp. | Fact. Frac. Simplexe | Plac. Bur.

2 facteurs | 3 4 (1.33) X 3 (1.00) X

3 facteurs | 4 8 (2.00) 4 (1.00) 4 (1.00) 4 (1.00)

4 facteurs | 5 6 (3.20) 8 (1.60) 5 (1.00) X

5 facteurs | 6 32 (5.33) 8 (1.33) 6 (1.00) X

6 facteurs | 7 64 (9.14) 8 (1.14) 7 (1.00) X

7 facteurs | 8 128 (16.0) 8 (1.00) 8 (1.00) 8 (1.00)

8 facteurs | 9 256 (28.4) 16 (1.78) 9 (1.00) X

9 facteurs | 10 512 (51.2) 16 (1.60) 10 (1.00) X

10 facteurs | 11 1024 (93.1) 16 (1.45) 11 (1.00) X
11 facteurs | 12 2048 (171.) 16 (1.33) 12 (1.00) 12 (1.00)
12 facteurs | 13 4096 (315.) 16 (1.23) 13 (1.00) X
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3.9 (Compléments) Démonstrations

Proposition 3.4. Soit un plan d’expérience usuel pour un modéle linéaire
d’ordre un.

1) L’estimateur des moindres carrés de (3 est donné par :

O |
Bo=Y et B, = —'DY.
S2

2) Concernant la dispersion de cet estimateur, il vient :

2 2
A~ o ~ ag
Varfp=— et Vi=1,...m, Varg, = —.
n S92
3) Les composantes de B sont de plus non-corrélées entre elles.

Démonstration. Pour tout plan d’expérience usuel, par hypothese, ! X X est
une matrice diagonale donnée explicitement par :

‘XX = diag (n, s2, ..., 52) .

En notant '8 = (8 | 'A) et X = [I,|D | on obtient alors pour B

f=("XX)""*XY = diag (i i i) {i%} v (((11//:2);}519 '

On en déduit le résultat énoncé en 1. Concernant la dispersion de /3’, il vient :

. _ 11 1
v (,6’) =02 (*XX) " =02 diag <—, S —> .
n So S9
Les résultats du point 2 sont obtenus par lecture des termes diagonaux. Le
point 3 découle enfin du fait que V (ﬁ) est une matrice diagonale l

Proposition 3.5. Soit un plan d’expérience usuel pour un modéle linéaire
d’ordre un. En désignant par ||.|| la norme usuelle de R™, la dispersion de la
réponse prédite en x =t (x1,...,m) € € est donnée par :

N 1 1
VarY (z) = o2 <— + = ||x||2> .
n S92

Cette dispersion ne dépend que de la distance entre x et le centre du domaine,
c’est pourquoi tout plan d’expérience usuel pour un modéle d’ordre un est
qualifié d’isovariant par transformations orthogonales.

Démonstration. D’apres la proposition 2.7 il vient :
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1

VarY (z) = 0% ‘g () (‘"X X) ™ g(x)

avec g (r) vecteur de régression construit de maniére identique aux lignes de
X. Donc ici :

Vao="'@,.om) €E,g@) = 1,21, Tm).

Il vient ensuite :

. 1 1 «
VarY (z) = o? g (z) diag (l, — .. i) g(z) =02 <l + S—me)
2o

Y
n So S92 n

D’ou le résultat énoncé B

Lemme 3.A. (utilisé pour démontrer la proposition 3.7) Soit un plan
d’expérience D 4 m facteurs quantitatifs et les applications A; (j =1,...,m)
de R™ dans R™ telles que :

Aj i (1,22, ey Ty ooy T ) > (X1, T2 ey =Ty ooy Ty -

Si D est globalement invariant relativement aux applications A; (i.e. V
j=1,..,m , D =Imp, D) alors tous les moments impairs des points de
ce plan sont nuls.

Démonstration. Considérons un plan d’expérience D globalement invariant
relativement a 'application A;. Ceci veut donc dire qu’a tout point du plan
z, on peut associer un autre point z, tel que :

Aj (z4) = 2.
En d’autres termes, on a donc :
Zuj = TZu'j et Vi 7é.7 y Rui = Ruli-

Evaluons maintenant tout moment des points de ce plan ayant la forme
[1‘512‘52...m‘5m] avec d; entier impair. Il vient alors :

n

n
5 5| 8, 8; 81902 dm] —
Sz T | == D0 =, [ Tz | = [192%..m] =o.

u=1 i#j u'=1 i#]

Lorsque le plan d’expérience est globalement invariant par rapport a toutes
les applications A; (j = 1,...,m) tous ses moments impairs sont donc bien
nuls W
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Proposition 3.7. Tout plan d’expérience factoriel complet est un plan
d’expérience usuel pour un modéle linéaire d’ordre un. Il vérifie de plus :

S9 = 2™,

Démonstration. Montrons que tout plan factoriel complet vérifie bien les
contraintes associées a un plan d’expérience usuel.

1) Concernant les moments pairs, il est évident que pour tout i = 1,...,m,
n [zz} = 2™ puisque chaque colonne de D est constituée par 2™ valeurs égales

alou—1.

2) Justifions que tous les moments impairs de XX (i.e. de la forme [i]
pour ¢ = 1,...,m et [ij] pour 4,5 = 1,...,m avec i < j) sont nuls. Ceci est
une conséquence immédiate du lemme 3.A. En effet, la configuration utilisée
ici contient tous les sommets du cube [—1,1]™ il en découle que tout plan
d’expérience factoriel complet est bien globalement invariant par rapport a
chacune des applications A;. Remarquons enfin que rajouter ng réplications
centrales (i.e. ng lignes nulles & la matrice D) permet de conserver les mémes
moments nuls ainsi que la méme valeur de so B

Proposition 3.8. Soit un plan d’expérience dont les seules réplications ont
liew au centre du domaine expérimental et sont répétées ng > 2 fois. Si Yy
est le vecteur de ces ng réponses et Yy est ce méme vecteur centré alors :

SSPE ="Y3¥y = V7|
Démonstration. Il a été montré a la proposition 2.12 que SSPE vérifie :
SSPE ='Y (I, — P*)Y

avec P* projecteur orthogonal de R™ sur I'image de la matrice indicatrice
des répétitions (donc P* = diag (rflJl,rgljg, e T 1Jn*)). Comme ici les

e
répétitions sont effectuées uniquement au centre du domaine et sont au nombre
de ng, on a donc :

P* =diag (1,1, ... ,1,n5 " Jn,) -

Il en découle que :
, 1 , 1 1
SSPE ="y (I, — —Jp, | Yo="|( Iy — —Jn | Yo | (1o — — T, ) Yo
no o 1o
car (I, — 1/noJny)* = I, — 1/ngJn,. On a le résultat annoncé car :

1 1 1
Yo =Yo— | —"T Y0 )Ing = Yo — — Iy Tng Yo = (In — —Jn, | Yo B
0 0 <n0 00> 0 0 no 0 010 < n0J0> 0

eR
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Proposition 3.10. Soit un plan d’expérience factoriel complet a m facteurs,
de matrice D, n’ayant pas de réplications centrales. Les colonnes de D sont
alors (par construction) des contrastes non-unitaires de {—1,1}2m. De
plus, le produit d’Hadamard de k colonnes distinctes de D (2 < k < m)

. - 2m
est aussi un contraste non-unitaire de {—1,1}" .

Démonstration. Il est évident que les colonnes de D sont bien des contrastes
non-unitaires de {—1, 1}2m puisque, par construction, elles sont formées
d’autant de valeurs +1 que de valeurs —1. Montrons maintenant que le pro-
duit d’Hadamard des deux premieres colonnes de D est encore un contraste
de {-1, 1}2m . Il est évident que le produit d’'Hadamard de ces colonnes est
un vecteur de lespace {—1, 1}2m . De plus, d’apres le lemme 3.A tous les mo-
ments impairs du plan complet sont nuls. On a donc en particulier [12] = 0
et le produit d’Hadamard des deux premieres colonnes de D est bien un
contraste non-unitaire de {—1, 1}2m . Ce raisonnement se généralise pour le
produit d’Hadamard de k£ colonnes distinctes de D B

Proposition 3.13. Le groupe G engendré par les q contrastes de définition
d’une fraction réguliére est un groupe fini constitué de 24 éléments.

Démonstration. Soit une fraction réguliere engendrée par la famille de con-
trastes indépendants F ={C1,Cy,...,Cq} et I = {1,2,...,q}. Le groupe G
engendré par les éléments de F est (voir par exemple Calais [17]) :

G={C1Cs..C, ,nEN* ,Ci€ FouC;' e F}.
Remarquons cependant que pour tout contraste C; de F il vient :
C?=CioC =1« C'=0C.

De meéme il est ici inutile de répéter plusieurs fois un méme élément de F
puisque :
VEeN,CH =Tet C? =(;.

On a donc avec n indices distinets {i1,...,4,} C I :
g :{C'ZIC'QCZH s 1 <n< q, Ol'l, ,Cln S f} .

On en déduit que les éléments de G sont : I (I’élément neutre du groupe), les
élements de la forme C; (au nombre de ¢), les éléments de la forme C;C; (il
y en a autant que de choix possibles non-ordonnés de deux éléments parmi ¢,
c'est-a-dire C7 = ¢!/(2! (¢ — 2)!)), les éléments de la forme C;C;Cy, (au nombre
de C’g’), ..., élément C,Cs...Cy. D’apres la formule du bindme de Newton, le
nombre total d’élements est donc :
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q

card (G) = Y _Ci =27,

=0

Justifions pour terminer que l'on n’a pas dénombré ainsi plusieurs fois le
méme élément, c’est-a-dire que les 29 éléments construits ci-dessus sont bien
distincts. Supposons que deux éléments soient égaux. En d’autres termes,
supposons qu'il existe I' = {i1,ia,...,0n} C I et I" = {j1,J2, ., jn} C I
avec I' # I" tels que :

Cil Cig--'Cin/ = C]l CJZCJn// :

Comme I’ et I" sont par hypotheése distincts on peut donc affirmer que (par
exemple)
Jip- €I’ tel que i~ ¢ 1”.

En multipliant les deux membres de 1’égalité par H C; il vient alors :
i€l —{inx}

Ci,. =C;Cy,..Cy, ] G

i€l’—{iy«}

Cette égalité est impossible a obtenir car elle contredit le fait que F est une
famille de contrastes indépendants. On en déduit que les 29 éléments de G
sont donc deux a deux distincts W

Proposition 3.16. Toute fraction régulieére de plan factoriel complet, de

résolution égale a I1I (ou plus), est un plan d’expérience usuel pour un modéle

linéaire d’ordre un. Il vérifie de plus :
59 =271,

Démonstration. Montrons au préalable qu'une fraction réguliére de résolu-

tion I ou II rend impossible I'analyse du modele d’ordre un complet.

1) Soit une fraction réguliere de résolution I. Il existe donc au moins un
élément de longueur égale & 1 dans le groupe G (supposons qu'’il s’agisse de
Veffet linéaire 1). Ceci entraine que I = 1 et donc la matrice du modele X est
singuliere puisqu’elle contient deux colonnes égales a I.

2) Soit une fraction réguliere de résolution II. Il existe donc au moins un
élément de longueur égale & 2 dans le groupe G (supposons qu’il s’agisse de
Peffet d’interaction 12). Ceci entraine que :

I=12 <« 1=2.

La matrice du modele X est donc singuliere puisque les colonnes associées
aux effets linéaires 1 et 2 sont identiques. Montrons maintenant que le plan
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d’expérience est usuel des lors que la résolution de la fraction est au moins
égale a III. D’apres la proposition 3.15, les colonnes de D sont des contrastes.
Il s’agit bien ici de contrastes non-unitaires sinon nous serions dans le cas
abordé en 1. Donc :

Vi=1,..,m, [i]=0.

De méme, la proposition 3.15 assure que le produit d’Hadamard de deux
colonnes distinctes de D est un contraste. Une nouvelle fois il s’agit bien d’un
contraste non-unitaire sinon nous serions dans le cas abordé en 2. Donc :

Vi,j=1,..,m, [ij]=0.

Enfin, une fraction réguliere engendrée par ¢ générateurs est constituée par
2™~4 expériences, donc :

Vi=1,..m ,n[i?)|=s,=2""11



4

Plans d’expérience pour modeles a effets
d’interactions

4.1 Introduction

Considérons, par exemple, une réaction chimique dont on mesure le rende-
ment. Supposons que ce rendement dépend, entre autre, des deux facteurs
que sont la température et la pression. Modéliser cette expérience a ’aide d’un
modele polynomial du premier degré entraine que 'effet de la température sur
la réponse est toujours le méme quelle que soit la valeur prise par la pression.
Il est évident que cette hypothese n’est pas toujours vérifiée dans la réalité
car on peut envisager que 'effet de la température sur la réponse change en
fonction de la pression utilisée. Dans ce cas de figure il existe donc un effet
d’interaction entre ces deux facteurs.

L’objet de ce chapitre est de proposer des modélisations adaptées a ces
situations d’interaction. Ceci est possible en restant dans un cadre polynomial,
il suffit de rajouter des termes croisés rendant compte de ces nouveaux effets.
L’analyse de tels modeles est facilement réalisable des lors que 'on utilise,
une nouvelle fois, des plans d’expérience factoriels ou des fractions régulieres
adéquates de ceux-ci.

Ce chapitre est structuré de la manieére suivante. Une premiere partie
aborde le probleme le plus classique des interactions d’ordre 2 (i.e. entre deux
facteurs). Les conditions & vérifier pour qu’un plan d’expérience soit d’analyse
aisée (on le qualifiera encore plan usuel) sont détaillées. On montre ensuite
que tout plan d’expérience factoriel ou toute fraction réguliere judicieusement
choisie vérifient bien ces conditions. Une seconde partie propose plusieurs
types de généralisations : modeles a effets d’interactions d’ordre 3, modeles
a effets d’interactions d’ordre quelconque et enfin modeles contenant tous les
effets d’interactions. Le probleme de l'utilisation de modeles incomplets est
ensuite abordé puis un exemple d’application, illustré a ’aide de codes SAS,
est proposé a la fin du chapitre.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 115
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_4,
(© Springer-Verlag Berlin Heidelberg 2010
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4.2 Généralités

4.2.1 Modeéele utilisé

Considérons ici un plan d’expérience D ={z,,u = 1,...,n} & m facteurs quan-
titatifs mis en oeuvre sur le domaine expérimental £ C R™. Un modeéle poly-
nomial est alors dit a effets d’interactions d’ordre 2 des lors que I'on considere
le modele statistique Y (z) = f (z) + ¢ (z) avec la loi de réponse donnée par :

Veel, f(x)=P0+ Zﬂixi + ZZﬂijxizj-
=1

i<j
Pour un tel modele, on dit que :

0o (i.e. la constante polynomiale) est 'effet moyen général,
Bi (i=1,...,m) est 'effet linéaire du i-éme facteur,
Bi; (i,7=1,...,m,i < j) est 'effet d’interaction entre les facteurs i et j.

Le modele considéré ici est donc un modele d’ordre 1 auquel sont rajoutés
tous les effets d’interactions entre couples de facteurs (d’ott la terminologie
d’interactions d’ordre 2). D’un point de vue algébrique on utilise donc ici un
polynome affine, c’est-a-dire un polynéme P (z1, z2, ..., Z,,) tel que :

O?P (1,72, ey Ty
Ox?

3

=0.

Vi=1,...m,

L’ajout des termes en 3;; permet de quantifier les éventuelles interactions en-
tre les couples de facteurs considérés puisqu’ils rendent compte des variations
simultanées de ces deux facteurs par le biais du produit z;z; de leurs niveaux.
Deux facteurs ne présentant aucune interaction entre eux doivent conduire a
un coefficient 3;; nul ou tout au moins non-significativement différent de zéro.

Il existe autant d’interactions entre couples de facteurs que de choix non-
ordonnés de deux élément dans un ensemble en contenant m (c’est-a-dire
C2 =m(m —1)/2), le nombre de paramétres inconnus du modele considéré
est donc égal a :
m? +m+2

5 .
On décomposera souvent dans la suite le vecteur 8 € RP des parametres du
modele en ‘3 = (Bo | !B | 161) avec B, € R™ vecteur des effets linéaires
et Br € R™(m=1/2 yecteur des effets d’interactions. De maniere similaire, la
matrice du modele X € M (n,p) est alors décomposée en :

p=14+m+C? =

X=[1L,|D|Dy]

avec D matrice du plan d’expérience et Dy € M (n,m (m — 1) /2) matrice
associée aux effets d’interactions donnée par (ol zy1, ..., Zum sont les m coor-
données du point z,,) :



4.2 Généralités 117

211212 211713 <o R1(m—1)”1lm
221222 221223 <o 22(m—1)%2m
Dy =
Z(n—1)17(n—1)2 #(n—1)1%(n—1)3 + -+ Z(n—1)(m—1)%(n—1)m
Zn14n2 Zn1%n3 -++ Zn(m—1)%nm

On classera toujours par la suite les colonnes des effets d’interactions selon
Pordre lexicographique. Pour 4 facteurs, notés 1, 2, 3 et 4, il s’agit de
Pordre suivant : 12, 13, 14, 23, 24, 34.

4.2.2 Plans d’expérience usuels

Pour un modele a effets d’interactions d’ordre 2, la matrice des moments est
alors donnée par :

‘1,L, 'I,D ‘I,D;
M=Z=| 'DI, ‘DD 'DD;
tD;il, ‘D;D 'D;D;
La forme générale des blocs I,,I,,, !I,,D et ‘DD a déja été explicité dans le
chapitre précédent (paragraphe 3.2.3). On a de plus :

%tml = [[21 3] ... [(m=1)m] ],
r[122] [123] ... [1(m —1)m]
1 [122) [123] ... [2(m —1)m]

—tDD; =
n

| [12m] [13m] ... [(m — 1) m?]
[ [1%22] [1223] L [12(m—1)m]
) [123] [1232] . [13(m—1)m]

_[12(m;1)m] [13(m;1)m] {(mf.l)QmQ}

L’objectif est encore de proposer une classe de plans d’expérience vérifiant
les deux objectifs suivants : inclure la plupart des configurations classiques et
étre constituée de plans d’expérience tres facilement analysables a ’aide d’un
modele polynomial & effets d’interactions d’ordre 2. Ceci conduit a la définition
suivante pour obtenir une matrice des moments la plus simple possible :

Définition 4.1. Un plan d’expérience est qualifié d’usuel pour un modéle
linéaire a effets d’interactions d’ordre deux si et seulement si :

1) tous ses moments impairs jusqu’a l’ordre 4 sont nuls,

2) tous ses moments purs d’ordre deuz sont égaux ([12] = ... = [m?]),
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3) tous ses moments pairs croisés d’ordre quatre sont égaux,
Vi, j=1,...,m avec i £ j , [i2j2} = C'te),

Pour tout plan usuel D ={z,,u =1,...,n} il est donc possible de définir les
constantes so et soo par (Vi,7 =1,...,maveci#j):

n

n
so =n[i?] = Zzzz et sap = n [i%5%] = 2231253
u=1

u=1

Remarquons qu’un plan d’expérience usuel est un plan orthogonal particulier
puisque les conditions de la proposition 4.1 entrainent que la matrice des
moments est diagonale. Il découle de plus de cette définition que :

Proposition 4.2. [<] Soit un plan d’expérience usuel pour un modéle linéaire
a effets d’interactions d’ordre deuzx. Alors :

1) L’estimateur des moindres carrés de (3 est donné par :

- N 1 A 1
Bo=Y ,BL=—"DY et 3y = —"D,Y.

82 S22
2) Concernant la dispersion de cet estimateur, il vient (Vi,5 =1, ...,m avec
i#j): , , ,
o o ~ o 5 g
Varﬂo = —, Varﬂi = — et Var,@ij = —.
n So 522

3) Les composantes de B sont de plus non-corrélées entre elles.
Concernant la qualité des prédictions réalisées par tout plan usuel il vient :

Proposition 4.3. [<] Soit un plan d’expérience usuel pour un modéle linéaire
a effets d’interactions d’ordre deuz. En désignant par ||.|| la norme usuelle de
R™, la dispersion de la réponse prédite en © =t (x1,...,x) € € est donnée

par :
m

- 1 1 2 1 4 1
VarY (z) = o2 [ =+ — |jz|| + — ||z||" = =— =z} ].
(@) (n el g el = 53
Une conséquence directe de la proposition 4.3 est qu’'un plan d’expérience
usuel n’est jamais isovariant par transformations orthogonales pour
un modele linéaire & effets d’interactions d’ordre deux (i.e. la dispersion de la
réponse prédite n’est jamais une fonction de ||z & cause du terme en Y x}).

4.3 Plans factoriels complets

Il est prouvé ici qu’il est possible d’utiliser un plan d’expérience factoriel
complet afin d’ajuster de maniere simple un modele a effets d’interactions
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d’ordre deux. On désigne toujours par plan d’expérience factoriel complet
pour m facteurs (voir la définition 3.6) tout plan, désigné par la notation
FD (2™, ng), contenant :

1) tous les sommets du cube [—1,1]",
2) ng réplications éventuelles du centre du domaine expérimental.

Le résultat fondamental est donné par la proposition ci-dessous :

Proposition 4.4. [<] Tout plan d’expérience factoriel complet est un plan
d’expérience usuel pour un modéle linéaire o effets d’interactions d’ordre
deux. Il vérifie :

S9 = 2™ et S99 = 2™,

Tout plan d’expérience factoriel complet vérifie donc les propriétés énoncées
aux propositions 4.2 et 4.3.

| Exemple |

Soit le plan factoriel F'D (22, 2) et Y1,...,Ys les 6 réponses observées
(Y1 correspondant a l'expérience de la ligne 1 de D, ..., Y5 a celle de
la ligne 6). Le modele considéré est donné par :

Va=(z1,22) €&, f(x) = Po+ Prx1 + Boxa + Broz12.

La matrice de ce modele est alors :

[1-1-1 1

1 1-1-1

1-1 1-1
X=[L|p[Dr]=1 1 1
1 0 0 0

(1 0 0 0

avec :

-1-1 1

1-1 -1

-1 1 -1

D= 1 1 et D[: 1
0 0 0

0 0 0

L’estimateur des moindres carrés de l'effet moyen général est donc :

s 1
fo=g N+ Yo+ Ys+Ya+Ys+Y5).

Les estimateurs des effets linéaires sont :

.1 .
bi==(-Y1+Y2—Y3+Ys) et B =

3 (Y1 —-Yo+Ys+Ya).

| —
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Enfin, l’estimateur des moindres carrés de l'effet d’interaction (12 est
donné par :

-1
/312:§(Y1—Y2—Y3+Y4).

En conclusion, I'utilisation d’un plan factoriel complet peut donc étre dictée,
tout comme dans le cas du modele linéaire d’ordre un, a la fois par des
impératifs de simplicité de la construction et de facilité de 'analyse. Le
principal inconvénient de ces plans d’expérience est une nouvelle fois leur
taille qui devient rapidement tres grande. Le lecteur pourra se référer a la ta-
ble 4.1 de la section 4.4 donnant les tailles de ces plans. Les résultats de cette
table montrent que la taille d’un plan factoriel complet reste correcte lorsque
le nombre de facteurs a étudier n’excede pas 4. Pour un nombre plus grand
de facteurs il va étre nécessaire de s’orienter une nouvelle fois vers 'utilisation
d’une fraction réguliere adéquate du plan complet.

4.4 Fractions régulieres de plans factoriels

4.4.1 Fractions réguliéres de résolution V

L’objectif est ici d’utiliser non pas les 2™ sommets du cube [—1,1]" du plan
factoriel complet mais seulement une fraction de ces sommets. Une frac-
tion permettant de plus d’estimer tous les parametres du modele a effets
d’interactions de la maniere la plus simple possible est recherchée (i.e. avec
tX X matrice diagonale). Cette problématique a déja été abordée dans le
chapitre 3 (section 3.4) pour le modele linéaire d’ordre un. Elle avait conduit
a la notion de fraction réguliére qui va étre réutilisée ici.

Tout comme a la section 3.4 considérons une fraction réguliere d’un plan
factoriel complet & m facteurs obtenue & l'aide de ¢ générateurs. Si ng
réplications du centre du domaine expérimental sont réalisées, le nombre total
d’expériences est donc :

n=2""94ng.

Il a été prouvé dans le chapitre précédent (paragraphe 3.4.4) que toute frac-
tion réguliere de résolution au moins III est un plan d’expérience usuel pour
le modele linéaire d’ordre un. Déterminons maintenant une condition simi-
laire pour un modele linéaire a effets d’interactions d’ordre deux. La condi-
tion & imposer est, une nouvelle fois, facile & déterminer intuitivement (voir
les compléments de fin de chapitre pour une démonstration complete). Il est
clair qu'une fraction réguliére de résolution inférieure & III n’est toujours pas
adaptée ici puisque le modele a effets d’interactions est plus riche que celui
d’ordre un. Utiliser une fraction réguliere de résolution III entraine qu’au
moins une colonne de D va étre égale ou opposée & une colonne de Dj.
De méme une fraction réguliere de résolution IV est telle qu’au moins deux
colonnes de Dy sont égales ou opposées. Il en découle le résultat suivant :
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Proposition 4.5. [<] Toute fraction réguliére de plan factoriel complet,
de résolution égale a V (ou plus), est un plan d’expérience usuel pour un
modele linéaire a effets d’interactions d’ordre deux. Il vérifie de plus :

S9 = 2M~14 et S99 = 2m—4,

Les exemples ci-dessous découlent directement de cette proposition.

| Exemple |

La fraction réguliere F'D (2;’1_11, 0, —1116:123) ne constitue pas un
plan usuel pour un modele & effets d’interactions d’ordre deux (car
—I16=123 entraine que 1 = —23 donc il y a une confusion entre 'effet
linéaire du facteur 1 et 'interaction entre les facteurs 2 et 3).

La fraction réguliere F'D (2?\71, 0, 1116:1234) ne constitue pas un
plan usuel pour un modele & effets d’interactions d’ordre deux (car
I16=1234 entraine que 12 = 34 donc il y a une confusion entre 1’effet
d’interaction des facteurs 1 et 2 et l'effet d’interaction des facteurs 3
et 4).

La fraction réguliere F'D (2{51_17 0, ]I15:12345) constitue bien un plan
usuel pour un modele a effets d’interactions d’ordre deux puisqu’elle
est de résolution V (on a de plus sy = 599 = 24).

Il découle que toute fraction réguliere de plan factoriel, de résolution au moins
V, vérifie les propositions 4.2 et 4.3.

4.4.2 Taille des plans factoriels

Comparons ici les tailles respectives des deux types de plans d’expérience
proposés pour l'ajustement d’un modele linéaire a effets d’interactions d’ordre
deux. Le tableau suivant donne pour m facteurs (2 < m < 10) le nombre
de parametres inconnus p du modele a effets d’interactions d’ordre deux, la
taille du plan factoriel complet (i.e. 2™), la taille minimale possible pour
une fraction réguliere de résolution V et enfin les générateurs utilisés afin de
construire une telle fraction (ce choix n’étant pas, bien entendu, unique).

Table 4.1. Taille de différents plans factoriels.

p | FD(2™,0) | FD (2y%,0) Générateurs
2 facteurs 4 4 X X
3 facteurs | 7 8 X X
4 facteurs | 11 16 X X
5 facteurs | 16 32 16 12345
6 facteurs | 22 64 32 123456
7 facteurs | 29 128 64 1234567
8 facteurs | 37 256 64 12345, 45678
9 facteurs | 46 512 128 12345, 56789
10 facteurs | 56 1024 128 | 12378, 23459, 134610
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Pour un nombre de facteurs strictement inférieur a 5, P'utilisation (obliga-
toire) d’un plan factoriel complet n’est pas génante car leur taille est tres cor-
recte. L’utilisation d’une fraction réguliere de résolution V s’avere ensuite tres
intéressante pour 5 facteurs puisque le plan est saturé. Remarquons qu’il est
tres facile de déterminer intuitivement un ou deux générateurs afin d’obtenir
une fraction réguliere de résolution V (¢f. situations pour 5 < m < 9). Le choix
des trois générateurs pour m = 10 s’avere plus complexe. Le lecteur pourra
se référer, par exemple, & Box et Hunter [14] afin de comprendre comment ce
choix a été effectué.

4.5 Généralisation a des interactions quelconques
4.5.1 Modele a effets d’interactions d’ordre 3

Les premieres parties de ce chapitre ont été consacrées au modele le plus
courant, c’est-a-dire contenant toutes les interactions entre couples de fac-
teurs. Un tel modele est d’usage fréquent car il est classique de supposer que
toutes les interactions d’ordre supérieur & deux sont négligeables dans le
phénomene étudié. Il existe cependant des situations ou une telle hypothese
peut s’averer fausse. Il est donc nécessaire d’ajuster des modeles contenant
plus d’effets d’interactions que ceux du modele classique. Détaillons dans cette
partie le cas du modele contenant tous les effets d’interactions jusqu’a l'ordre
trois, appelé plus simplement modele a effets d’interactions d’ordre 3. La
suite présente le fil conducteur des différents raisonnements proposés, sans
entrer dans le détail des démonstrations qui sont en tout point similaires a
celles des sections 4.3 et 4.4.

Considérons un plan d’expérience D = {z,,u = 1,...,n} & m facteurs quan-
titatifs mis en oeuvre sur le domaine expérimental £ C R™. Un modele poly-
nomial est alors dit a effets d’interactions d’ordre 3 des lors que ’on considere
le modele statistique Y () = f (z) + € (x) avec la loi de réponse donnée par :

Vel , f(x)=00+ Z/Bixi + Z Zﬂiﬂ?ﬂj + Z Z Zﬂijkximjmk-
i=1

1<j i<j<k

On dit que Bijk (4,4,k = 1,...,m avec i < j < k) est ’effet d’interaction
(d’ordre 3) entre les facteurs i, j et k.

Il existe autant d’interactions entre trois facteurs que de choix non-ordonnés
de trois éléments parmi m (c’est-a-dire C3,). Le nombre total de parametres
inconnus du modele considéré est donc égal & (pour m > 3 facteurs) :

m3 +5m+6

p=1+m+C,+Cp = c
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Considérons maintenant un plan d’expérience factoriel complet. La matrice
des moments d’un tel plan contient tous les moments du plan d’expérience
jusqu’a lordre 6. Plus précisement :

1) les éléments extra-diagonaux de M sont des moments impairs. Ils sont
donc tous nuls d’apres le lemme 3.A. La matrice des moments M est donc
diagonale.

2) les éléments diagonaux de M sont 1, [i?] (i = 1,...,m), [i?j2] (i,j =1,...,m
avec i < j) et [i2j2k2] (i,j,k=1,....,m avec i < j < k). Les coordonnées de
chaque point (non-central) du plan factoriel complet étant de la forme +1 il
vient :

n[i?] =2™  n[i?5%] = 2™, n[i?5°k%] = 2™

Les plans factoriels complets sont donc bien orthogonaux au sens de la
définition 3.2.

Proposition 4.6. Tout plan d’expérience factoriel complet est un plan
d’expérience orthogonal pour un modéle linéaire a effets d’interactions
d’ordre trois. Il vérifie de plus (avec n = 2™ +mng nombre total d’expériences):

¢ _n 0
xx =[G onr ¢

Une nouvelle fois la taille du plan factoriel complet peut s’avérer étre un
handicap. Le nombre d’expériences de celui-ci peut cependant étre réduit a
I’aide d’une fraction réguliere. D’apres les résultats des sections précédentes il
est nécessaire d’utiliser une fraction réguliere qui soit au moins de résolution V
(afin d’éviter toute confusion entre les effets linéaires et les effets d’interaction
d’ordre deux). Une fraction réguliere de résolution V va cependant poser
probléme ici (car il va y avoir au moins une confusion entre un effet d’interact-
ion d’ordre 2 et un effet d’interaction d’ordre 3) tout comme une fraction
réguliere de résolution VI (car il va y avoir au moins une confusion entre
deux effets d’interactions d’ordre 3). D’ou le résultat (la démonstration est
identique & celle de la proposition 4.5) :

Proposition 4.7. Toute fraction régulieére de plan factoriel complet, de
résolution égale o VII (ou plus), est un plan d’expérience orthogonal pour
un modéle linéaire a effets d’interaction d’ordre trois. Il vérifie de plus (avec
n = 2M~9 4 ng nombre total d’expériences et q nombre de générateurs) :

+ _|n 0
XX = {02”“1[][,1] .

Utilisons maintenant la décomposition classique suivante :

'B=(Bo|"'Br|'Br) et X = [I,|D|D;]
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Dy € M (n,C2 +C3) étant la matrice associée aux effets d’interactions
d’ordre 2 et 3. Il découle des propositions 4.6 et 4.7 que pour tout plan facto-
riel complet ou pour toute fraction réguliere de résolution au moins VII, les
propriétés suivantes sont vérifiées (prendre ¢ = 0 pour un plan complet) :

1) Les estimateurs des moindres carrés des parametres du modele sont donnés
par :

Bo=Y,fL= ‘DY et B = 'DyY.
2) Les dispersions des différents estimateurs sont données par (V 4,7,k =

1,...,maveci < j<k):

2m—q 2m—q

. o? A A 3 o’
Var Bo = oo o8 VarBi = Var By = Var By = oo

Tous ces estimateurs sont de plus non-corrélés entre eux (i.e. la covariance
entre deux éléments distincts de 3 est toujours nulle).

3) La dispersion de la réponse moyenne prédite est donnée par (V z € £) :

R 2
VarY (z) = Qmj—_l_no—i—
o |t Nt Yy Yttt
i=1 i<j i<j<k

Pour terminer, la table 4.2 donne les tailles des plans factoriels complets ainsi
que des fractions régulieres de résolution VII.

Table 4.2. Taille de différents plans factoriels.

p | FD(2™,0) | FD (24%,0) Générateurs
2 facteurs X X X X
3 facteurs 8 8 X X
4 facteurs 15 16 X X
5 facteurs 26 32 X X
6 facteurs 42 64 X X
7 facteurs 64 128 64 1234567
8 facteurs 93 256 128 12345678
9 facteurs | 130 512 256 123456789
10 facteurs | 176 1024 256 | 1234567, 45678910

Pour un nombre de facteurs inférieur & 6 il n’y a (par définition) pas d’autre
alternative possible que le plan factoriel complet. A partir de 7 facteurs on
a, par contre, tout intérét a réduire le nombre d’expériences a 'aide d’une
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fraction réguliere. Pour 7 facteurs on peut ainsi obtenir un plan d’expérience
saturé. L’usage en pratique d’un tel modele reste cependant rare pour un
nombre élevé de facteurs car le nombre de parametres inconnus devient rapi-
dement ingérable.

Remargue. Nous n’entrons pas ici dans des détails répétitifs mais notons
qu’il est tout a fait possible de généraliser les résultats de cette section aux
modeles linéaires & effets d’interactions d’ordre A\ (i.e. contenant tous
les effets d’interactions jusqu’a l'ordre A > 4). On montre alors que tout plan
factoriel complet est bien un plan d’expérience orthogonal pour un tel modele.
On vérifie ensuite que toute fraction réguliere de résolution égale & (2A + 1)

(ou plus) permet encore d’obtenir un plan orthogonal.

4.5.2 Modéle contenant tous les effets d’interactions

\

Il est parfois souhaitable d’utiliser le modele a effets d’interactions le plus
riche possible. Il s’agit donc, pour m facteurs, de considérer le modele a ef-
fets d’interactions d’ordre m (i.e. contenant tous les effets d’interactions
jusqu’a Pordre m). Pour tout point 2 du domaine expérimental £ C R™ un
tel modele est donc donné par :

60 + Zﬂzl Ly + 2251112 Ly Ly + ZZZﬁzlzgmxn Lo Ly

i1=1 i1 <2 i1 <i2<i3

—+...+ E E E /6)1'11'2...2'7“,1171'1552'2---zim,1+/8i1i2...imzi1ziQ---zim

11 <t2<...<tm

Par rapport aux notions vues précédemment on utilise donc un modele a effets
d’interactions d’ordre 2 dans le cas de deux facteurs, d’ordre 3 dans le cas de
trois facteurs, etc... Les tables 4.1 et 4.2 montrent que I'utilisation d’un plan
factoriel complet est optimale pour deux et trois facteurs dans le sens ou ces
plans d’expériences sont saturés. Généralisons ce résultat pour m facteurs. Le
nombre de parametres inconnus d’un tel modele est :

m
p= ZC’fn = 2™ (bindéme de Newton).
i=0
Un tel modele a donc bien un nombre de parametres inconnus égal au nombre

d’expériences d'un plan factoriel complet (sans réplications centrales) et ceci
quel que soit le nombre de facteurs considérés.

| Exemple |

Considérons le modele linéaire contenant tous les effets d’interactions
pour m = 4 facteurs. Il est donné par (pour tout z = (x1,x2, x3, z4)
dans le domaine expérimental ) :
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f(x) = Bo+ Brx1 + Boxz + Bsxz + Baza
+0120102 + f137123 + S1aT1T4 + P23¥a3 + S2aTaTa + B3aT3T4
+B123T172w3 + F124T17274 + B134717374 + (234727374
+B1234T1 72737 4.

Ce modele est bien constitué de 2* = 16 parametres inconnus.

L’utilisation combinée de ce résultat et du lemme 3.A permet d’affirmer que :

Proposition 4.8. Tout plan d’expérience factoriel complet est un plan
d’expérience orthogonal pour un modéle linéaire contenant tous les effets
d’interactions. Il vérifie de plus (avec n = 2™ + ng nombre d’expériences) :

t _|n 0
XX_[O2mIp_1].

Ce plan d’expérience est saturé lorsqu’il n’y a pas de réplications centrales

(no = 0)

Un plan d’expérience factoriel complet ayant le nombre minimal d’expériences
nécessaires a ’estimation des parametres du modele contenant tous les effets
d’interactions, il est alors évident que 'utilisation d’une fraction réguliere des
sommets de [—1,1]™ est impossible pour réaliser I'estimation des paramétres
inconnus du modele.

Considérons maintenant la décomposition classique suivante :
"B=(Bo|'Br|'Br) et X = [1,|D|Dr]

D e M (ngz C}n) étant la matrice associée aux effets d’interactions
d’ordre compris entre 2 et m. Il découle de la proposition 4.8 que pour tout
plan factoriel complet les propriétés suivantes sont vérifiées :

1) Les estimateurs des moindres carrés des parametres du modele sont donnés
par :

. — 1 A 1
Go=Y 6 Br= 2—mtDY et B = 2—mtD]Y.

2) Les dispersions des différents estimateurs sont données par (V i1, 42, ..., im =
1,c,mavec ip < g < ... <ip) :
2 2

Var (o = QmUTno et Varﬁil = Varﬁiliz =..= Varﬁilizmim = 2U—m.

Tous ces estimateurs sont de plus non-corrélés entre eux (i.e. la covariance
entre deux éléments distincts de 3 est toujours nulle).

3) La dispersion de la réponse moyenne prédite est donnée par (V z € £) :
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VarY( ) Qm + ng Qm [Zmll + szh Liy

i1=1 11 <i2

E :E : § : 2 ,.2 2
.+ z“ 22 LI 71+xi1xi2...:cim

11 <t2<...<fm—1

La dispersion de la réponse moyenne prédite en chacun des points (non cen-
traux) du plan factoriel est donc obtenue par (poser z; = £1) :

o? o?

N 1

4.5.3 Application aux fractions de résolution ITI

Revenons a la notion de fraction réguliere de résolution III vue lors du chapitre
précédent. Il a été prouvé que l'utilisation de telles fractions régulieres est
suffisante afin d’estimer tous les parametres inconnus d’un modele polynomial
du premier degré. Des exemples de telles constructions ont été donnés dans
la table 3.1. Explicitons ici la méthode d’obtention des générateurs de ces
fractions régulieres (voir Draper et Lin [33]). Supposons que l'on cherche &
construire une fraction réguliere de résolution III pour mettre en oeuvre un
modele linéaire d’ordre un a m facteurs. Il convient alors de considérer, dans
un premier temps, la matrice X d’'un modele a m facteurs contenant tous les
effets d’interactions possibles et telle que X ait au moins autant de colonnes
qu’il y a de parameétres inconnus dans le modele d’ordre un (en d’autres termes
il faut donc que 2 > m + 1). On sait (proposition 4.8) que la matrice X
contient le nombre maximal de colonnes orthogonales entre elles (i.e. il s’agit
de la matrice associée & un plan d’expérience saturé). Afin d’utiliser une telle
matrice pour générer des fractions réguliéres de résolution III on peut
donc procéder de la maniere suivante :

1) on garde les m colonnes de X déja affectées aux effets linéaires du modele
a effets d’interactions et on les affecte (par exemple) aux m premiers effets
linéaires du modele d’ordre un,

2) pour les (m — m) autres effets linéaires du modeéle d’ordre un, on sélectionne
(m — m) colonnes de X associées a des effets d’interactions et on affecte ces
colonnes aux effets linéaires supplémentaires du modele d’ordre un.

La matrice ainsi construite est toujours une matrice a colonnes orthogo-
nales donc il n’existe aucune colonne égale & +I (hormis la premiere asociée
a fBo) et de méme il n’existe pas de couple de colonnes égales ou opposées.
Ceci permet d’affirmer que ’on a bien une fraction réguliére de résolution III,
adaptée a l'analyse d’'un modele polynomial d’ordre un.
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| Exemple

Déterminons ici la plus petite fraction réguliere de résolution III pos-
sible pour m = 6 facteurs. Construisons , au préalable, la matrice du
modele contenant tous les effets d’interactions dans le cas de m = 3
facteurs (on a bien 2% > 7). Il s’agit donc de la matrice X donnée
ci-dessous, les colonnes étant respectivement affectées a 1’effet moyen
général, aux effets linéaires 1, 2 et 3 puis aux effets d’interactions 12,
13, 23 et 123.

D’apres la méthode proposée on procede ensuite en deux étapes :

1) on garde les trois colonnes de X associées aux trois effets linéaires
et on les affecte aux mémes effets linéaires dans le modele d’ordre un,

(4] [5][6]
12 13 23123

[1-1-1-1 1 1 1-1]
1 1-1-1-1-1 1 1

1-1 1-1-1 1-1 1
~ 1 1 1-1 1-1-1-1
X=119.9 1 1-1-1 1
1 1-1 1-1 1-1-1
1-1 1 1-1-1 1-1

11 1 1 1 1 11

2) on choisit trois autres colonnes associées a des effets d’interactions
et on les identifie cette fois aux trois effets linéaires restant dans le
modele d’ordre un (le choix effectué ici est 4 = 12, 5 = 13 et 6 = 23).

La matrice du plan d’expérience considéré est alors obtenue en ne
conservant que les colonnes selectionnées (c’est-a-dire repérées par des
numéros encadrés), il s’agit de :

[—1-1-1 1 1 1]
1-1-1-1-1 1
-1 1-1-1 1-1
1 1-1 1-1-1
D= -1-1 1 1-1-1
1-1 1-1 1-1
-1 1 1-1-1 1
11 1 1 1 1)

Concernant maintenant les générateurs d’une telle fraction réguliere,

on a posé ici :



4.6 Utilisation de modeles incomplets 129

4=12
5=13 &1 =124 =135 = 236.
6 =23

Le groupe des contrastes de définition de cette fraction réguliere est :
G = {1,124, 135,236, 2345, 1346, 1256, 456} .

L’ensemble G obtenu ne contient aucun élément de longueur inférieure
a 3, ceci confirme bien que la fraction construite est résolution IIT (il
s’agit plus précisemment d’une fraction réguliere de type 2?{13).
Remarquons enfin que le choix effectué ici n’est pas unique. En effet,
les colonnes 12, 13 et 23 ont été affectées aux effets linéaires 4, 5 et
6 du modele d’ordre un mais il est tout a fait possible de procéder
autrement. Voici, par exemple, une autre alternative :

4=12
5=13 & [=124=135=1236.
6 =123

4.6 Utilisation de modeles incomplets

Jusqu’a présent les modeles linéaires considérés sont complets, c’est-a-dire
qu’ils contiennent tous les effets d’interactions possibles (pour l'ordre choisi).
On peut cependant envisager des situations ou une connaissance préalable
u phénomene étudié peut conduire & un modele incomplet. Il convien
du ph tud t d del let. 11 t
d’étre tres prudent avec une telle démarche car, en cas de doute, il est
préférable d’utiliser un modele complet (si, bien siir, le nombre de facteurs
n’est pas trop élevé) quitte & avoir la confirmation a posteriori que cer-
tains effets d’interactions sont non-significatifs. Négliger un certain nombre
d’interactions peut cependant étre envisageable si, par exemple, les spécialistes
p P ) P ple, P
du phénomene étudié sont en mesure d’assurer que de telles interactions ne
peuvent pas avoir lieu (un chimiste affirmant clairement que les composants
1 et 2 n'ont aucun effet I'un sur 'autre peut entrainer la suppression de
linteraction 12).

Considérons maintenant un modele incomplet contenant un petit nombre
d’effets d’interactions et restons dans le cas d’interactions d’ordre deux. Si
Iexpérimentation est cotliteuse il peut étre intéressant de réduire encore le
nombre d’expériences par rapport au cas d’une fraction réguliere de résolution
V. D’apres les résultats du chapitre précédent il faut utiliser cependant une
fraction réguliere de résolution au moins III (sinon tous les parametres du
modele d’ordre un ne seront pas estimables). Il est donc possible de rechercher
une des deux configurations suivantes :
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1) soit une fraction réguliére de résolution IIT s’il n’existe aucune con-
fusion entre effets linéaires et effets d’interactions et aucune confusion entre
deux des effets d’interactions,

2) soit une fraction réguliére de résolution IV ¢’il n’existe aucune con-
fusion entre deux des effets d’interactions considérés.

| Exemple

Considérons ici un phénomene dépendant de 4 facteurs (désignés par
1,2, 3 et 4) et supposons qu’il a été établi au préalable qu’il ne peut
exister d’interaction qu’entre les facteurs 1 et 2. Le modele statistique
considéré fait donc intervenir la loi de réponse suivante (pour tout
x = (x1,T2,23,74) € E) :

f(x) = Bo+ Bix1 + Baxa + Bsxs + Paza + fraz120.

La théorie générale impose I'utilisation d’un plan factoriel complet a
2% = 16 expériences (puisqu’il n’y a pas assez de facteurs pour utiliser
une fraction réguliere de résolution V). Ceci peut étre problématique
si les expériences sont cotiteuses car seulement 6 parametres inconnus
sont a estimer. Considérons alors une fraction réguliére de résolution
IV définie par la relation suivante :

[=1234.

Une telle relation ne devrait pas poser de probleme par la suite
car elle entraine que 12 = 34 mais, vu le modele postulé, il n’y a
pas de confusion possible entre les effets d’interactions 12 et 34 car
cette derniere interaction n’est pas utilisée. Considérons maintenant
la matrice X, donnée ci-apres, associée a une telle fraction réguliere
écrite pour le modele a effets d’interactions d’ordre deux complet.
D’apres le générateur utilisé il existe donc les confusions entre effets

d’interactions suivants :
12=34,13 =24 et 14 = 23.

Les trois dernieres colonnes de la matrice X sont donc inutilisables
car alors X n’est pas de plein rang (colonnes en italique).

[1][2][3][4][12] 13 14 25 24 34

(1 -1-1-1-1 1 1 1 1 1 1
1-1-1 1 1 1-1-1-1-1 1
1-1 1-1 1-1 1-1-1 1-1
> 1-1 1 1-1-1-1 1 1-1-1
1 1-1-1 1-1-1 1 1-1-1
1-1 1-1-1 1-1-1 1-1
1 1-1-1 1-1-1—-1-1 1
1111111 1 1 1

—_ = =
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Il est donc possible de ne garder que les colonnes en rapport avec
le modele a analyser (colonnes dont les effets sont encadrés). Ceci
conduit a la matrice du modele X donnée ci-dessous.

[1-1-1-1-1 1]
1-1-1 1 1 1
1-1 1-1 1-1
1-1 1 1-1-1

X = 1 1-1-1 1-1
1 1-1 1-1-1
11 1-1-1 1
111 1 11

Remarquons enfin que l'analyse des résultats découlant d’un tel plan
d’expérience est aisée puisque le plan obtenu est orthogonal, vérifiant
plus précisemment : {X X = 81.
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Exemple
|

Considérons ici un phénomene aléatoire dépendant cette fois de 5 fac-
teurs (désignés pas 1, 2, 3, 4 et 5) et supposons qu’il a été établi au
préalable qu’il ne peut exister d’interaction qu’entre les couples de
facteurs 14 et 24. Le modele statistique considéré fait donc intervenir
la loi de réponse suivante (pour tout z = (21, 2, r3,24,25) € £) :

f(x) = Po+ Brx1 + Pawa + P33 + faxs + Psxs + frax124 + Poaaxy.

La théorie générale impose l'utilisation d’une fraction réguliere de
résolution V qui est donc constituée par 2°~! = 16 expériences.
Ceci peut étre un obstacle si les expériences sont tres coliteuses car
le modele considéré n’a que 8 parametres inconnus a estimer. Con-
sidérons alors la fraction réguliere de résolution III définie par la re-
lation :

I =123 = 345.

Remarquons que le choix des deux générateurs proposés ici n’est pas
di au hasard. En effet, on a pris garde a ne pas faire intervenir dans
chacun d’eux la séquence 14 ainsi que la séquence 24 car ceci aurait
immeédiatement entrainé une confusion avec un effet linéaire (par ex-
emple, poser [ =134 entraine que 3 = 14 d’otu la confusion entre I'effet
linéaire 3 et l'interaction 14). Considérons maintenant la matrice :

X=[L|D|Dr]

correspondant a l'utilisation de cette fraction réguliere pour un modele
a interactions d’ordre deux complet. Cette matrice est donnée par :
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[1][2][e][4][5]

[-1-1 1-1-1]
-1-1 1 1 1
-1 1-1-1 1
-1 1-1 1-1
b=1"10-1-1 1
1-1-1 1-1
11 1-1-1
111 1 1]

12 13[14] 15 23[24] 25 34 35 45

1—-1 1 1—-1 1 1—-1-1 1]
1—-1-1-1-1-1-1 1 1 1
-1 1 1—-1-1-1 1 1-1-1
Dy — -1 1-1 -1 1—-1-1 1-1
—1—-1-1 1 1—1 1 —-1-—1
—1—-1 1—-1 1-1 1—-1 1-1
1 1-1—-1 1-1—-1-1-1 1
111 1 1 1 1 1 1]

Le groupe des contrastes de définition de cette fraction est :

G ={I,123,345,1245} .

Les confusions entre effets linéaires et effets d’interactions sont donc :

1=23,2=13,3=12,3=45,4=235, 5= 34,

Il est alors possible de supprimer les 6 colonnes de la matrice X
(représentées en italique) confondues avec diverses colonnes associées
aux effets linéaires. La relation I =1245 entraine de plus les confusions
d’effets suivantes entre les 4 colonnes de Dy restantes :

14 =25 et 15 = 24.

Ceci entraine, cette fois, la suppression des colonnes associées aux
effets d’interactions 25 et 15. Il est enfin possible de ne garder que les
colonnes en rapport avec le modele & analyser (colonnes dont les effets
sont encadrés). On obtient ainsi la matrice du modele X :

[1-1-1 1-1-1 1 1]
1-1-1 1 1 1-1-1
1-1 1-1-1 1 1-1
1-1 1-1 1-1-1 1
X=11 121211 1-1 1
1 1-1-1 1-1 1-1
111 1-1-1-1-1
1111 1 1 1 1]
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L’analyse des résultats découlant d’un tel plan d’expérience est aisée
puisque ce plan est orthogonal, vérifiant : {X X = 8I5. Remarquons
aussi que le plan d’expérience proposé ici est saturé puisqu’il a au-
tant d’expériences que de parametres inconnus a estimer dans le
modele. Pour avoir des informations concernant l’analyse de la vari-
ance il est alors nécessaire d’effectuer un petit nombre d’expériences
supplémentaires (par exemple au centre du domaine expérimental).

Le lecteur souhaitant aller plus loin dans le domaine de la construction
de plans d’expérience orthogonaux pour modeles incomplets pourra se référer
aux ouvrages de Pillet [72] et Benoist et al. [3] afin d’approfondir la ” méthode
Taguchi”. Cette méthode a pour but de proposer des plans d’expérience or-
thogonaux tels que ceux déja présentés en les associant a une représentation
sous forme de graphe linéaire afin de visualiser immédiatement quels sont les
effets linéaires ou les interactions qu’il est possible d’estimer. Des tables de
plans d’expérience ainsi construits sont disponibles (voir Benoist et al. [3])
afin qu’un utilisateur puisse trouver rapidement un protocole expérimental
adapté au type de probleme étudié (avec les notations de Taguchi, les deux
plans d’expérience proposés précedemment sont respectivement de type Lg2*
et L825).

4.7 Exemple d’application

Supposons qu’'une entreprise veuille mettre en oeuvre un nouveau procédé
consistant a coller deux pieces métalliques entre elles. Il est possible de juger de
la qualité du collage effectué a I'aide d’un coefficient mesurant la résistance au
cisaillement (plus ce coefficient est élevé meilleur est le collage), ceci constitue
la réponse étudiée.

Apres étude des diverses étapes a suivre dans le processus de collage il
apparait que 4 facteurs semblent avoir une influence sur la qualité du collage.
Il s’agit de la durée de I'opération, de la température utilisée, de la pression
utilisée ainsi que de la concentration dans la colle d’un composant chimique.
Le tableau suivant précise les valeurs minimales et maximales possibles :

Minimum |Maximum
Durée (en mn) 30 60
Température (en °C') 80 120
Pression (en atm) 4 6
Concentration (en g/1) 10 30

Supposons de plus que les spécialistes du phénomene étudié estiment
qu’il est possible que des effets d’interactions entre facteurs existent (ou
bien qu'un ajustement a l'aide d’un modele polynomial d’ordre un a été
réalisé au préalable mais s’est avéré étre de mauvaise qualité). N’ayant pas
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d’informations supplémentaires sur les facteurs susceptibles d’interagir entre
eux il est normal d’ajuster un modele a effets d’interactions d’ordre deux
complet.

Le nombre de facteurs étant relativement faible (et l'utilisation d’une
fraction réguliere de résolution V étant impossible) considérons un plan
d’expérience factoriel complet pour m = 4 facteurs. Un tel plan d’expérience
est alors constitué par 16 unités expérimentales et le modele considéré com-
porte 11 parametres inconnus. Rajoutons 3 réplications centrales afin de pou-
voir affiner I’analyse de la variance. Par construction, un tel plan d’expérience
utilise des facteurs & valeurs dans l'intervalle [—1,1]. Le lien entre variable
codée et variable initiale & valeurs dans [a,b] est donc donné par (voir la
paragraphe 3.2.1) :

*

. :2m—(a+b)

(b—a)

La matrice D du plan d’expérience considéré est alors la suivante.

[—1-1-1-1]
1-1-1-1
~1 1-1-1
1 1-1-1
~1-1 1-1
1-1 1-1
-1 1 1-1
11 1-1
“1-1-1 1
D=| 1-1-1 1
-1 1-1 1
1 1-1 1
“1-1 1 1
1-1 1 1
-1 1 1 1
111 1
000 0
000 0
L 00 0 0]

Le protocole expérimental (c’est-a-dire la liste des expériences & effectuer par
le technicien, exprimées avec leurs unités initiales) est donné a la suite. Le
vecteurs Y des réponses mesurées pour chacune des 19 expériences est aussi
présenté parallelement.
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Dur. | Tem. | Pre. | Con. Y
Exp 1 30 80 4 10 12.4
Exp 2 60 80 4 10 7.2
Exp 3 30 120 4 10 16.5
Exp 4 60 120 4 10 11.2
Exp 5 30 80 6 10 14.1
Exp 6 60 80 6 10 28.9
Exp 7 30 120 6 10 17.1
Exp 8 60 120 6 10 28.8
Exp 9 30 80 4 30 23.8
Ezxp 10 60 80 4 30 18.9
Exp 11 30 120 4 30 16.4
Exp 12 60 120 4 30 12.1
Exp 13 30 80 6 30 24.0
Exp 14 60 80 6 30 39.4
Exp 15 30 120 6 30 18.5
Ezxp 16 60 120 6 30 30.2
Exp 17 45 100 5 20 24.8
Exp 18 45 100 5 20 21.2
Exp 19 45 100 5 20 16.4

Voici un programme SAS permettant de rentrer ces données.

Data Donnees;
Input dur tem pre con y;
durtem = dur*tem; durpre = dur*pre; durcon = dur*con;
tempre = tem*pre; temcon tem*con;
precon = pre*con;
Cards;
-1.0 -1.0 -1.0 -1.0 12.4
1.0 -1.0 -1.0 -1.0 7.2

expérience ¢ et réponse i

21.

0.0 0.0 0.0 0.0 2
0.0 0.0 0.0 0.0 16.4

Run;

La table ”"donnees” ainsi construite contient toutes les colonnes de la matrice
X relatives aux effets linéaires (entrées manuellement), toutes les colonnes rel-
atives aux effets d’interactions (créées automatiquement a I’aide des différents
produits d’Hadamard qui sont une simple multiplication de colonnes pour
SAS) et enfin le vecteur Y des réponses. La notation ”dur” est utilisée pour
désigner l'effet linéaire du facteur durée. La notation ”durtem” désigne par
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contre 'effet d’interaction entre les facteurs durée et température, etc... Le
tableau d’analyse de la variance est donné ci-dessous.

Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 10 | 1095.97 109.60 20.82 | 0.0001 °°*

Erreur 8 42.11 5.26 0.062 | 0.9961 °°°
Pure. 2 35.52 17.76
Ajus. 6 6.59 1.10

Total 18 | 1138.08

11 découle directement de la procédure de régression (REG) suivante :

Proc Reg data=Donnees;
Model y = dur tem pre con
durtem durpre durcon tempre temcon precon;
Run;

Ce tableau montre que le modele est valide puisqu’il est possible de rejeter
clairement ’hypothése ”tous les parametres du modele (sauf 5y) sont nuls”.
Ce modele est de plus globalement bien ajusté puisque (valeur ”R-Square” de

la sortie SAS) :
SSE
21—~
R =1 59T = 0.963.

Remarquons aussi qu’un estimateur sans biais de la variance des résidus o
est donné par (valeur "Root MSE” de la sortie SAS) :

2

62 = MSE = 5.26 (donc 7 ~ 2.294).

Il est possible d’affiner la somme des carrés due a l'erreur a l’aide des trois
réplications centrales effectuées. La détermination des quantités SSLOF et
S S PE montre alors que le modele utilisé est bien ajusté en moyenne car il est
impossible de rejeter raisonnablement I’hypothése d’un bon ajustement (para-
graphe 2.6.5). Déterminons ensuite les estimateurs de chacun des parametres
du modele. Ceci conduit au tableau donné ci-apres (voir la section 4.3 pour
les formules explicites). Ces résultats figurent en deuxieme partie de la sortie
SAS de la procédure REG (”Résultats estimés des parametres”).
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Param. | Estimat. | Ec. type | St. Test Proba.
Bo 20.10 0.526 38.19 | 0.0001 ***
61 2.119 0.574 3.69 | 0.0061 **°
B —1.119 0.574 [ —1.95 | 0.0869 °°°
B 5.156 0.574 8.99 [ 0.0001 ***
B4 2.944 0.574 5.13 [ 0.0009 ***
Bz —0.394 0.574 | —0.69 | 0.5118 °°°
B3 4.581 0.574 7.99 [ 0.0001 ***
B4 0.119 0.574 0.21 | 0.8412 °°°
P23 —0.356 0.574 | —0.62 | 0.5518 °°°
Ba4 —2.494 0.574 | —4.35]0.0025 **°
B34 —0.044 0.574 | —0.08 | 0.9411 °°°

Remarquons que ces résultats sont parfois représentés de maniere plus in-
tuitive a 'aide de diverses représentations graphiques données et expliquées
dans la suite. Le premier type de schéma consiste en une représentation
graphique des effets linéaires. On obtient ainsi 4 segments de droites
(figure 4.1), chacun d’eux étant associé a 'un des 4 effets linéaires considérés.
Détaillons le principe de construction pour le graphique relatif a ’effet linéaire
du facteur durée. Ce facteur ne prenant ici que deux niveaux (£1 en coor-
données codées) il faut tout d’abord placer ces niveaux en abscisse. L’axe des
ordonnées correspond alors a la réponse moyenne observée lorsque le facteur
durée est fixé a chacun de ces deux niveaux.

En désignant par Y (—1) et Y (+1) les deux ordonnées ainsi obtenues on
a donc ici (d’apres le plan d’expérience utilisé) :

{Y(l)1/8(Y1+Y3+Y5+Y7+Y9+Y11+Y13+Y15)7
Y (+1)=1/8 Yo+ Yy + Y5 + Ys + Yio + Yi2 + Y14 + Yis).
Il est alors possible de relier ces deux points par une droite de pente :
Y(+1)-Y (-1
p= PO TN vy v e Y- ¥
—Yy + Y10 — Y11 + Y12 — Y13 + Y14 — Y15 + Yie).

Or, on sait de plus que :

BL = itDY donc Bl =p.
16
En conclusion, les représentations graphiques des effets linéaires s’interpretent
donc en remarquant que la pente des droite obtenues est égale a I’estimateur
des moindres carrés de l'effet linéaire considéré. Plus cette pente est forte,
plus Deffet linéaire associé est important. Inversement, un effet linéaire peu
ou pas significatif va se traduire par une droite quasiment parallele a ’axe
des abscisses. Afin de pouvoir mieux appréhender visuellement cette derniere
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situation une droite parallele & 1'axe des abscisses (en pointillés) a été ra-
joutée. Elle a pour ordonnée la moyenne des 16 réponses considérées (i.e. hors
expériences centrales) c’est-a-dire 19.97.

-1 0 DUREE 1 -1 0 TEMPERATURE 1

40 PRESSION 1 -1 RN COMPOSANT 1

Fig. 4.1. Représentation graphique des effets linéaires.

Le second type de schéma consiste a en une représentation graphique
des effets d’interactions. On obtient ainsi les 6 graphiques ci-dessous
associés a chacun des 6 effets d’interactions du modele considéré. Chaque
graphique est cette fois constitué par deux segments de droite distincts.
Détaillons la construction du graphique relatif a I'effet d’interaction entre les
facteurs durée et température. Une nouvelle fois les valeurs +1 en abscisses
correspondent aux deux niveaux utilisés par 1'un des facteurs (ici la durée).
Les segments représentés sont alors définis comme pour les graphiques des
effets linéaires (c’est-a-dire & partir des réponses moyennes observées) mais
cette fois un premier segment correspond au cas ou le facteur température est
fixé au niveau —1 et un second au cas ol ce méme facteur est fixé au niveau
+1. Plus précisemment on a les résultats suivants.

Lorsque la température est au niveau —1 le segment obtenu relie alors les
deux point de coordonnées suivantes :

abscisse : — 1, ordonnée : 1/4 (Y7 + Y5 + Yy + Yi3),
abscisse : + 1, ordonnée : 1/4 (Y2 + Y5 + Y10 + Y14) .
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(en effet, 1/4 (Y1 + Y5 + Yy + Yi3) est bien la réponse moyenne observée
lorsque la température est au niveau —1 et la durée au niveau —1). Lorsque
la température est au niveau +1 le segment obtenu relie les deux points de
coordonnées suivantes :

abscisse : — 1, ordonnée : 1/4 (Y5 + Y7 4+ Y11 + Yi5),
abscisse : + 1, ordonnée : 1/4 (Yy + Ys + Y12 + Yi6) .

30 30
28 28
» = /
24 4
2 / 2
I R 2
s 18
16 16
4 14
12 2y
10 —————TE
] 0 DUREE / TEMP 1 -1 DUREE / PRESSION |
30 30
28 28
2 T 264
21 // uy
/"E’ 22
20 20
8y 18
— 1] S
14 (2% I —]
12 12
10 10
-1 0 DUREE/CONCENT ! 1 0 TEMP/PRESSION 1
30 30
28 28
2 2%
24 24
2 5
20 \ 20
18 / 18
164 G
14 14
12 12
10 10
-1 0 TEMP / CONCENT 1 -1 0 PRESSION/CONCENT !

Fig. 4.2. Représentation graphique des effets d’interactions.

Il résulte de tout ceci que I'on obtient donc un graphique avec deux segments
de droites ayant pour pentes :

pr=1/8(-Y1+Ys = Y5+ Y5 — Yy +Yio—Yizs —Yiu),
p2=1/8(=Y3+Yy — Y7 +Ys — Y11 +Yia — Y15+ Yis) .
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Remarquons alors que les deux segments sont paralleles si et seulement si :

pr=p2& Y Yo+ Y3 =Y, + Y5 - Ys+Y; — Y+ Yo—
Yio+ Y1 — Yo+ Y3 —Yiu +Yi5 - Yis =0

& B =0.

En d’autres termes le parallélisme des deux segments traduit 1’absence
d’effet d’interaction entre les deux facteurs considérés. A 'opposé, plus on
s’éloigne de la situation de parallélisme et plus 'effet d’interaction entre les
deux facteurs va étre significatif. Remarquons que le résultat démontré ici était
intuitivement évident. En effet, s’il n’existe pas d’effet d’interaction entre la
température et la durée, ceci veut donc dire concretement que 'effet de la
durée sur la réponse ne dépend pas du niveau de la température. En d’autres
termes, faire varier la durée du niveau —1 au niveau +1 doit donc avoir le
méme effet sur la réponse moyenne quelle que soit la température. La pente
du segment correspondant a la température fixée au niveau —1 doit donc étre
identique a celle du segment associé a une température au niveau +1, d’ou
le parallélisme. Il est aussi possible de comparer maintenant les valeurs des
réponses observées (Y) avec les réponses moyennes prédites par le modele
Y =X ,@) Ceci conduit au tableau donné ci-dessous :

Y obs. | YV pred. | Y — Y | Ec. type
Exp 1 124 12.41 | —0.01 1.889
Exp 2 7.2 8.04 | —0.84 1.889
Exp 3 16.5 16.66 | —0.16 1.889
Exp 4 11.2 10.71 0.49 1.889
Exp 5 14.1 14.36 | —0.26 1.889
Exp 6 28.9 28.31 0.59 1.889
Exp 7 17.1 17.19 | —0.09 1.889
Exp 8 28.8 29.56 | —0.76 1.889
Ezxp 9 23.8 23.14 0.66 1.889
Exp 10 18.9 19.24 | —0.34 1.889
Exp 11 16.4 17.41 | —1.01 1.889
Exp 12 12.1 11.94 0.16 1.889
Ezxp 13 24.0 2491 | —-0.91 1.889
Exp 14 39.4 39.34 0.06 1.889
Ezxp 15 18.5 17.76 0.74 1.889
Exp 16 30.2 30.61 | —0.41 1.889
Exp 17 24.8 20.10 4.70 0.526
Exp 18 21.2 20.10 1.10 0.526
Ezxp 19 16.4 20.10 | —3.70 0.526

Ces valeurs peuvent étre directement obtenues & ’aide du programme SAS
suivant (I'option ”clm” permet de visualiser les valeurs Y;, leurs dispersions
ainsi qu’un intervalle de confiance) :
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Proc Reg data=Donnees;
Model y = dur tem pre con
durtem durpre durcon tempre temcon precon
/ clm;
Run;

On constate que les réponses observées et prédites par le modele sont
toujours relativement proches, ceci est en accord avec la valeur élevée du co-
efficient R? trouvée précédemment (ce tableau présente aussi le résidu estimé,
c’est-a-dire erreur commise Y —Y entre réponse réelle et réponse prédite). La
derniére colonne donne la dispersion associée aux diverses prédictions (sous
forme d’écart-type). Puisque le plan d’expérience utilisé est usuel, ces disper-
sions sont obtenues explicitement de maniere tres simple a ’aide de la formule
suivante (voir la section 4.3) :

VarY (z) = o2 (- +— |z + =

lz)* Zm:x“b :

i=1
Ceci donne pour les expériences au centre du domaine expérimental :
A~ 0'2
lzll = 0 = Var¥ (z) = 75 = 0.277.

De méme, toute expérience factorielle est réalisée en un point ayant pour
coordonnées (+1,+1,+1,+1) donc ||z| = 2 et il vient :

. 1 1 1
VarY (z) =02 | — + = + — (16 — 4)| ~ 3.564.
arY (z) =0 19+4+32( )

| Conclusion |

Il est possible de déduire de tous les résultats obtenus précédemment que :

1) Deffet moyen général est tres significatif dans le modele utilisé. 11 traduit
ici une réponse moyenne de ’ordre de 20.10 sur la totalité des expériences,

2) un effet linéaire a été détecté de maniére treés significative concernant les
facteurs durée, pression et concentration. L’effet linéaire de la température sur
le phénomene étudié est par contre moins clair (sans étre non plus a rejeter
systématiquement car il reste, par exemple, significatif au niveau 10%),

3) concernant maintenant les effets d’interactions, deux d’entre eux s’averent
étre tres significatifs. Il s’agit plus précisemment de l'effet d’interaction
entre la durée et la pression ainsi que de leffet d’interaction entre la
température et la concentration. Tous les autres effets d’interactions semblent
étre négligeables.
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En supprimant les effets non-significatifs, le meilleur modele obtenu au sens
des moindres carrés peut donc étre réduit & (avec x = (z1, x2, T3, 24)) :

Y (2) = 20.10 + 2.11921 — 1.11925 + 5.15625 + 2.94414
+4.5811‘1$3 - 2.4941‘2$4

Le fait de négliger ces effets non-significatifs est (logiquement) sans grande
conséquence sur la perte de qualité du modele ajusté puisqu’on obtient alors
SSE = 46.88 donc R? ~ 0.959 (& comparer a R? ~ 0.963 lorsque le modele
est complet).

En tenant compte maintenant du signe de chacun des estimateurs des effets
linéaires obtenus on peut résumer leurs actions respectives sur la réponse dans
le tableau suivant. Plus précisemment, ce tableau rend compte de la variation
de la réponse moyenne prédite lorsque chacun des facteurs passe du niveau
bas —1 au niveau haut +1. La conséquence sur la réponse peut alors étre une
augmentation (+), une trés forte augmentation (++), une diminution (-),
une tres forte diminution (——) ou bien encore effet peut étre négligeable
(~0).

Dur.
++

Pre.
++

Con.
+-

Tem.

| Effet sur Y

Le second tableau, ci-dessous, rend compte des effets d’interactions sur la
réponse. Plus précisemment, il traduit les variations de la réponse moyenne
prédite lorsque le produit des deux facteurs passe du niveau bas —1 au niveau
haut +1 (en d’autres termes on passe donc d’une situation ot les niveaux des
deux facteurs sont opposés a une situation ou ils sont de méme signe).

Dur/Tem | Dur/Pre | Dur/Con
| Effet sur Y ~0 ++ ~0
Tem/Pre | Tem/Con | Pre/Con
~0 —— ~0

Ces deux tableaux indiquent donc que, d’aprés le modele ajusté, il est
nécessaire de réaliser les opérations données ci-apres si I’on souhaite améliorer
la qualité du collage effectué (i.e. maximiser la réponse). Pour les effets
linéaires on a tout intérét a fixer la durée, la pression ainsi que la concen-
tration a un niveau élevé. L’effet de la température est moins important que
les autres mais il vaut mieux néanmoins le fixer & un niveau bas. Parallelement,
il est aussi possible de fixer les niveaux des facteurs de maniere a ce que les
effets d’interactions permettent a la réponse d’étre élevée : il faut alors fixer
la durée et la pression & un niveau semblable (faible ou élevé) alors que la
température et la concentration doivent, par contre, étre fixées a des niveaux
opposés. Il est donc possible d’atteindre tous ces objectifs a ’aide du réglage
suivant :
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Facteur Nweau
Durée 60 mn
Température 80 °C
Pression 6 atm
Concentration | 30 g/1

Ce résultat est tout a fait logique vis-a-vis des résultats expérimentaux obtenus
car il correspond & l’expérience 14 qui est associée & une réponse élevée (39.4).
Remarquons enfin que 1’étude menée ici n’est pas triviale mais n’a cependant
pas amené de grosses difficultés concernant les effets d’interactions (seulement
deux sont a retenir). La situation peut s’avérer étre plus complexe pour un plus
grand nombre d’effets d’interactions. En effet, ceux-ci peuvent alors nécessiter
des réglages en vue d’optimiser la réponse qui, en premiere analyse, sont
parfois incompatibles avec les réglages optimaux pour les effets linéaires. 11
est alors nécessaire d’utiliser des techniques plus fines afin de déterminer la
réponse optimale telles que les analyses canoniques R ou RT présentées dans
louvrage de Goupy [45] ou bien les techniques générales d’optimisation sous
contraintes (la contrainte ici étant de rester dans le domaine expérimental)
comme les multiplicateurs de Lagrange.

4.8 Résumé

Voici un résumé des principales configurations étudiées dans ce chapitre. Pour
un nombre de facteurs variant entre 2 et 10 (associés & un nombre p de
parametres inconnus a estimer) le tableau suivant présente le nombre minimal
d’expériences a réaliser pour différents plans d’expérience adaptés au modele
(classique) a effets d’interactions d’ordre 2. On considére plus précisemment :

1) les plans factoriels complets (de type F'D (2™, 0)),

m—q

2) les plans factoriels fractionnaires de résolution V (de type FD (27 7,0)).

Figurent aussi (entre parentheses) la taille relative 6 pour chaque configura-
tion, c’est-a-dire sa taille ramenée au nombre d’inconnues du modele :

n 2n
0d=—=——-——.
p m24+m+2

Remarquons que le plan d’expérience obtenu pour 5 facteurs est saturé.
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p | FD(2™,0) | FD (27 %0)

2 facteurs | 4 4 (1.00) X

3 facteurs | 7 8 (1.14) X

4 facteurs | 11 16 (1.45) X

5 facteurs | 16 32 (2.00) 16 (1.00)

6 facteurs | 22 64 (2.91) 32 (1.45)

7 facteurs | 29 128 (4.41) 64 (2.21)

8 facteurs | 37 256 (6.92) 64 (1.73)

9 facteurs | 46 | 512 (11.13) 128 (2.78)

10 facteurs | 56 | 1024 (18.29) 128 (2.29)

Voici maintenant les configurations proposées pour le modele a effets
d’interactions d’ordre 3. On consideére plus précisemment :

1) les plans factoriels complets (de type FD (2™,0)),
2) les plans factoriels fractionnaires de résolution VII (de type FD (2{7%,0)).

La taille relative § pour chaque plan d’expérience est maintenant :

n 6n
5:—:—_
p mP+5m+6

Remarquons que le plan d’expérience obtenu pour 7 facteurs est saturé.

p__FD(2m,0) [ FD (2y;”,0)

2 facteurs X X X
3 facteurs 8 8 (1.00) X
4 facteurs | 15 16 (1.07) X
5 facteurs | 26 32 (1.23) X
6 facteurs | 42 64 (1.52) X
7 facteurs | 64 128 (2.00) 64 (1.00)
8 facteurs | 93 256 (2.75) 128 (1.38)
9 facteurs | 130 512 (3.94) 256 (1.97)
10 facteurs | 176 | 1024 (5.82) 256 (1.45)
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4.9 (Compléments) Démonstrations

Proposition 4.2. Soit un plan d’expérience usuel pour un modéle linéaire a
effets d’interactions d’ordre deux. Alors :

1) L’estimateur des moindres carrés de 3 est donné par :

N — 1 A 1
Bo=Y , B, =—"'DY et B = —"D;Y.
52

S22
2) Concernant la dispersion de cet estimateur, il vient (Vi,5 =1, ...,m avec
i#j): , , ,
~ o ~ o PN g
Varfy = —, Varf;= — et Varf;; = —.
n 82 S22

3) Les composantes de B sont de plus non-corrélées entre elles.

Démonstration. Pour tout plan d’expérience usuel, on sait (par hypotheése)
que *X X est une matrice diagonale, donnée explicitement par :

t .
XX = diag (n, sa, ..., $2, 822, ..., $22) .

En notant ‘8= (8 | ‘B | 'Br) et X = [ I, | D | D; ] on obtient alors pour
Iestimateur des moindres carrés B :

t (1/n) I,Y
. 11 1 1 1 n
f=diag |-, —,..,—, —,...,— | | 'D | Y = 1/s5)' DY
n s S S S
2 2 22 22 tDI (1/822)16 D[Y

On en déduit bien le résultat énoncé en 1. Concernant la dispersion de B, il
vient :

n 52 S2 S22 522

V(8)=o(XX)" =0 dlag(l ! iii)

Les résultats du point 2 sont alors obtenus par lecture des termes diagonaux.
Le point 3 découle enfin du fait que V (ﬁ) est une matrice diagonale l

Proposition 4.3. Soit un plan d’expérience usuel pour un modéle linéaire
a effets d’interactions d’ordre deuz. En désignant par ||.|| la norme usuelle de
R™, la dispersion de la réponse prédite en © =t (x1,...,xm) € € est donnée

. 1 1
VarY (z) = o <—+—II I* +—||
n S92

Démonstration. D’apres la proposition 2.7, il vient :
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-1

VarY (z) = 02 tg (z) ('XX) g(=)

avec g () vecteur de régression construit de maniere identique aux lignes de
X

Vo=, 0n) €E,g(x)= (1,21, ..., T, T1T2, o0, Ty 1T ) -
et donc :
VarY(sc) = ¢g? l ii —ZZ.T
n o 8o
=1 1<J
Il est possible de supprimer la double somme a 'aide de la relation suivante :
4
it = ($52) = ot 255t
=1 1<j

d’ou le résultat énoncé B

Proposition 4.4. Tout plan d’expérience factoriel complet est un plan usuel
pour un modéle linéaire a effets d’interactions d’ordre deuz. Il vérifie :

S9 = 2™ et S99 = 2m

Démonstration. Le lemme 3.A permet d’affirmer que tous les moments im-
pairs d’un plan d’expérience factoriel complet sont nuls. Ceci implique en
particulier que tous les moments impairs sont nuls juqu’a l'ordre 4 (condition
1 des plans usuels). Concernant maintenant les moments pairs de la forme
[iﬂ ou [i2 jQ} , toutes les coordonnées des 2™ points non-centraux d’un plan
d’expérience factoriel sont égales & —1 ou 1 donc (i,7 = 1,...,m avec i # j) :

n

— E 2 E __ om

= Zui = =2 et S92 = Zi uj =2"N
i=1

Proposition 4.5. Toute fraction réguliere de plan factoriel complet, de
résolution égale & 'V (ou plus), est un plan d’expérience usuel pour un modéle
linéaire a effets d’interactions d’ordre deux. Il vérifie de plus :

o0 =2M79 ef 599 =2™M79,

Démonstration. Montrons au préalable qu’'une fraction réguliere de résolut-
ion inférieure a V rend impossible ’analyse du modele a effets d’interactions
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d’ordre deux. Il a déja été prouvé (proposition 3.16) qu’avec une fraction
réguliere de résolution I ou II on ne peut pas analyser un modele linéaire
d’ordre un. Il est donc impossible d’ajuster un modele plus complexe contenant
des effets d’interactions. Montrons que l'utilisation de fractions régulieres de
résolution IIT ou IV est impossible.

1) Soit une fraction réguliere de résolution III. Il existe donc au moins un
mot de longueur égale & 3 dans le groupe G (supposons qu’il s’agisse de 123).
Donc :

[=123 < 1=23.

La matrice du modele X est donc singuliere puisque les colonnes associées a
Ieffet linéaire 1 et a 'interaction 23 sont identiques.

2) Soit une fraction réguliere de résolution IV. Il existe donc au moins un mot
de longueur égale & 4 dans le groupe G (supposons qu’il s’agisse de 1234). Donc
il vient :

[ = 1234 < 12=34.

La matrice du modele X est donc singuliere puisque les colonnes associées
aux effets d’interactions 12 et 34 sont identiques.

Montrons maintenant que le plan d’expérience est bien usuel des lors que la
résolution de la fraction est au moins égale a V. La proposition 3.15 assure que
le produit d’Hadamard de 2, 3 ou 4 colonnes distinctes de la matrice du plan
D est toujours un contraste. La fraction réguliere utilisée n’est ni de résolution
I ni de résolution II donc (proposition 3.16) les colonnes de D ainsi que les
produits d’Hadamard de deux colonnes distinctes de D sont des contrastes
non-unitaires, i.e. :

Vi,j=1,..,maveci#j, [i{]=0et [ij] =0.

La fraction réguliere utilisée n’étant pas de résolution III on peut donc en
déduire que le produit d’Hadamard de 3 colonnes distinctes de D est un
contraste non-unitaire (sinon nous serions dans le cas abordé en 1). Donc :

Vi, jk=1,...,maveci <j<k, [ijk] =0.

La fraction réguliere utilisée n’étant pas de résolution IV on peut donc en
déduire que le produit d’Hadamard de 4 colonnes distinctes de D est un
contraste non-unitaire (sinon nous serions dans le cas abordé en 2). Donc :

Vi g,k l=1..maveci<j<k<l, [ijkl] =0.

Remarquons que, par construction, les colonnes de la matrice du plan D
(ou méme du modeéle X) ne contiennent que les valeurs —1 et 1 (plus
éventuellement certaines valeurs 0 associées a des réplications centrales). I
en résulte que (avec 4,5,k =1,...,moui < j<k):
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En conclusion, la propriété 1 des plans usuels est bien vérifiée (définition 4.1)
puisque tous les moments impairs jusqu’a ’ordre 4 sont bien nuls. Concernant
maintenant les moments pairs de la forme [22} et [i2 j2] , une fraction réguliere
engendrée par q générateurs est constituée de 2™~ ¢ expériences. Comme les
coordonnées de chacun des points du plan sont —1 ou +1 il en découle que :

Vi=1,..m,n[i’] =s3=2""%et n[i?*] =s20=2"""1
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Plans d’expérience pour surfaces de réponse

5.1 Introduction

Les modeles étudiés dans les chapitres précédents, d’ordre un ou bien avec
effets d’interactions, ne permettent pas toujours de rendre compte correcte-
ment du phénomene étudié. Il existe en effet des situations ou de tels modeles
vont s’avérer trop pauvres, principalement parce qu’ils ne comportent pas de
termes quadratiques aptes a traduire une ”courbure” dans la réponse étudiée.
Afin de pallier ce type de probleme il est possible d’ajuster cette fois un modele
polynomial complet de degré deux (i.e. contenant un effet moyen général, des
effets linéaires, des effets d’interactions mais aussi des effets quadratiques).
On dit alors que 'on ajuste une surface de réponse.

L’objet de ce chapitre est de proposer des configurations adaptées au
modele proposé ici. Tout comme dans les chapitres précédents la classe des
plans d’expérience usuels, faciles a analyser et contenant bon nombre des
dispositifs expérimentaux classiques, va étre définie tout d’abord. La situa-
tion devient cependant plus complexe ici car un tel modele rend impossible
I’obtention d’un plan d’expérience orthogonal. On montre que ’on peut cepen-
dant obtenir encore des résultats explicites et relativement simples aussi bien
pour les problemes d’estimations que pour certaines propriétés classiques telles
que l'isovariance par transformations orthogonales. Une fois ces fondements
théoriques posés la deuxieme partie de ce chapitre est dédiée a I’étude d’un cer-
tain nombre de plans d’expérience classiques pour surfaces de réponse : plans
composites centrés complets ou fractionnaires, plans de Box et Behnken, plans
simplexes augmentés, plans hybrides de Roquemore, etc...

La derniere partie du chapitre est, une nouvelle fois, consacrée a 1’étude
d’un exemple d’application mis en oeuvre a 'aide du logiciel SAS.

'W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 151
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_5,
(© Springer-Verlag Berlin Heidelberg 2010
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5.2 Généralités

5.2.1 Modéle utilisé

Considérons un plan d’expérience D ={z,,u = 1,...,n} & m facteurs quanti-
tatifs mis en oeuvre sur le domaine expérimental £ C R™. Un modele poly-
nomial est dit d’ordre deux complet des lors que 1’on considere le modele
statistique Y (x) = f (z) 4+ ¢ (z) avec la loi de réponse donnée par :

Veel&, f(x)= 0+ Zﬁi%‘ + Zﬁu‘w? + ZZﬁiijﬂj-
i=1 =1

i<j
Pour un tel modele, on dit que :

0o (i.e. la constante polynomiale) est 'effet moyen général,

Bi (i=1,...,m) est 'effet linéaire du i-éme facteur,

Bii (i =1,...,m) est Ueffet quadratique du i-éme facteur,

Bi; (1,7=1,...,m,1<j) est effet d’interaction entre les facteurs ¢ et j.

Le modele considéré ici est donc un modele a effets d’interactions d’ordre deux
auquel sont rajoutés m effets quadratiques. Il en découle que le nombre de
parametres inconnus est donc égal & (voir le paragraphe 4.2.1 pour le nombre
de parametres du modele & effets d’interactions d’ordre deux) :

m? 4+ m + 2 (m+2)(m+1)

O A

On décomposera souvent dans la suite le vecteur 3 € RP des parametres
en '8 = (Bo|'Br|'Bg | 'Br) avec B, € R™ vecteur des effets linéaires,
Bq € R™ vecteur des effets quadratiques et 87 € R™m=1)/2 yecteur des effets
d’interactions. De maniére similaire, la matrice du modele X € M (n,p) est
alors :

X=[1,|D|Dg|D;]

avec D € M (n,m) matrice du plan d’expérience (voir le paragraphe 3.2.2),
Dy € M (n,m(m — 1) /2) matrice associée aux effets d’interactions (voir le
paragraphe 4.2.1) et enfin Dg € M (n, m) matrice associée aux effets quadra-
tiques telle que (avec zy1, ..., Zum les m coordonnées du point z,) :

2 2 2
le 2’12 e Zlm
2 2 2
221 2’22 e Z2m
Do = ) )
2 2 2
Z(n—1)1 #(n—1)2 " *(n—1)m
2 2 2
an Zn2 e an

La matrice Dg présente la particularité d’étre exclusivement constituée
d’éléments positifs.
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5.2.2 Plans d’expérience usuels

Pour un modele d’ordre 2 la matrice des moments est alors :

I, 'I,D 'I,Dq ‘I,D;
1| ‘DI, 'DD 'DDq ‘DD
n | 'Dql, ‘DD 'DgDq ‘DgDy
‘D[, 'D;D 'DiDq 'D;D;

M =

La forme générale des blocs I, I,, *I,, D et * DD a été explicitée dans le chapitre
3 (paragraphe 3.2.3) et la forme générale de I, Dy, *DD; et *D;Dy a été
donnée, de méme, dans le chapitre 4 (paragraphe 4.2.2). Il reste donc unique-
ment a détailler la forme des blocs en gras ci-dessus. Par définition :

Lipg =[] 2] ... []],

FF (122 . 12
Lipp, |02 &1 el

[12m] [2%m] ... [m]

[P L [1Pm?]
%tDQDQ _ [1222} [24}. [227'7@2] |

| [12m2] [22m2] ... [m]

[152] [1223] [12m?]
g = | 1 [123] [13m?]

L[12 (m - 1)m] [2%(m - m] ... [(m —'1) m3]

Une nouvelle fois ’objectif est ici de proposer une classe de plans d’expérience
pour lesquels la matrice des moments M soit la plus simple possible. La pro-
priété d’orthogonalité est cependant impossible a obtenir pour le modele
considéré. En effet, la matrice M ne peut étre diagonale & cause des blocs
‘I,,Dg et 'DgDg dont tous les éléments sont forcéments positifs (le cas ou
ils sont tous nuls étant sans intérét). Afin d’annuler le maximum de moments
possibles et de rendre égaux la plupart des autres on aboutit a la définition
suivante :

Définition 5.1. Un plan d’expérience est qualifié d’usuel pour un modéle
linéaire d’ordre deux si et seulement si :

1) tous ses moments impairs jusqu’a lordre 4 sont nuls,

2) tous ses moments purs d’ordre deux sont égaux ([12} =..= [m2])7

3) tous ses moments pairs croisés d’ordre quatre sont égaux,
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Vi, j=1,...,m avec i £ j , [1'2]'2} = C'te),

4) tous ses moments purs d’ordre quatre sont égaux ([14} =..= [m4]).

Pour tout plan usuel D ={z,,u =1,...,n} il est donc possible de définir les
constantes so, sog et sq par (Vi,j=1,...,maveci#j ):

n

n
_ 27 2 _
52—n[z]—§zm-,52 nz] g muj, 4—n g g

u=1 u=lu=1

En désignant par I, le vecteur de R” constitué des valeurs 1 et par J, la
matrice de M (n, n) constituée uniquement par ces mémes valeurs, la matrice
des moments d’un plan d’expérience usuel est donc de la forme suivante (0
désigne ici la matrice nulle ayant une taille adaptée au bloc considéré) :

n 0 591, 0
U N Y 0 0
B n |s0, O (54 — 522) I, + s990Jm, 0

0 0 0 SQQIm(m_l)/Q

Remarque. 1l est courant dans la littérature, lorsqu’un plan d’expérience est
de type usuel, de voir les moments pairs jusqu’a l’ordre 4 exprimés sous la
forme suivante (V ¢,5 = 1,...,m avec i # j) :

[i?] = X2, [i%5%] =M et [i'] = cAs.

Ce type de notations n’est pas utilisé ici car elles présentent le défaut d’étre
parfois illogiques. En effet, considérons un plan d’expérience dont la distribu-
tion des points est exclusivement concentrée sur les axes du repere utilisé. On
a alors :

Vi j=1,..,maveci#j, [i*°]=0et [i'] #0.

Il est donc impossible de décrire correctement une telle situation a ’aide des
notations présentées ci-dessus.

5.2.3 Inversion de la matrice des moments d’un plan usuel

Comme il est impossible d’obtenir un plan d’expérience orthogonal pour un
modele linéaire d’ordre 2 la question de l'inversibilité de la matrice des mo-
ments des plans d’expériences usuels se pose alors naturellement. On montre
tout d’abord que pour tout plan d’expérience usuel, sa matrice des moments
est inversible si et seulement si (la démonstration est effectuée avec celle de
la proposition 5.2) :

89 >0, 84 > 899 >0 et n[54+(m71)522]7ms§>0.

Il est maintenant possible de traduire géométriquement ces conditions. On
obtient ainsi le résultat suivant :
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Proposition 5.2. [<] Soit un plan d’expérience usuel pour un modéle linéaire
d’ordre deux. Sa matrice des moments est inversible si et seulement si au-
cune des trois conditions suivantes n’est vérifiée :

1) la distribution des points du plan est concentrée sur les azes,

2) tout point du plan a ses coordonnées égales en valeur absolue,

3) tous les points du plan sont équidistants de l'origine.

5.2.4 Estimations et prédictions

Considérons a partir de maintenant un plan d’expérience usuel pour un modele

linéaire d’ordre deux dont la matrice des moments est inversible. Un tel plan

permet d’estimer au sens des moindres carrés tous les parametres inconnus
u mode ulé imateurs vérifien us :

du modele postulé et ces estimateurs vérifient de plus

Proposition 5.3. [<]| Soit un plan d’expérience usuel D ={z,,u=1,...,n}
pour un modéle linéaire d’ordre deux. Les différents estimateurs des moin-
dres carrés des paramétres du modéle ainsi que leurs caractéristiques de dis-
persion sont alors obtenus explicitement par les relations suivantes en notant
¢ =mnss+n(m—1)s2 —ms3 :

1) Bo=Y + %2 <m527 - Z [l 2 |I? Yu>
u=1

N 2 2
avec Var (ﬁo) -7 (1 + %> .
n

¢
~ 1 ~ 2
2) B = —'DLY avec V (ﬁL) = I,
59 52
~ 1 1 — NSy — 3 = 2
3) Bg = ————'DQY — =~ [ns¥ + —2—"23 "2, [|* Yu | L.
) Bo ey DeY — g [nse 34—522;” |
. V(B ) - 2 (I N 52 —nsy )
@ S4 — 8522 " ¢ ")
S~ 1, ~ o?
4) ﬁl = — D[Y avec V (ﬁ[) = 7 dm(m-1)/2-
S99 522

Remarquons que pour tout plan d’expérience usuel les dispersions de tous les
effets linéaires sont identiques et il en va de méme pour les effets quadratiques
ainsi que les effets d’interaction avec (V4,5 =1,....,m ot i # j) :

=N 2 =R 2 =N 2 2 _
Var (B) = 2. Var (By) = £ et Var (B) = 2 (14 2202,

Remarquons aussi qu’il n’est plus possible d’affirmer maintenant que toutes
les composantes du vecteurs 5 sont non-corrélées entre elles (puisque la ma-
trice des covariances n’est pas diagonale). On peut cependant remarquer que
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seulement deux couples de composantes de B sont corrélées. Il s’agit de B“
avec (0;; et de B avec By (4,5 =1,...,m avec i # j) et Pon a explicitement :

(nszs — s3) 5 Ao _ 252
¢(522—S4) et Cov (ﬁzuﬁO) = —0 ¢

Considérons maintenant les prédictions réalisables a 'aide d’un tel modele.
La réponse moyenne prédite au point x € R™ est obtenue par :

Cov (Biiwéjj) =0°

Y (z) ="g(z) 8
avec g (z) € RP vecteur de régression donné pour le modele étudié par :
tg (x) = (1, Ty ooy Topy Ty ey T2y T T2, oy xm,lzm) )

Les résultats obtenus précédemment permettent alors de déterminer la forme
explicite de la dispersion de toute prédiction réalisée en un point quelconque
du domaine expérimental puisque :

Proposition 5.4. [<] Soit un plan d’expérience usuel pour un modéle linéaire

d’ordre deuz. En désignant par ||.|| la norme usuelle de R™, la dispersion de
la réponse prédite en x =t (x1, ..., ) € E est donnée par :
o (2

m
1 4
E x| avec :
§4— S22 2822 ) —

- 1 ms% 1 S9 1 5% — NSa9o
fr) = (H+ ne ) * (g _2E> e (2822 * <f>(84—822)>r47

r=|z| et ¢ =nss+mn(m—1)s2 —ms3.

1

VarY (z) = 02

Une telle formulation explicite généralise celle obtenue par Borkowski [5] dans
le cas particulier des plans composites centrés ou bien des plans de Box et
Behnken.

5.2.5 Isovariance par transformations orthogonales

Rappelons (paragraphe 3.2.4) qu'un plan est dit isovariant par transforma-
tions orthogonales (ou simplement isovariant pour simplifier) si pour tout
point x du domaine expérimental et pour toute transformation orthogonale
T de R™ (i.e. conservant les distances) :

VarY (Tz) = VarY (z).

En d’autres termes la variance de la réponse prédite en un point x ne dépend
alors que de la distance r entre le point et le centre du domaine. Il est évident,
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au vu des résultats de la proposition 5.4, qu’un tel objectif est atteint si et
seulement si :

1 1
———:0@54:3522.
84— S22 2822

On en déduit la proposition suivante :
Proposition 5.5. Soit un plan d’expérience usuel pour un modele linéaire
d’ordre deuz. Un tel plan est isovariant par transformations orthogo-

nales si et seulement si :
S4 = 3822.

La dispersion de la réponse prédite en x ="' (x1,...,zm) € € est alors donnée
explicitement par :

> 1 m32 1 So 1 82 — N899
VarY' (r 202[<—+—2>+<——2—>r2+ <1+—2 >r4]
( ) n nd) 52 d) 2522 ¢

avec = ||x|| et ¢ = n (m + 2) so2 — ms3.

Tout plan d’expérience usuel tel que sy = 3s92 est donc isovariant par
transformations orthogonales. On démontre aussi (voir Tinsson [99]) que la
proposition réciproque est vraie, c’est-a-dire que si un plan d’expérience pour
modele d’ordre deux est isovariant par transformations orthogonales alors il
est forcément un plan usuel tel que s; = 3s95. La démonstration de cette
propriété s’appuie sur les résultats de Draper et al. [32] montrant qu’il y a
équivalence entre les notions de plan d’expérience isovariant par transforma-
tions orthogonales et plan d’expérience dit a ” matrice des moments invariante
par transformations orthogonales”.

| Exemple |

Tllustrons les résultats obtenus ici a 'aide d’un plan d’expérience com-
posite centré & deux facteurs (ce type de plans d’expérience sera étudié
en détail dans la section suivante). Considérons un tel plan constitué
de la partie factorielle complete (4 points), de la partie axiale (4
points) située a la distance de /2 unités du centre du domaine et
d’une seule expérience centrale. Il est classique d’utiliser un logiciel
spécialisé afin d’obtenir une représentation graphique de la qualité
des prédictions réalisées au sein du domaine expérimental. Un exem-
ple est donné ici avec la figure 5.1 représentant les lignes de niveau de
la fonction Var Y (source : logiciel Nemrod).
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Facieu?

14140

0.9

0.0000 =] k-
0.8 4

Var 0.7 4
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-1 4140 —
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14140 00000 14140 N
Factows] 0 02 0.4 06 r 08 1 1.2 1.4

Fig. 5.1. Fig. 5.2.
Lignes de niveau de VarY. Graphe de VarY en fonction de r.

Ces lignes de niveau sont des cercles concentriques donc le plan utilisé
semble étre isovariant par transformations orthogonales. Le recours a
un logiciel spécialisé n’est cependant pas obligatoire car on peut ici
obtenir tres facilement toutes ces informations de maniere explicite
(ceci permet d’éviter les erreurs de calcul inhérentes & tout algorithme
numérique, permet d’améliorer la rapidité de tout programme infor-
matique devant réaliser un tel traitement et enfin permet de mieux
comprendre et maitriser le comportement du phénomene étudié). En
effet, le plan d’expérience considéré ici vérifie :

n=9avec so =8, 54 =12, s90 = 4 et donc ¢ = 16.

11 est donc isovariant puisque s4 = 3s22. Il en découle que (en prenant
o?=1):
N 7 11
VarY (r) =1 — —r® + —r™.
arY (r) " + 55"

Cette relation permet de construire rapidement et de maniére exacte la
courbe de la figure 5.2. Remarquons que cette courbe contient autant
d’informations a elle seule que le graphique 5.1 et présente ’avantage
supplémentaire de pouvoir étre représentée quel que soit le nombre de
facteurs (ce qui n’est pas le cas des courbes de niveaux qui nécessitent
forcément la sélection d’une coupe par rapport a deux facteurs).

5.2.6 Graphes des variances extrémes

Il a été montré au paragraphe précédent que 'utilisation d’un plan d’expérience
usuel tel que s4 = 3s92 entraine la propriété d’isovariance permettant d’obtenir
de maniere tres simple les différentes valeurs des dispersions des réponses
prédites au sein du domaine expérimental (il suffit de représenter la variance
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de Y comme fonction de r). Etendons ce type de construction au cas général
ou l'isovariance n’est pas forcément vérifiée. Il est alors classique d’utiliser des
graphes des variances extrémes (Variance Dispersion Graph ou simple-
ment VDG en anglais) tels qu’ils sont présentés, par exemple, par Giovannitti-
Jensen et Myers [44].

On considere tout d’abord la variance sphérique moyenne de prédiction

définie par (avec U, = {:c eR™ ) 'zx = 7’2} la sphere centrée de rayon r) :

N 1
Vir)= LP/ VarY (z)dx avec ¥ = ——
Ur Ju, d=

On rajoute ensuite les variances sphériques extrémale :

Vmin () = min [Varff (z)} et Vmax (r) = max {Var}} (x)} .

zeU, zeU,
Pour tout plan d’expérience isovariant par transformations orthogonales les
trois courbes du graphe des variances extrémes sont confondues. Dans tous
les autres cas elles vont par contre donner des informations sur I’amplitude
des variations de la variance de prédiction sur toute sphere centrée de rayon r.
En pratique les graphes des variances extrémes sont généralement obtenus de
maniere numérique a 'aide d’algorithmes d’optimisation de formes quadra-
tiques a la surface de spheéres (voir par exemple l'algorithme proposé par
Vining [103]). Le recours a de telles méthodes numériques est, une fois de
plus, inutile dans le cadre des plans d’expérience usuels puisqu’on a alors les
résultats explicites suivants :

Proposition 5.6. [<] Soit un plan d’expérience usuel pour un modéle linéaire
d’ordre deux. La variance sphérique moyenne ainsi que les variances
sphériques extrémales sont données par (la fonction f étant toujours celle
de la proposition 5.4) :

DV =a 1o+ 2 (s - e )

m—+2 \ s4 — S22 2899

Vmin (r) = o2 [f(r) + 1 (; _ L) 7,4] 7

m \ S4 — S22 2522

Vinax () = o2 [ 1)+ (=2 - 5 ) ).

54— S22 2829

2)

Les résultats présentés en 2 sont valables uniquement si s4 < 3S22. Dans le
cas contraire il convient de permuter les réles de Vmin et Vmaz.

Détaillons de maniere concréte 'application de ce résultat.
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| Exemple

Considérons ici un plan d’expérience composite centré a deux facteurs
constitué de la partie factorielle compléte (4 points), de la partie axiale
(4 points) située a la distance de une unité du centre du domaine et
enfin d’'une seule expérience centrale (voir la section suivante pour
plus de détails sur ce type de plan). La figure 5.3 représente alors les
lignes de niveaux de la fonction VarY (source : logiciel Nemrod). Ce
graphique montre que le plan d’expérience utilisé ici ne semble pas
étre isovariant.

Facteu

14140~

Fig. 5.3. Fig. 5.4.
Lignes de niveau de Var Y. Graphe des variances extrémes.

Utilisons maintenant les résultats obtenus précédemment. Le plan
d’expérience considéré ici est un plan usuel tel que :

n=9avec so =6,54 =06, 590 =4 et donc ¢ = 18.

Ceci prouve bien que le plan d’expérience utilisé n’est pas isovariant
puisque sy # 3s22. Le graphe des variances extrémes est obtenu ex-
plicitement par les relations suivantes (en prenant o2 = 1) :

. 5 1, 5,
RTINS U B A L T
V(r)—9 5" +32r et 51 1
Vmax(r):§—§r2—|—§r4

On peut alors immédiatement construire la figure 5.4 qui présente,
une nouvelle fois, le double avantage d’étre a la fois exacte et facile a
obtenir quel que soit le nombre de facteurs considérés. Le graphe des
variances extrémes ne contient cependant pas autant d’information
que la figure 5.3 (la symétrie par rapport au centre du domaine est,
par exemple, indétectable & ’aide du VDG). Il permet cependant de
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réaliser un encadrement de la variance prédite qui peut s’avérer suff-
isant dans bon nombre d’applications pratiques (la valeur Vmax est
alors primordiale car elle permet d’obtenir une borne supérieure pour
la dispersion des réponses moyennes prédites).

5.3 Plans composites centrés
5.3.1 Définition

Afin de proposer une classe de plans d’expérience faciles a construire et a
analyser la premiere idée consiste & réutiliser les plans factoriels (complets
ou fractionnaires) déja mis en oeuvre pour les modeles d’ordre un ou a ef-
fets d’interactions. Une telle démarche est cependant impossible ici car les
plans factoriels sont toujours singuliers lorqu’un modele de degré deux est
utilisé (ceci est une conséquence directe de la proposition 5.2 puisqu’avec de
tels plans tous les points ont leurs coordonnées égales en valeur absolue). Une
solution consiste & rajouter un petit nombre de points (la partie dite ”axi-
ale”) afin de rendre le plan d’expérience obtenu régulier. Ceci conduit aux
plans d’expérience dits composites centrés tres utilisés en pratique, introduits
historiquement par Box et Wilson [16] puis Box et Hunter [15].

Définition 5.7. Un plan d’expérience composite centré pour m facteurs
est constitué par :

1) la partie factorielle contenant tous les sommets du cube [—1,1]™ ou une
fraction réguliere de résolution égale a V (ou plus) de ces sommets,

2) la partie axiale contenant tous les points situés sur les axes du repére
une méme distance o du centre du domaine expérimental,

3) la partie centrale contenant ng éventuelles réplications du centre du do-
maine expérimental.

Remarquons que le terme ” centré” provient du centrage de ce plan par rapport
a l'origine du repere utilisé. Le terme ”composite” traduit la séquentialité du
plan : il est possible de réaliser dans un premier temps les expériences de la
partie factorielle (et donc d’ajuster un modele & effets d’interactions) puis de
rajouter ensuite, si nécessaire, les expériences de la partie axiale. La fraction
réguliere des sommets de [—1,1]™ étant définie par ¢ générateurs, le nombre
d’expériences a réaliser avec un tel plan d’expérience est donc (puisqu’il y a
sur chaque axe 2 points situés & une distance o du centre) :

n=2""94+2m+ ng.

Un plan composite centré est entierement déterminé par la connaissance de
sa partie factorielle, de la distance o des points axiaux au centre du domaine
et par le nombre de réplications centrales utilisées, c¢’est pourquoi un tel plan
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sera désormais désigné par (CCD venant de la terminologie anglaise Central
Composite Design) :

cCD (2?7’1, a, no) ou CCD (2?7’1, a,ng,I=Cy =Cy =...= C'q) .

La deuxieme notation sera utilisée afin de préciser les générateurs de la partie
factorielle. On qualifie souvent de plan composite centré complet tout CCD
dont la partie factorielle est constituée par les 2 sommets du cube [—1,1]™.
Dans les autres cas le CCD est dit fractionnaire.

| Exemple |

Le plan d’expérience composite centré complet pour m = 2 facteurs
avec la partie axiale située a a = 2 unités du centre du domaine et
ng = 1 expérience centrale (i.e. le plan de type CCD (22, 2, 1)) a pour

matrice :

[—1 -1 [1-1-1 1 1 1]

1-1 1 1-1 1 1-1

-1 1 1-1 1 1 1-1

1 1 1 1 1 1 1 1

D = 2 0|l eedoncX={(1 2 0 4 0 O

-2 0 1-2 0 4 0 O

0 2 1 0 2 0 4 0

0-2 1 0-2 0 4 0O

| 0 0] (11 0 0 0 0 0

5.3.2 Propriétés

Le résultat suivant est primordial pour ’analyse des plans d’expérience com-
posites centrés :

Proposition 5.8. [<] Tout plan d’expérience composite centré (complet ou
fractionnaire) est un plan d’expérience usuel pour un modéle linéaire d’ordre
deuz. Il vérifie de plus (avec ¢ = 0 pour un plan complet) :

S =2M"9 4202 54 =2""942a et 599 =2M7

La classe des plans d’expérience composite centrés présente ’avantage de pou-
voir faire varier le parametre « (distance des points axiaux au centre) afin
d’obtenir diverses propriétés. Voici, plus précisemment, quelques configura-
tions courantes.

1) Plans composites centrés isovariants.

Il s’agit ici de la propriété la plus souvent recherchée pour ce type de plan
d’expérience (la plupart des logiciels proposent automatiquement des plans
isovariants). Il a été vu précédemment (paragraphe 5.2.5) que la dispersion
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de la réponse moyenne prédite au point z ne dépend que de la distance entre
x et le centre du domaine si et seulement si :

S4 = 3822.
Comme s4 = 2™~ 7 4+ 2a* et s99 = 27 on en déduit le résultat suivant :

Proposition 5.9. Un plan d’expérience composite centré est isovariant par
transformations orthogonales si et seulement si :

o= (2qu)% .

Il est donc tres facile, par un simple choix de la distance des points axi-
aux au centre du domaine, d’obtenir une configuration vérifiant la propriété
d’isovariance. L’analyse du modele ajusté s’en trouve alors simplifiée (voir le
paragraphe 5.2.5).

2) Plans composites centrés a faces centrées.

L’utilisateur peut parfois étre tenté, par souci de simplicité, de considérer la
valeur a = 1 pour la distance des points axiaux au centre du domaine. Un
tel choix correspond alors & celui d’'un CCD dit & faces centrées (en effet,
si 'on considere la partie factorielle comme étant les sommets ou un sous-
ensemble des sommets du cube unité [—1,1]™ alors choisir a = 1 équivaut a
prendre les points axiaux au centre des faces de ce cube). Le principal intérét
de ce type de CCD réside dans le fait que tous les facteurs considérés ont
uniquement trois niveaux distincts (—1,0 et 1 sous forme codée). Ceci peut
donc s’avérer intéressant dans toutes les situations ou il est difficile, long ou
coliteux de changer de niveau (par exemple il peut étre intéressant de n’avoir
que 3 températures différentes a fixer dans un four industriel au lieu de 5 pour
un choix de « différent de 1).

3) Plans composites centrés équiradiaux.

Un autre objectif peut étre d’obtenir un plan d’expérience équiradial, c’est-
a-dire tel que toutes les unités expérimentales (réplications centrales exclues)
soient situées a la méme distance du centre du domaine. En désignant par
S (r) la sphere centrée de rayon r il vient pour tout CCD & m facteurs :

les points de la partie factorielle sont & la surface de S (y/m),
les points de la partie axiale sont a la surface de S ().

Il en résulte immédiatement la proposition suivante :

Proposition 5.10. Un plan d’expérience composite centré est équiradial si

et seulement si:
a=+m.
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L’utilisation d’un tel plan d’expérience peut étre utile pour positionner tous
les points expérimentaux aux bornes du domaine expérimental (sphérique).
Ce type de configuration est optimal selon le critere de D-optimalité qui sera
étudié & la fin de cet ouvrage (paragraphes 10.4.3 et 10.6.3). Remarquons aussi
que la notion de CCD équiradial coincide parfois avec celle de CCD isovariant
(par exemple pour m = 2,4 et 8 facteurs). Prenons garde au fait que, par
définition, un CCD équiradial ne peut étre a matrice des moments inversible
que s'il est utilisé avec au moins une expérience centrale (sinon tous les points
expérimentaux sont a la méme distance de l'origine et la singularité est une
conséquence de la proposition 5.2).

4) Plans composites centrés presque-orthogonaux.

L’objectif est de se rapprocher le plus possible d’une situation d’orthogonalité.
Il a été montré (section 5.2.4) qu’il est impossible pour un modele d’ordre
deux d’obtenir un plan d’expérience usuel orthogonal & cause des termes non-
diagonaux suivants de la matrice des covariances :

(7’L822 — S%)

Cov (an Bjj) =0’ @ (822 — 84)

PN S

et Cov (/812760) = 70'2—2.
¢
On constate que ’'on ne peut pas annuler Cov (ﬁm Bg) (sauf dans le cas sans
intérét ot s, = 0) mais par contre :
3 % _ 2 _ m—q __ m—q 2\ 2
Cov(ﬁii,ﬁ”)—O<:>n522—s2—0<:>n2 —(2 +20é) .

Ces résultats permettent alors d’énoncer la proposition suivante :

Proposition 5.11. Un plan d’expérience composite centré est presque-
orthogonal si et seulement si:

[

2

Remarquons que, contrairement aux autres propriétés vues précédemment, la
presque-orthogonalité est atteinte pour une valeur du parametre aw dépendant
du nombre total d’expériences n (« est de plus croissant en fonction de n ¢’est-
a-dire en particulier croissant en fonction du nombre d’expériences centrales

no).

La table 5.1 résume les diverses valeurs du parametre a nécessaires a
lobtention de la propriété d’isovariance (Isovari.), de centrage des faces (F-
Cent.), d’équiradialité (Equira.) et enfin de presque-orthogonalité (P-Orth.).
Quatre valeurs sont données pour cette derniere propriété, elles correspon-
dent (de haut en bas) & ng = 0, 1, 2 et 3 expériences centrales. Les valeurs
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de a associées a un plan d’expérience équiradial donnent un plan a matrice
des moments non-inversible, il est obligatoire de rajouter alors au moins une

expérience supplémentaire au centre du domaine.

Table 5.1. Valeurs de « pour 'obtention de différentes propriétés.

Isovari.

F-Cent.

Equira.

P-Orth.

CcCcD (22, a, no)

1.414

1.000

1.414

0.910
1.000
1.078
1.147

CcCcD (23, a, no)

1.682

1.000

1.732

1.136
1.215
1.287
1.353

cCcD (24,a,n0)

2.000

1.000

2.000

1.341
1.414
1.483
1.547

cCcD (2%/_1, Q, no)

2.000

1.000

2.236

1.483
1.547
1.607
1.664

cCcD (2“3/_1, Q, no)

2.378

1.000

2.449

1.662
1.724
1.784
1.841

cCD (2;71, a, no)

2.828

1.000

2.646

1.824
1.885
1.943
2.000

cCcD (2?;2,0477,0)

2.828

1.000

2.828

1.943
2.000
2.055
2.108

cCcD (2?;2,0477,0)

3.364

1.000

3.000

2.086
2.141
2.195
2.247

CcCcD (2%/073, a, no)

3.364

1.000

3.162

2.195
2.247
2.298
2.348
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5.3.3 Intérét des réplications centrales

Une nouvelle fois le probleme du nombre ny d’expériences a réaliser au centre
du domaine expérimental se pose. L’utilisation de telles expériences présente a
la fois des avantages et des inconvénients (tout comme cela a déja été constaté
au paragraphe 3.3.3 pour des modeles d’ordre un). Les inconvénients sont
encore liés au fait que ces réplications centrales vont augmenter la taille du
plan d’expérience (ce qui n’est pas toujours souhaitable) et vont introduire un
niveau supplémentaire pour les facteurs (0 sous forme codée). L utilisation de
telles réplications présente, par contre, de nombreux avantages. En effet :

1) la qualité de 'estimation du parametre By augmente en fonction du nom-
bre d’expériences au centre (i.e. Var 3y est décroissante en ng). Ce résultat
s’explique & l’aide de la proposition 5.3 puisque la quantité ¢ est, par
définition, croissante en n,

2) la qualité de I'estimation des effets quadratiques §;; (i = 1, ...,n) augmente
en fonction du nombre d’expériences au centre (i.e. Var (§;; est décroissante
en ng). Ceci découle toujours de la proposition 5.3 ot il a été prouvé que :

2 2
~ g S5 — NS99
Var 3;; = 1 2 .
ar (i S4 — 8992 ( + n(sg+ (m—1)s90] — ms%.)

En interprétant ce dernier résultat comme une fonction de n, on montre
alors sans peine (par simple calcul de dérivée) qu’il s’agit d’une quantité
décroissante en n. Remarquons aussi (voir la proposition 5.3) que le nombre
d’expériences au centre du domaine est sans effet sur la qualité de I’estimation
des effets linéaires et des effets d’interactions,

3) le recours & au moins une expérience centrale est obligatoire dans tous les
cas ou le plan d’expérience utilisé est équiradial,

4) lorsque des réplications au centre du domaine sont vraiment réalisées (i.e.
lorsque ng > 2) on peut affiner 'analyse du modele en déterminant les sommes
des carrés dues au manque d’ajustement et a ’erreur pure (voir le paragraphe
2.5.4),

5) la qualité des prédictions dans le domaine expérimental augmente en fonc-
tion du nombre d’expériences au centre (i.e. VarY (z) est décroissante en
ng). Ce résultat est démontrable en utilisant des arguments similaires & ceux
présentés aux points 1 et 2. On constate de plus que généralement un petit
nombre de réplications centrales permet d’améliorer la qualité des résultats
de maniere significative. Ceci est illustré par la figure 5.5 représentant la fonc-
tion VarY (avec 02 = 1) pour un plan composite centré isovariant & m = 5
facteurs de type CCD (2?;1, 2, no).
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02 04 06 08 1 12 14 16 18 2 22

Fig. 5.5.
Graphe de VarY en fonction de r pour ng = 0,1,2,3 et co.

Effectuons une lecture des courbes de ce graphique de haut en bas.
La courbe supérieure (en pointillés) représente la situation ou il n’y a pas
d’expérience au centre du domaine (ng = 0). On constate ensuite une
amélioration tres sensible pour la seconde courbe correspondant a ng = 1
expérience centrale. La qualité des prédictions continue & augmenter (mais
de maniére moins sensible) pour les cas ol 2 ou 3 expériences centrales sont
réalisées. Remarquons enfin que la courbe inférieure (aussi en pointillés) cor-
respond au cas limite ou le nombre d’expériences au centre du domaine tend
vers l'infini. En d’autres termes ’expression de VarY est obtenue en passant
a la limite sur n dans la formule de la proposition 5.5, donc :

Var Y, (1) = o Fﬂ b (1 ! > 7’4] .

So 2899 B m—+ 2

Cet exemple montre bien l'intérét d’inclure dans le protocole expérimental des
expériences centrales, un petit nombre de celles-ci étant suffisant afin d’obtenir
une amélioration tres sensible de la qualité des prédictions. Remarquons enfin
que l'utilisation d’un petit nombre d’expériences centrales permet aussi de
se rapprocher d’une situation de ”dispersion uniforme” dans le sens ou la
dispersion de la réponse moyenne prédite est alors quasi-constante sur une
partie du domaine expérimental (c’est le cas pour nyg = 3 car la variance de
Y est alors presque constante dés lors que l'on évite les bornes du domaine).
Le lecteur souhaitant aller plus loin sur le probleme du choix du nombre de



168 5 Plans d’expérience pour surfaces de réponse

réplications centrales pourra consulter larticle de Draper [31] ot un certain
nombre de criteres sont présentés et analysés.

5.3.4 Plans composites centrés de petite taille

Ce paragraphe présente brievement quelques résultats relatifs a une classe de
plans d’expérience composites centrés de petite taille proposée initialement
par Hartley [48]. Le recours & de telles configurations peut étre justifié si
I’objectif de minimisation du nombre des expériences a réaliser est primordial.
Afin d’obtenir des plans composites centrés ayant moins d’expériences que les
plans composites centrés fractionnaires classiques 1'idée de Hartley consiste a
utiliser comme partie factorielle une fraction réguliere de résolution IIT* selon
la définition suivante (voir la section 3.4 du chapitre 3 pour la théorie générale
des fractions régulieres) :

Définition 5.12. Une fraction réguliére est dite de résolution IIT* si et
seulement si elle est une fraction réguliere de résolution III dont le groupe des

contrastes de définition ne contient aucun élément de longueur égale a 4.

Voici un exemple de telle fraction réguliere :

| Exemple |

Pour m = 6 facteurs, la fraction réguliere définie par I =123 = 456
est une fraction réguliere de résolution IIT*. En effet, son groupe des
contrastes de définition est :

G = {I,123,456, 123456} .
Ce groupe ne contient donc que des éléments de longueur 3 ou 6.

Un plan d’expérience est dit composite centré de petite taille des lors
qu’il vérifie la définition 5.7 mais avec cette fois la partie factorielle qui est
une fraction réguliére de résolution IIT*.

Il est étonnant, a priori, de considérer une telle configuration. En ef-
fet, il a été montré au chapitre 4 qu’il est impossible d’utiliser une frac-
tion réguliere de résolution III afin d’ajuster un modele contenant des effets
d’interactions (car il y a forcément alors des confusions entre effets linéaires
et effets d’interactions). Dans le cas ol un plan composite centré de pe-
tite taille est utilisé les éléments de longueur 3 du groupe des contrastes de
définition entraineraient aussi les mémes confusions entre effets linéaires et
effets d’interactions si le plan était seulement limité a la partie factorielle.
Mais l'utilisation d’une partie axiale donne des informations supplémentaires
sur les effets linéaires permettant cette fois de supprimer cette confu-
sion d’effets. Remarquons enfin que le fait d’utiliser une fraction réguliere
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de résolution IIT* permet d’affirmer qu’il n’y a aucun élément de longueur 4
dans le groupe G donc il n’existe pas de confusions entre les différents effets
d’interactions. Toutes ces constatations entrainent qu’un tel plan d’expérience
va bien étre régulier (sauf cas particuliers liés a la valeur de «).

Concernant maintenant la construction de ce type de plans, les plus petites
tailles qu’il est possible d’obtenir sont résumées dans la table 5.2. L’obtention
des générateurs de fractions régulieres de résolution III* ne pose pas de
problemes particuliers pour un petit nombre de facteurs. Pour des méthodes de
construction plus générales le lecteur pourra se référer aux articles de Draper
et Lin [33] [34]. En ce qui concerne les propriétés des plans composites centrés
de petite taille attention au fait qu’ils ne font pas partie de la classe des
plans d’expérience usuels (en effet, il existe au moins un élément de longueur
égale a 3 dans le groupe des contrastes de définition donc au moins un moment
d’ordre 3 est non-nul). Il découle de ceci qu'il est alors impossible d’obtenir
la propriété d’isovariance par transformations orthogonales. Voir Tinsson [97]
pour plus de détails théoriques concernant cette classe de plans d’expérience.

5.3.5 Taille des plans composites centrés

La table 5.2 présentée ci-dessous résume les différentes tailles des plans com-
posites centrés (avec ng = 0). Le tableau donne pour m facteurs (2 < m < 10)
le nombre de parameétres inconnus p du modele d’ordre deux, la taille du plan
composite centré complet (i.e. 2™ + 2m), la taille minimale possible pour un
plan composite centré fractionnaire de résolution V et enfin la taille minimale
possible pour un plan composite centré de petite taille (avec une fraction
réguliere de résolution IIT*).

Remarquons que les plans composites centrés de petite taille sont saturés
pour 3 ou 6 facteurs.

Table 5.2. Taille de différents plans composites centrés.

p | CCD comp. | CCD res. V | CCD res. IIT*

2 facteurs | 6 8 X X
3 facteurs | 10 14 X 10
4 facteurs | 15 24 X 16
5 facteurs | 21 42 26 26
6 facteurs | 28 76 44 28
7 facteurs | 36 142 78 46
8 facteurs | 45 272 80 80
9 facteurs | 55 530 146 82
10 facteurs | 66 1044 148 148
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5.4 Plans de Box et Behnken

5.4.1 Définition

Cette section introduit les plans d’expérience construits selon la technique
proposée par Box et Behnken [10]. L’idée de ces auteurs est de combiner des
plans d’expérience en blocs pour facteurs qualitatifs avec des plans factoriels
classiques a deux niveaux. Plus précisemment la technique de construction,
en deux étapes, est la suivante (voir aussi la section 9.4 relative a la notion
de plan en blocs incomplets équilibré (BIBD) pour facteurs qualitatifs) :

1) déterminer un BIBD(m, b, k,r, A) ot m désigne le nombre de traitements,
b le nombre de blocs, k la taille de chacun des blocs, r le nombre d’occurences
de chaque traitement et A le nombre de blocs contenant chacun des couples
de traitements,

2) remplacer chacun des blocs du BIBD par le plan d’expérience factoriel
FD (2”C , O) complet correspondant.

On limite volontairement ici la classe des plans proposés par Box et Behnken.
En effet, ces auteurs ont donné dans leur article une définition plus générale
permettant I'utilisation de structures autres que les BIBD (notamment les
PBIBD présentés a la section 9.5). Comme nous le verrons par la suite seuls les
plans d’expérience construits a partir d’'un BIBD ont d’intéressantes propriétés
(plans usuels, isovariances, etc ...), on les qualifiera désormais de plans de Box
et Behnken simples.

| Exemple |

Considérons ici la construction d’un plan de Box et Behnken simple
pour m = 3 facteurs. Il faut dans un premier temps déterminer un
BIBD relatif a 3 traitements. On a alors classiquement la structure

suivante :
Trait. 1 | Trait. 2 | Trait. 3
Bloc 1 X X
Bloc 2 X X
Bloc 3 X X

Il s’agit en fait ici d’'un plan en blocs incomplet équilibré de type
BIBD(3,3,2,2,1). En le combinant avec un plan factoriel de type
FD (22, O) on obtient la matrice du plan d’expérience suivant :



Ceci constitue donc un plan d’expérience avec n = 12 et trois niveaux
sont nécessaires (—1,0 et 1 sous forme codée). Afin de simplifier
I’écriture d’une telle matrice il est classique de la désigner par :

D=

5.4 Plans de Box et Behnken

[—1 -1 0]
1-1 0
-1 1 0
1 1 0
-1 0-1
1 0-1
-1 0 1
1 0 1
0-1-1
0 1-1
0-1 1
0 1 1]

141 0
+1 0 £1
0 £1#£1
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Voici la liste des premiers plans de Box et Behnken simples (voir Box et
Behnken [10]). Une nouvelle fois, la notation %1 signifie que la colonne est
celle d’un plan factoriel complet (si &1 apparait k fois dans la ligne considérée

les colonnes sont donc constituée par 2% éléments).

1) Pour m = 3 facteurs la construction découle d’'un BIBD(3,3,2,2,1) et la
matrice du plan a été donnée dans I’exemple précédent. On obtient donc ici

une configuration constituée par n = 12 expériences.

2) Pour m = 4 facteurs la construction découle d’un BIBD(4,6,2,3,1) et la

matrice du plan est donnée par :

D=

On obtient donc ici une configuration constituée par n = 24 expériences.

£1£1 0 O

0 0 £1+1

+1 0 0 +£1

0 £1£1 0

£1 0 £1 0

0 £1 0 +1

3) Pour m = 5 facteurs la construction découle d’'un BIBD(5, 10, 2,4, 1) et la

matrice du plan est donnée par :
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[£14+1 0 0 0 ]
0 0 141 0
0 £1 0 0 +1
+1 0 +£1 0 0
0 0 0 +1=+1
0 £1+1 0 0
+1 0 0 +1 0
0 0 +1 0 +1
+10 0 0 +1
| 0 +1 0 £1 0 |

On obtient donc ici une configuration constituée par n = 40 expériences.

4) Pour m = 7 facteurs la construction découle d’'un BIBD(7,7,3,3,1) et la
matrice du plan est donnée par :

[0 0 0 £1+141 0]
+1 0 0 0 0 +1+1
0 £1 0 0 +1 0 +1
D=|4+141 0 +1 0 0 0
0 0 £1+1 0 0 +1
+1 0 £1 0 £1 0 0
| 0 £1+1 0 0 +1 0 |

On obtient donc ici une configuration constituée par n = 56 expériences.

Concernant les autres nombres de facteurs notons qu’il n’existe pas de plan
de Box et Behnken pour 2 ou 8 facteurs. Pour maintenant 6, 9 et 10 facteurs
on peut obtenir de tels plans, constitués par respectivement 48, 120 et 160
expériences mais il ne sont pas construits & partir d’'un BIBD (voir Box et
Behnken [10]).

5.4.2 Propriétés

Considérons dans cette section uniquement des plans de Box et Benhken sim-
ples (c’est-a~dire obtenus a partir d’'un BIBD) auxquels ny € N expérience(s)
supplémentaire(s) sont ajoutées au centre du domaine expérimental. Remar-
quons au préalable qu’un tel plan d’expérience résulte de la construction de
b blocs (les blocs initiaux du BIBD) de taille 2¥ (puisque chacun des blocs
initiaux est remplacé par le plan F'D (2’“70))7 il est donc constitué par un
total de b2% 4 ng expériences. En ce qui concerne maintenant leurs moments
les résultats ci-dessous sont immédiats :

1) l'utilisation de blocs qui sont des plans factoriels complets F'D (2’“7 0) en-
traine que tous les moments impairs jusqu’a lordre 4 sont nuls (i.e. chacun
des blocs va vérifier cette propriété d’apres les résultats du chapitre 4),
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2) chaque traitement étant répété r fois dans le BIBD initial, on obtient donc
puisque zy; = +1 Vi=1,...m) :

n

n
Zzzz = 2% et Zzﬁz = r2k,

u=1 u=1

3) de méme, chaque couple de traitements étant répété A fois dans le BIBD
initial on obtient (V ¢,5 = 1,...,m avec @ # j) :

n

2 .2 _ ok
E ZuiZu; = A2".

u=1

On en déduit alors le résultat suivant :

Proposition 5.13. Tout plan de Box et Benhken simple, construit a par-
tir d’'un BIBD(m,b,k,r,\) est un plan d’ezpérience usuel pour un modéle
linéaire d’ordre deuz, constitué par n = b2F + ng expériences. Il vérifie :

S9 = 7’2k, S4 = r2k et S99 = A2F.

Remarque. Lorsque le plan de Box et Benhken n’est pas simple on a alors
généralement une structure ou chaque couple de traitements n’apparait pas
le méme nombre de fois et donc le point 3 n’est plus vérifié.

On déduit immédiatement de la proposition 5.5 qu'un plan de Box et
Benhken simple construit & partir d'un BIBD(m, b, k,r, A) est isovariant si
et seulement si :

r =3\

Les plans de Box et Benhken proposés précedemment sont donc isovariants
pour 4 ou 7 facteurs. Concernant 1'utilisation pratique des plans de Box et
Benhken simples prenons garde au fait que, par définition, ils sont constitués
de points situés & la méme distance vk de 1'origine lorsque le plan est obtenu
a partir d'un BIBD(m, b, k,r, \). D’apres la proposition 5.4 un plan de Box
et Benhken est donc a matrice des moments inversible si et seulement si il
est utilisé avec au moins une expérience centrale (i.e. ng > 1).

5.5 Plans simplexes augmentés

5.5.1 Définition

L’objet de cette section est de généraliser la structure de plan simplexe (voir le
chapitre 3, section 3.5) au cas d’'un modele d’ordre deux. Les plans simplexes
étant saturés pour 'utilisation d’un modele d’ordre un il est évident qu’une
telle structure n’est pas assez riche pour 'utilisation d’un modele d’ordre deux.
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Box et Behnken [11] ont alors proposé de considérer des plans dits simplexes
augmentés (simplez-sum designs) obtenus de la maniére suivante :

1) déterminer un plan simplexe initial pour m facteurs (z,)

u=1,...,n"°

2) construire la partie augmentée du plan en rajoutant, pour chaque couple
de points du plan z; € R™ et z; € R™ (s,t = 1,...,n avec s # t) le nouveau
point :

z (o, 8,t) = a(zs + 2t)

avec a € R constante fixée par 'utilisateur.

Ce type de plan d’expérience est donc obtenu de maniere séquentielle puisqu’il
est possible dans un premier temps de réaliser les expériences du plan simplexe
initial (et donc d’ajuster un modele polynomial d’ordre un) puis de rajouter,
si nécessaire, celles de la partie augmentée du plan.

| Exemple |

Considérons la construction d’un plan simplexe augmenté pour m = 3
facteurs. Cette construction commence par le choix préalable d’un
plan simplexe initial. La matrice D; de ce plan est donnée par util-
isation de la technique de construction des plans simplexe cycliques
(voir la section 3.5.1) :

—1-1-1
1 1-1
Di=1_4 1
1-1 1

La matrice D5 de la partie augmentée est obtenue en effectuant toutes
les sommes de couples de lignes différentes de la matrice D; :

D,

OO O N O
SO NN OO
N O OO O N

La partie augmentée étant utilisée a un coefficient multiplicateur o
pres, le plan simplexe augmenté est donc défini par la matrice D telle
que :

tD = [tD1|OétD2] .
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5.5.2 Propriétés

Examinons quelques-unes des propriétés des plans d’expérience simplexes aug-
mentés. De maniere générale considérons ici que ng éventuelles expériences ont
été rajoutées au centre du domaine. Lorsque le plan fait intervenir m facteurs
et qu’une constante o a été fixée pour construire la partie augmentée, on le
désigne dans la suite par la notation (pour Simplex Sum Design) :

SSD (m,a,ng).

L’intéréet premier de ce type de plans réside dans leur tres petite taille; de
telles configurations peuvent donc étre particulierement intéressantes dans le
cas ou les expériences sont tres cotiteuses a réaliser. En effet, lorsqu’un tel plan
d’expérience est utilisé il est donc constitué par les (m + 1) expériences du plan
simplexe initial et les expériences de la partie augmentée dont le nombre est
égal au nombre de choix (non ordonnés) de deux expériences distinctes parmi
les (m + 1) de la partie initiale, c’est-a-dire :

o2 (m+1)!  m@m+1)
mAL T ol (m — 1) 2

On en déduit immédiatement que tout plan simplexe augmenté SSD (m, o, ng)
a pour nombre d’expériences :

1 2
2
Un tel plan d’expérience est donc saturé pour un modele d’ordre deux

lorsqu’il est utilisé sans expérience au centre (ng = 0).

Lors de I’étude des plans simplexes (section 3.5) il a été montré que tous
les points de ce type de plan sont situés a la surface de la sphere centrée
S (y/m) de rayon /m (paragraphe 3.5.2). Il est possible d’avoir encore une
telle interprétation géométrique des plans simplexes augmentés puisque pour
tout SSD (m, a,ng) (voir Tinsson [98]) :

1) la partie initiale est située a la surface de la sphere S (v/m),

2) la partie augmentée est située a la surface de la sphere
S (|a| V2 m = 1)) .

Les plans simplexes augmentés sont donc particulierement intéressants du
point de vue de leur faible taille mais en contrepartie ils ne présentent pas de
structure simple & analyser puisque un plan simplexe de type SSD (m, o, ng)
n’est jamais un plan d’expérience usuel pour un modele d’ordre deux (voir
Tinsson [98]). Ceci entraine donc qu’il n’est pas possible d’obtenir, par exem-
ple, des plans simplexes augmentés isovariants par transformations orthogo-
nales. Tout comme pour les cas des plans composites centrés, le probleme du
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choix du parametre « se pose concrétement. Voici quelques choix possibles
pour la valeur du parametre « intervenant dans la construction d’'un plan
d’expérience simplexe augmenté de type SSD (m, a,ng) .

1) Plans simplexes augmentés classiques.

La valeur du parametre « la plus couramment utilisée en pratique consiste a
prendre @ = 1/2 (voir Spendley et al. [93]). Le principal avantage de cette
méthode réside dans la simplicité de la valeur utilisée ainsi que dans la facilité
de linterprétation géométrique de la configuration ainsi obtenue (la partie
augmentée est alors constituée de tous les points situés au milieu des arétes
du simplexe initial).

2) Plans simplexes augmentés améliorés.

Plus récemment, Morris [66] a proposé de considérer la valeur o = —1/2 (et
ceci pour construire de maniere générale des ” augmented pair designs” inclu-
ant les plans d’expérience considérés ici). Morris a montré que cette valeur
permet, tout en gardant des configurations faciles a construire, d’obtenir des
plans d’expérience de meilleure qualité (i.e. permettant d’obtenir des estima-
teurs moins dispersés) que dans le cas classique vu précédemment.

3) Plans simplexes augmentés équiradiaux.

Pour diverses raisons 1'utilisateur peut rechercher des plans équiradiaux, c’est-
a-dire constitués par des points situés a la méme distance de 'origine. D’apres
les résultats précédents une telle propriété est vérifiée par un plan simplexe
augmenté de type SSD (m, a,ng) si et seulement si :

lalv2(m—1)=yVm<=a=%+ %

4) Plans simplexes augmentés optimaux.

La détermination de la valeur du parametre o peut enfin étre guidée par des
objectifs d’optimalité pour certains criteres usuels. Dans cette optique diverses
valeurs de « ont été proposées par Tinsson [98] afin de maximiser l'efficacité
du plan SSD (m,a,ng) considéré (voir la section 10.4 relative aux critéres
d’efficacité).

5.6 Plans hybrides

5.6.1 Définition

Présentons ici les plans d’expérience qualifiés d hybrides, introduits par Roque-
more [81]. L’objectif de 'auteur était alors de présenter des plans pouvant étre
une alternative aux plans composites centrés, mais de taille moindre tout en
restant relativement ”efficaces”. Pour cela, la technique mise en oeuvre con-
siste & procéder de la maniere suivante dans le cas de m facteurs :
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1) déterminer un plan d’expérience pour (m — 1) facteurs ayant un maximum
de propriétés intéressantes (le plus souvent sous forme d’un plan composite
centré isovariant). Ce plan d’expérience va étre transcrit dans les (m — 1)
premieres colonnes de la matrice du plan final,

2) fixer "au mieux” les niveaux du dernier facteur tout en gardant le nombre
d’expériences de ’étape 1. En d’autres termes on construit la derniére colonne
de la matrice du plan final de maniere a ce que le plan d’expérience obtenu
soit le plus régulier possible.

L’intérét de cette méthode provient du fait qu’un plan pour m facteurs est
construit & partir d'un plan pour (m — 1) facteurs (étape 1) d’ou la possi-
bilité d’obtenir des tailles intéressantes. La difficulté principale, qui a motivé
larticle de Roquemore [81], réside dans le choix des niveaux du dernier fac-
teur. L’auteur utilise une terminologie particuliere afin de désigner les plans
d’expérience obtenus. Par exemple, le plan hybride "416B” désigne un plan
pour 4 facteurs constitué par 16 expériences et il s’agit du plan B présenté par
Roquemore car il existe dans ce cas plusieurs plans hybrides de méme taille
(les plans A et B).

| Exemple |

Considérons le plan hybride 311 A. Ce plan d’expérience est défini par
la matrice suivante (par rapport au plan de Roquemore toutes les
coordonnées ont été divisées ici par v/2 afin d’obtenir pour les deux
premiére colonnes une écriture conforme & celle de la définition 5.7) :

- V3 ]
1/V2
1/V2
1/V2

_1/\/5

-1/V2

,1/\/5

_1/\/5

V2
V2
0

Il
|
SS | |
OO OO O NNNIF =
|
&IQI |
OO O NN O = ===

On constate que pour les deux premiers facteurs le plan d’expérience
utilisé est un plan composite centré isovariant. Les niveaux du dernier
facteur proposés par Roquemore sont donnés dans la troisieme colonne.
Il s’agit donc d’affecter la valeur 1/v/2 & tous les points de la partie
factorielle du plan & deux facteurs, —1/ V2 pour ceux de la partie ax-
iale et enfin +1/2 pour les expériences centrales. Remarquons qu’une
expérience centrale a enfin été ajoutée afin d’éviter tout probleme de
singularité.
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5.6.2 Propriétés

Ces plans d’expérience hybrides sont construits au cas par cas et ne découlent
pas d’une théorie générale pouvant conduire a des propriétés bien définies.
Notons en particulier que Roquemore a proposé des configurations unique-
ment pour un nombre de facteurs égal & 3 (en 10 et 11 expériences), 4 (en 16
expériences), 6 (en 28 expériences) et enfin 7 facteurs (en 46 expériences). La
plupart des plans proposés ne sont pas usuels car ils ne vérifient généralement
pas les conditions relatives aux moments d’ordre 4. Par exemple le plan hy-
bride 311 A présenté dans le paragraphe précédent n’est pas usuel car :

n [1*] = 12 et n [3*] = 10.

Deux exceptions notables sont cependant d’un grand intérét. Il s’agit des plans
hybrides 311B et 628 A présentés en détail ci-dessous.

1) Plan hybride 311B. Il s’agit du plan dont la matrice est donnée par :

[—0.5308 1.4894 1/v/2]
1.4894 0.5308 1/v/2

0.5308 —1.4894 1/v/2

—1.4894 —0.5308 1//2
0.5308 1.4894 —1/+/2

D= | 1.4894 —0.5308 —1//2
—0.5308 —1.4894 —1/+/2
—1.4894  0.5308 —1/+/2
0 0 V3

0 0 —V3

0 0 0]

Il s’agit bien d’un plan d’expérience usuel tel que :
82:20,84:80€t 522:20.

Comme s4 # 3522 ce plan d’expérience n’est donc pas isovariant. Remarquons
que le plan d’expérience proposé ici correspond au plan original de Roquemore
dont toutes les coordonnées des points ont été divisées par v/2 afin d’obtenir
une configuration telle que toutes les unités expérimentales soient situées a la
surface de la sphere centrée de rayon y/m avec ici m = 3 facteurs (sauf, bien
entendu, la derniére expérience au centre du domaine).

2) Plan hybride 628A. 1l s’agit du plan d’expérience dont la matrice orig-
inale proposée par Roquemore est présenté ci-dessous. La construction de ce
plan hybride est basée initialement sur un plan composite centré fractionnaire
isovariant pour 5 facteurs. Plus précisemment, ce plan est obtenu a partir de
la fraction réguliere de résolution V telle que I = —12345. La colonne relative
au sixieéme facteur est ensuite obtenue en rajoutant la valeur 1/ V3 aux points
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de la partie factorielle, —2/+/3 & ceux de la partie axiale et enfin 4/v/3 pour
I’expérience centrale. On obtient ainsi un plan d’expérience usuel tel que :

SS9 = 247 S4 = 48 et S99 = 16.

Comme s4 = 3592 le plan hybride 628 A est donc isovariant. Sa petite taille
(28 expériences) rend ce plan d’expérience tres attractif par rapport au plan
composite centré correspondant (44 expériences au minimum). C’est pourquoi
cette configuration est certainement le plan hybride le plus utilisé en pratique.

[—1-1-1-1-1 1/V3]
1 1-1-1-1 1/V3
1-1 1-1-1 1/V3
-1 1 1-1-1 1/V3
1-1-1 1-1 1/V3
-1 1-1 1-1 1/V3
—-1-1 1 1-1 1/V3
1 1 1 1-1 1/V3
1-1-1-1 1 1/V3
-1 1-1-1 1/V3
—-1-1 1-1 1//3
1 1 1-1 1/v/3
—-1-1-1 1 1//3
1 1-1 1/v/3
1-1 1/V3
1//3
0-2/V3
0-2/v3
0-2/V3
0-2/v3
0-2/3
0-2/V3
0-2/3
0-2/V3
2-2//3
-2 -2/V3
0 4/V3
0 0

—_
—_ o e e e

I
—
—

OO O OO OO ONND OO

OO O OO OO OO o NN

|
OO OO OO NMNNO OO O
SO OO NN NOOOOO O ==
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5.7 Exemple d’application

Terminons ce chapitre par un exemple d’application pratique. Considérons un
laboratoire biologique cherchant a élaborer une solution ayant la plus grande
concentration cellulaire possible. Les biologistes ont établi que la réponse
obtenue (i.e. la concentration cellulaire mesurée en pg/l) semble dépendre
principalement de 5 facteurs qui sont la température, le pH de la solution, la
vitesse d’agitation, le taux d’oxygénation ainsi et la durée de la culture. Les
diverses plages d’utilisation possibles pour ces divers facteurs sont résumées
dans le tableau ci-dessous :

Minimum | Mazimum
Température (en °C') 30 40
pH 6 8
Vitesse agit. (en tr/mn) 100 200
Taux oxygénation (en %) 10 30
Durée culture (en h) 2 4

Supposons que les spécialistes du phénomeéne étudié estiment qu’il ne s’agit
pas d’'un phénomene simple & appréhender car des interactions entre couples
de facteurs peuvent survenir ainsi que des courbures dans la surface de réponse
(i.e. des effets quadratiques peuvent étre nécessaires). On peut alors mettre
en oeuvre un plan d’expérience composite centré de matrice D.

Le plan composite centré proposé utilise une partie fractionnaire définie
par la relation I =12345 (il s’agit bien d’une fraction réguliere de résolution
V). Le choix du parameétre @ = 2 a été fait de maniére & obtenir un
plan d’expérience isovariant. Enfin trois réplications du centre du domaine
expérimental sont utilisées afin d’améliorer la qualité ainsi que ’analyse de
lajustement du modele (voir le paragraphe 5.3.3). Les variables codées étant
ici & valeurs dans l'intervalle [—2,2], on en déduit que le passage d’une vari-
able initiale = & valeurs dans [a,b] & une telle variable est donné par (voir le
paragraphe 3.2.1) :

=9 |:2£L'— (a—l—b)]
(b—a)
Ceci permet de proposer a la suite le protocole expérimental, c’est-a-dire
la liste des n = 29 expériences a effectuer, exprimées avec leurs unités ini-
tiales. Parallelement, le vecteur Y des réponses mesurées pour chacune de ces
expériences est donné.
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1 1 1 1
-1-1 1 1
-1 1-1 1
-1 1 1-1
-1 1 1 1-1

1-1-1 1 1

1-1 1-1 1

1-1 1 1-1

1 1-1-1 1

1 1-1 1-1

11 1-1-1
-1-1-1-1 1
-1-1-1 1-1
-1-1 1-1-1
D=]-1 1-1-1-1
1-1-1-1-1
2 0 0 0 O

1
1
1
1

S OO DODODOD OO OO

SO OO OO OO NMNO
|
SO OO ONNO OO
|

S OO NN OO O OO

S ONMNODOOOOOOo

0000 0

Le programme SAS suivant rentre ces données. La table ”donnees” ne contient
que les colonnes des effets linéaires et la réponse.

Data Donnees;
Input tem ph vit oxy dur y;
Cards;
1.0 1.0 1.0 1.0 1.0 23.2
-1.0-1.0 1.0 1.0 1.0 27.9

expérience i et réponse %

o o
o o
o o
o o
oo..-

o O
o O
o O
o O
o O

0 O

o N
o O

Run;
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Il est inutile de créer les colonnes des effets d’interactions ou des effets
quadratiques car le modele va étre ensuite analysé a ’aide de procédures
ne nécessitant que la connaissance de la matrice D.

Tem. | pH Vit. | Ozy. | Dur. Y

Exp 1 375 | 75| 175 25| 385 23.2
Exp 2 325 | 6.5| 175 25| 3.5 27.9
Exp 3 325 | 75| 125 25| 3.5 24.7
Exp 4 325 | 75| 175 15| 3.5 24.5
Exp 5 325 | 75| 175 25| 25 20.5
Exp 6 375| 6.5| 125 25| 3.5 58.4
Exp 7 375| 6.5| 175 15| 3.5 27.5
Exp 8 375 | 6.5 175 25| 25 33.0
Exp 9 375 | 7.5 | 125 15| 3.5 26.5
Exp 10| 375| 7.5| 125 25| 25 22.5
Exp 11| 375| 75| 175 15| 2.5 22.5
Exp 12| 325| 6.5| 125 15| 35 37.5
Exp 13| 325| 6.5 | 125 25| 25 25.4
Exp 14| 325| 6.5| 175 15| 25 21.5
Exp 15| 325 75| 125 15| 2.5 28.5

Exp 16 | 37.5 6.5 | 125 15 2.5 19.5
Exp 17 40 7| 150 20 3 41.3
Ezp 18 30 7| 150 20 3 35.0
Ezxp 19 35 81 150 20 3 26.0
Ezp 20 35 6| 150 20 3 41.3
Ezxp 21 35 7| 200 20 3 24.8
Ezp 22 35 7| 100 20 3 36.4
Exp 23 35 7| 150 30 3 34.1
Ezp 24 35 7| 150 10 3 28.6
Exp 25 35 7| 150 20 4 32.2
Exp 26 35 7| 150 20 2 19.3
Ezp 27 35 7| 150 20 3 68.0
Exp 28 35 7| 150 20 3 70.6
Ezp 29 35 7| 150 20 3 65.8

Si ce plan d’expérience est mis en oeuvre itérativement en réalisant au
préalable les 16 expériences de la partie axiale on constate alors qu’un modele
a effets d’interactions d’ordre deux n’est pas adapté car I’ajustement obtenu
est trés mauvais (R? = 0.273). Ceci conduit donc & réaliser des expériences
axiales afin d’ajuster un modele de degré deux complet. On obtient alors le
tableau d’analyse de la variance suivant :
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Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 20 | 5846.98 292.35 20.70 | 0.0002 °*°*

Erreur 8 | 113.01 14.13 2.92 | 0.2740 °°°
Pure. | 2 11.55 577
Ajus. | 6| 10146 16.91

Total 28 | 5959.99

Ces résultats sont donnés immédiatement par la procédure GLM du logiciel
SAS. Cette procédure (pour General Linear Model) est plus générale que la
procédure REG utilisée jusqu’a présent car elle permet d’introduire directe-
ment dans le modele analysé tous les types d’effets (effets d’interactions et
effets quadratiques ici, voir la commande "model”).

Proc Glm data Donnee;
Model y = tem ph vit oxy dur

tem*tem ph*ph vit*vit oxy*oxy dur*dur
tem*ph tem*vit tem*oxy tem*dur
ph*vit ph*oxy ph*dur
vit*oxy vit*xdur
oxyx*dur;

Run;

On constate que le modele utilisé est valide puisqu’il est possible de rejeter tres
clairement ’hypotheése ”tous les parametres du modele (sauf Fy) sont nuls”.
Un estimateur sans biais de la variance des résidus est donné par (valeur
"Root MSE” de la sortie SAS) :

62 = MSE = 14.13 (donc G ~ 3.76).

Le coefficient de corrélation linéaire obtenu traduit le bon ajustement global
du modele utilisé (valeur ”R-Square” de la sortie SAS) :
R—1-E L g1,
SST

Les trois expériences répliquées au centre du domaine permettent d’affiner la
somme des carrés due a ’erreur en la décomposant en erreur pure et erreur
d’ajustement. On constate alors que ’erreur totale est ici due majoritaire-
ment au défaut d’ajustement du modele. Ce défaut d’ajustement n’est cepen-
dant pas assez important pour rejeter significativement ’hypothese d’un bon
ajustement en moyenne. La faible erreur pure montre par contre qu’a pri-
ori les bons facteurs ont été sélectionnés car répéter des expériences dans
les mémes conditions n’induit pas de trop grandes variations au niveau de la
réponse.

Il est possible d’évaluer les différents estimateurs des parametres du modele
(voir la proposition 5.3 pour les formules explicites) :
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Param. | Estimat. | Ec. type | St. Test Proba.
Bo 66.43 2.074 32.04 [ 0.0001 ***
61 1.467 0.767 1.91 [ 0.0900 °°°
Bo —3.683 0.767 | —4.80 | 0.0015 **°
B3 —2.733 0.767 | —3.56 | 0.0074 **°
B4 1.608 0.767 2.10 [ 0.0670 °°°
Bs 3.442 0.767 4.49 [ 0.0022 **°
B —6.434 0.759 | —8.48 [ 0.0002 ***
Ba2 —7.559 0.759 |  —9.96 | 0.0001 ***
B33 —8.322 0.759 | —10.97 [ 0.0001 ***
Ba4 —8.134 0.759 | —10.72 | 0.0001 ***
Bs5 —9.534 0.759 | —12.56 [ 0.0001 ***
P12 —1.850 0.940 | —1.97 | 0.0820 °°°
B3 0.062 0.940 0.07 | 0.9470 °°°
B4 3.412 0.940 3.63 | 0.0669 **°
B1s 1.212 0.940 1.29 | 0.2320 °°°
P23 1.212 0.940 1.29 | 0.2320 °°°
Bo4 —3.112 0.940 [ —3.31[0.0105 *°°
Bas —2.938 0.940 | —3.13{0.0139 *°°
B34 —0.650 0.940 [ —0.69 [ 0.5140 °°°
B35 —2.850 0.940 | —3.03 | 0.0159 *°°
Bas 0.550 0.940 0.59 | 0.5800 °°°

Ces résulats sont disponibles dans le dernier tableau de résultats en sortie de
la procédure GLM. On en déduit qu’il est possible de réaliser des prédictions
a I’aide du meilleur modele au sens des moindres carrés, donné ici par :

% () = 66.43 4+ 1.467x1 — 3.683x2 — 2.733x3 + 1.608x4 + 3.442x5
—6.434x% — 7.559:1:% — 8.322x§ — 8.134x?1 — 9.534:1:?)
—1.850x1x9 + 0.0622123 4+ 3.4122x124 + 1.2122125 + 1.2122523
—3.1121‘2$4 — 2.938$2$5 — 0.650$3$4 — 2.850$3$5 + 0.550$4$5.

Si 'on souhaite utiliser un modele plus simple, il est possible de supprimer
les coeflicients non-significatifs. Par exemple la suppression de 13, 015, (o3,
B34 et B45 (qui sont réellement non-significatifs car leur statistique de test
est tres éloignée du seuil des 5%) se traduit par un coefficient de corrélation
linéaire multiple de R? = 0.971 c’est-a-dire trés peu différent de la valeur pour
le modele complet (ces notions ne pas abordées ici mais la détermination,
parallelement & R?, du coefficient de corrélation linéaire ajusté R2 peut étre
d’une grande utilité pour la sélection d’un sous-modele).

Utilisons maintenant le modele déterminé précédemment afin de cerner au
mieux le comportement du phénomene étudié. Puisque le plan d’expérience
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utilisé est isovariant la proposition 5.5 donne explicitement la dispersion de
la réponse prédite en tout point situé a la distance r du centre du domaine :

. 749 15
VarY (r) = 02 [ = — —p2 4 o pd )
ary (r) = o <23 552 ' 368

L B L BB BN L B B B
0O 02 04 06 08 1 12 14 16 18 2 22

Fig. 5.6. Graphe de VarY en fonction de r.

Un estimateur de la dispersion des résidus étant ici connu on obtient alors
une représentation graphique (figure 5.6) en remplacant o2 par 2. Cette
figure montre que la qualité des prédictions réalisées est relativement stable a
Iintérieur du domaine expérimental mais il convient d’étre plus prudent aux
bornes du domaine car la variance de prédiction devient alors beaucoup plus
importante.

Intéressons-nous maintenant a l’'objectif de cette étude, c’est-a-dire la max-
imisation de la concentration cellulaire. La recherche de l'extremum de la
réponse moyenne prédite Y (z) conduit & un maximum atteint au point suiv-
ant :

21 = 0.265, x5 = —0.396, x5 = —0.254, 24 = 0.251 et x5 = 0.304.

Ce résultat est obtenu tres facilement en annulant les dérivées partielles de 1%
puis en étudiant la nature du point critique obtenu. Si 'extremum est obtenu
aux bornes du domaine expérimental (par exemple la boule de rayon r = V5
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ici) il est alors nécessaire d’utiliser le théoreme des multiplicateurs de Lagrange
pour le déterminer (puisque le probléme est alors 1ié a la recherche d’un max-
imum sous la contrainte ‘zz < 5). D’autres méthodes, souvent implémentées
dans les logiciels statistiques, sont aussi disponibles afin de déterminer ces
extrema : analyse R ou RT (voir Goupy [45]) afin de simplifier le modele par
rotation des axes et translation du centre du repere, algorithmes itératifs de
recherche d’extrema, etc... Remarquons enfin que le modele utilisé prédit une
réponse moyenne en I'extremum donnée par (avec son écart-type associé entre
parentheses) :

~

Yiax = 68.46 (1.96).

Durée X5
F
4.1180 —

30000 N ‘ .
: 50 \100 -bS0 poo 050 1}//
=100

1.8820 — »

| | I~
8.8200 20.0000 31.1800
Oxygénation

Fig. 5.7. Réponse moyenne prédite (facteurs 1, 2 et 3 fixés).

Une représentation graphique de ce phénomeéne (source : logiciel Nem-
rod) est donnée a la figure 5.7. On y distingue les lignes de niveau de
la surface de réponse prédite lorsque les variables x1, x2 et x3 (i.e. la
température, le pH et la vitesse d’agitation) sont fixées aux niveaux 0.265,
—0.396 et —0.254. On retrouve bien 'extremum ainsi que la valeur maximale
déterminées précédemment de maniere théorique.
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La totalité des résultats obtenus dans cet exemple d’application (recherche
de lextremum comprise) peuvent étre donnés par la procédure RSREG du
logiciel SAS.

Proc Rsreg data Donnee;
Model y = tem ph vit oxy dur / lackfit;
Run;

Cette procédure (pour Response Surface REGression) est adaptée a I’étude
spécifique des modeles pour surface de réponse. Elle est de plus simple a écrire
puisqu’il n’est pas nécessaire de préciser la totalité du modele utilisé (qui est
automatiquement d’ordre deux ici). Elle peut étre utilisée avec en entrée les
variable initiales, elles seront alors automatiquement codées. L’option ”lackfit”
permet d’obtenir ’analyse de la variance plus fine découlant des répétitions
effectuées (SSPE et SSLOF). Les derniers tableaux présentés en sortie de
cette procédure sont relatifs a la ”canonical analysis” permettant de cerner
un éventuel extremum (& 1'aide d’une décomposition de la réponse sur une
base de vecteurs propres). Dans le cadre de cette étude la procédure détecte
bien le point stationnaire présenté précédemment et affirme qu’il s’agit d’un
maximum.

| Conclusion |

Les résultats obtenus précedemment permettent de dire que :

1) Le phénomene étudié se traduit par une importante courbure de la
surface de réponse. Des effets quadratiques sont donc nécessaires et sont
tous tres significatifs. Il existe de plus un effet linéaire significatif pour les
facteurs pH, vitesse d’agitation et durée de la culture. Concernant main-
tenant les interactions entre facteurs, l’effet le plus important détecté con-
cerne la température avec le taux d’oxygénation. Une interaction moins
marquée, mais non-négligeable, a aussi été relevée pour les couples de fac-
teurs suivants : pH/taux d’oxygénation, pH/durée de culture et enfin vitesse
d’agitation/durée de culture.

2) L’objectif de ’étude était de déterminer des conditions expérimentales con-
duisant a une maximisation de la concentration cellulaire. Le modele polyno-
mial ajusté présente un maximum au sein du domaine expérimental. Il est
atteint au point dont les coordonnées avec les unités initiales sont :

Facteur Niveau

Température 35.7°C
pH 6.8
Vitesse agitation 144 tr/mn
Taux oxygénéation 21.3 %
Durée culture 3 h 09 mn
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Le modele théorique prédit en ce point une réponse moyenne égale a :
68.46 pg/l.

Il convient maintenant d’effectuer en pratique l’expérience avec ces valeurs
afin de comparer la réponse théorique avec la réponse réelle.

5.8 Résumé

Voici en conclusion un tableau résumant les tailles des divers plans d’expérience
présentés dans ce chapitre (pour un nombre de facteurs compris entre 2 et 10).
On considere plus précisemment :

1) les plans composites centrés de type CCD (2™,«,ng) ou bien encore
CCD (2%, a,ng) lorsqu’il est possible de réduire la taille de la partie fac-
torielle,

2) les plans composites centrés de petite taille de type CC'D (2?{;‘1, a, no),

3) les plans de Box et Benhken simples obtenus & partir d’'un BIBD(m, b, k,
T, A),

4) les plans simplexes augmentés de type SSD (m, a,ng),
5) les plans hybrides.

Figure aussi entre parentheses la taille relative § du plan considéré, ¢’est-a-dire
sa taille ramenée au nombre de parametres inconnus p du modeéle considéré,

donc :
_ 2n

C(m+1)(m+2)

Pour chaque plan on utilise les conventions suivantes :

le symbole [usu | désigne un plan d’expérience usuel
)

le symbole désigne un plan d’expérience isovariant ou pouvant
I’étre par un choix adéquat du parametre o pour des plans composites
centrés,

Les plans proposés ici sont de taille minimale. Il est parfois nécessaire de
rajouter au moins une expérience au centre du domaine afin de rendre leur
matrice des moments réguliere.
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P CCD | CCD IIT* | Box-Behn. | Simplexe | Hybride
8 (1.33) 6 (1.00)
2 facteurs | 6 USU X X X
14 (1.40) | 10 (1.00) 13 (1.30) 10 (1.00)| 11 (1.10)
3 facteurs | 10 Usu UsU
ISO
24 (1.60) 16 (1.07) 25 (1.67)| 15 (1.00) | 15 (1.07)
4 facteurs | 15 USU
ISO ISO
26 (1.24) 26 (1.24) 41 (1.95)| 21 (1.00)
5 facteurs | 21 Usu UsU X
44 (1.57) 28 (1.00) 49 (1.75)| 28 (1.00)| 28 (1.00)
6 facteurs | 28 UsU USU
78 (2.17) 46 (1.28) 57 (1.58) | 36 (1.00) | 46 (1.28)
7 facteurs | 36 USU
[1s0] 150
80 (1.78) 80 (1.78) 45 (1.00)
8 facteurs | 45 X X
146 (2.65) 82 (1.49) 121 (2.20)| 55 (1.00)
9 facteurs | 55 X
ISO
148 (2.24) | 148 (2.24) 161 (2.44)| 66 (1.00)
10 facteurs | 66 X
ISO

Ce tableau permet de constater que certain plans sont remarquables car
économes en terme d’expériences tout en gardant de tres intéressantes pro-
priétés. Il s’agit principalement des plans composites centrés pour 5 fac-
teurs, des plans hybrides pour 6 facteurs et des plans de Box et Behnken
pour 7 facteurs.
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5.9 (Compléments) Résultats théoriques

5.9.1 Quelques résultats de calcul matriciel

Les deux lemmes présentés ci-dessous sont d’une grande utilité pour les
démonstrations de ce chapitre.

Lemme 5.A. Considérons une matrice completement symétrique, c’est-a-dire
de la forme A = al, + bJ,. On a alors les propriétés suivantes :

1) une telle matrice est inversible si et seulement si a #0 et a+nb # 0. Son
déterminant est de plus égal a :

Det (A) = a™ ! (a + nb)

2) lorsque A est inversible son inverse est elle-méme une matrice
completement symétrique donnée explicitement par :

A‘l_l(ln— b Jn).
a a+nb

Démonstration. Pour la premiere relation remarquons que le vecteur I,, est
vecteur propre de A, associé a la valeur propre a + nb, puisque :

AL, = (al, + bJ,) L, = all, + bL,'T,, I, = (a + nb) L,.

De méme, tout contraste ¢ de R™ (i.e. tel que ‘cl,, =! I,,c = 0) est un vecteur
propre de A, associé a la valeur propre a, puisque :

Ac = (al, + bJ,) c = ac + b,1,,'T,,c = ac.

La matrice A admet donc uniquement deux valeurs propres : a + nb d’ordre
de multiplicité 1 et a d’ordre de multiplicité (n — 1) (car espace vectoriel des
constrastes de R a pour dimension n — 1). Ceci donne alors les conditions de
régularité pour A. Le déterminant étant obtenu a ’aide du produit de toutes
les valeurs propres (répétées selon leur multiplicité) on a donc aussi :

Det (A) = a™ ! (a4 nb).

Afin de démontrer maintenant la seconde relation il suffit de prouver que
le produit matriciel est une opération interne dans l’ensemble des matrices
completement symétriques. Considérons les matrices A = al,, + bJ, et A’ =
a'l, +V'J,, il vient :

AA" = (al, +bJ,) (d'T, + V' J,) = ad'I,, + (ab’ + a'b) J,, + bb' J2.
Or: J? = (I,'1,) (I,'1,,) = I, (*I,1,) ‘I, = nlL,'I,, = n.J,, donc :

AA" = ad'I, + (ab’ + a'b + nbb") J,,.
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Le produit de deux matrice completement symétriques est donc bien complete-
ment symétrique. Déterminer l'inverse de A équivaut alors maintenant &
déterminer A’ telle que :

r_ aa’ =1 a'=1/a
A _I"(:){ab'+a'b+nbb'—0 ﬁ{b’——b/a(ﬁnb) '

D’ou le résultat énoncé ci-dessus B

Lemme 5.B. Soit A une matrice carrée telle que :

A [All A1

‘ avec Aq11 matrice inversible.
Aqg Agp

En désignant par °Asy = Asg — tAlgAl_llAlg le complément de Schur de
Aoy on a :

1) Det A = (Det All) (Det SAQQ) s

2) si de plus A est inversible alors :

-1 71
A—l — |:A61 8:| + |: A111dA12:| (5A22)*1 [_tA12A1—11 Id} )

Démonstration. Ce résultat est tres classique. Le lecteur pourra en trouver
une forme plus générale dans 'ouvrage de Searle et al. [89] (appendice M) B

5.10 (Compléments) Démonstrations

Proposition 5.2. Soit un plan d’expérience usuel pour un modéle linéaire
d’ordre deux. Sa matrice des moments est inversible si et seulement si au-
cune des trois conditions suivantes n’est vérifiée :

1) la distribution des points du plan est concentrée sur les azes,
2) tout point du plan a ses coordonnées égales en valeur absolue,

3) tous les points du plan sont équidistants de l’origine.

Démonstration. Remarquons au préalable que si 'on écrit le vecteur des
parametres inconnus § selon l'ordre suivant :

"B=(8o|"Bq|"BL|"B1)
alors la matrice des moments d’un plan usuel est diagonale par blocs avec :

'XX = diag (4, s2Im, s22Ln(m—1)/2)
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n 59, } _ {Au A12}

A=Al 522,80) = Solly, (84 — 522) Iy + 522Jm, tA1p Ago

On peut donc affirmer, d’apres les propriétés des déterminants, que :

m—1)

m(m—1)
Det ("X X) = s5's5y 2 Det (A).
D’apres le lemme 5.8 on a de plus :

Det (A) = nDet (SAQQ) avec SAQQ = (54 - 522) Im + 522Jm — (1/7’2,) S%]Intﬂn
= (84 — 822) I, + (822 — s%/n) Im

L’utilisation du lemme 5.A permet de dire que :

m(m—1) 2
Det ("XX) =nsy"sy, = (54— $92)™ " 54 4 (m — 1) 599 — 152

La matrice X X étant positive elle est donc réguliere si et seulement si son
déterminant est strictement positif. Ceci entraine que le plan usuel est a ma-
trice des moments inversible si et seulement si :

s9 >0, 54>522>Oetn[54+(m—l)522]—m5§>().

Traduisons géométriquement ces différentes relations. Les différents cas a
éviter sont donnés ci-dessous.

n
1) La situation ol sp = szn = 0 est facile a interpréter car elle ne peut étre

u=1
vérifiée que si tous les points du plan d’expérience sont concentrés en 1’origine.

n

~ . . N . 2 2 ~ PR .
2) De méme, la situation ot s92 = » zy,2:; = 0 ne peut étre vérifiée que si

u=1
tous les points du plan d’expérience sont concentrés sur les axes du repere.

3) Traduisons maintenant la condition n [s4 + (m — 1) saa] — ms3 > 0. Si d,,
(u=1,...,n) désigne la distance du u-iéme point du plan & origine alors :

R IERD 3y =1 w:>2d4 YD) BETES B) ) SEH

i=1 i#£] i=1 u=1 i#j  u=1
Mais on sait que :
n
Vi,j:l,...,maveci?éj, E —822
u=1 u=1

Donc :

Zdi:m54+m(m—1)522:m[54+(m—1)522].

u=1
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On a de méme :

SE-Y
u=1

i=1 u=1

n

n 2
2 _ 2 2,2
Zo; = msy donc g d; | =m*s;.
u=1

On en déduit que :

n n 2
n[54+(m—1)522]—ms%>0@n2di > <Zdi)
u=1

u=1

L’inégalité¢ de Cauchy-Schwarz appliquée a I, et * (di, ..., d2 ) permet d’affirmer
que la relation ci-dessus est vérifiée des lors que ces deux vecteurs ne sont
pas colinéaires. En d’autres termes, il faut donc éviter le cas ou tous les d,
(u=1,...,n) sont égaux, c’est-a-dire la situation iii ol tous les points du plan
sont équidistants de 'origine.

4) Traduisons enfin la condition s4 > s22. Remarquons que :

m
Z Z sz znj ="'z (2L — Jm) z en notant z =" (221, 2om) -
i=1

7]

La matrice (21, — J,,) étant completement symétrique elle n’admet que deux
valeurs propres distinctes égales & (2 —m) et 2 (voir la démonstration du
lemme 5.A4). Le théoréme de représentation extrémale permet d’énoncer que :

Z Zui Z Z i u_] = (2 - m) Zﬁi
i£] i=1
<:>ZZ Zui Zzzzuz u]—(27m)zzzﬁi
=1 u=1 4] u=1 i=1 u=1
< msg—m(m—1)s22 > (2—m)msy
<:>S4—( —1)522 (2 m)54<:>54>522

Il est bien connu que I'on a de plus I’'égalité entre ces deux derniers termes si
et seulement si z est colinéaire au vecteur propre I,,, associé a la valeur propre
(2 —m). Il faut donc éviter le cas ou tous les éléments de z sont égaux, c’est-
a-dire la situation ii ot tous les points du plan ont leurs coordonnées égales
en valeur absolue H

Proposition 5.3. Soit un plan d’expérience usuel D ={zy,u =1, ...,n} pour
un modéle linéaire d’ordre deuz. Les différents estimateurs des moindres
carrés des parameétres du modéle ainsi que leurs caractéristiques de dispersion
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sont alors obtenus explicitement par les relations suivantes en notant
¢ =nss+mn(m—1)s2e —ms3 :

1) Bo=Y + %2 <m527 — Z ||zu||2 Yu>

u=1
2 2
avec Var (ﬁo) -7 (1 + w) .
n ®
N 1 ~ 2
2) B, = —'DLY avec V (,()'L) = U—Im-
S9 52
~ 1 1 — NS — S% " 2
3 = ——'DpY — = |nsyY + —— = 2u||” Yo | L.
) Bo oy DeY — g [nse 34—522;|| |
~ 2 53 — nsgy
avee V (5 ) - (Im + 2 Jm> .
@ 54— 522 ¢
N 1, ~ o?
4) ﬁl = — D[Y avec YV (ﬁ[) = 7 dm(m-1)/2-
S99 522

Démonstration. Ecrivons ici le vecteurs des parametres inconnus (3 sous la
méme forme que celle déja utilisée pour la démonstration de la proposition 5.2.
11 vient alors (voir la forme du bloc A dans la démonstration de la proposition
5.2) :

tXX = diag (A7 Sg[m, Sggfm(m,l)/g) .

Les estimateurs des moindres carrés vérifient alors :

n SQt]Im 0 0 /B:O tHnY
sol,, (84 — 822) I, + s22d, 0O 0 @\Q . tDQY

0 0 solp, 0 Br|  |'DLY

0 0 0 soolpm-1/2] | 5; D1y

Il en résulte immédiatement la forme explicite des estimateurs des effets
linéaires et d’interaction donnés en 2 et 4 ainsi que leurs caractéristiques
de dispersion. L’obtention des estimateurs de l'effet moyen général et des ef-
fets quadratiques nécessite maintenant de connaitre I'inverse de la matrice A.
Remarquons que le complément de Schur du bloc Aoy est égal a :

SAgy = Agy — LA AT Arg = Aoy — (Sg/n) L, 'L
= (84 — 822) I, + (822 - s%/n) I

Il s’agit d’une matrice complétement symétrique donc le lemme 5.A permet
d’affirmer que, en posant ¢ = nss +n (m — 1) sgg — ms3 :

(A= — 1 (Ln _ gjm) |

S4 — S22 ¢
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Le lemme 5.B donne alors I'inverse de A sous la forme :

B, B
A-l_ | Bu 12] _
[th Baa

Le bloc By = (SAgg)fl est obtenu immédiatement. Concernant Bis on a :

_ 2)
Biy = —Aj Ay (PAg) T =———2 1 (1, - (’”‘522—52Jm
12 11 A2 (FAs2) 7 (51 — 522) n
[ 52 1 m (n822 — 82) th _ _8_2th
n (84 — S22) ) o
En utilisant ce résultat on obtient pour Bij :

—1 —1 s —1]¢ -1 1 5% t 1 ms%

By = All + |:A11 A12( A22) :| A12A11 = ﬁ + n—¢ I.5L, = ; + n—¢

Il en découle les caractéristiques de dispersion suivantes :
Var (,Z))\Q) = O'2B11 et V (BQ) = O'2B22.

Déterminons enfin la forme explicite des estimateurs 30 et BQ- On a:

Bo | Bu1 B2 Y '
[BQ = |*Byy Boy tDQY donc :

~ 1 ms% ‘ 8240 4 —  S9 /MSo
— (24D y B2 tpy =7 —( LY — L.t D Y).
o <n+ n¢> g DY =Y+ o= @

Si le plan d’expérience est constitué des points z1, ..., z, de R™ alors (||.]]
désignant la norme usuelle de R™) :

Tn'DQY = [|zull” Ya-
u=1
Il en résulte que :
~ J— S — n
Bo=Y + 52 (m32y >zl yu> .
u=1

On obtient de méme pour BQ :

5 82 ' 1 (n822 - sg) .
=L, ('LY)+ — | [,, - ——==J, DgoY
Bo = -2t () + (DY)
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Donc :
~ NSy 1 (n522 — s%)
=Y, +——'DoY — —= =21, (‘I,,)DoY
@ @ S1—s32 O (54— 522) ¢ ( oY)
1 1 = (n522 - 5%) . 2
=—— " 'DoY — = |nsY + ~—F =2 Zull” Yu
S4 — S22 @ ¢ 2 (54 - 522) uZ_l ” ”

D’ou le résultat énoncé dans la proposition B

Proposition 5.4. Soit un plan d’expérience usuel pour un modéle linéaire
d’ordre deuz. En désignant par ||.|| la norme usuelle de R™, la dispersion de
la réponse prédite en x ="' (x1,...,xm) € € est donnée par :

fr)+ <; - 25122> éxf] avec :

S4 — S22

(1  ms3 1 1 $3 — nsag
f(r)—(—+ an))+(__2¢>r2+(2822+¢(84—522)>T4’

r=|z| et ¢ =nss+mn(m—1)s2 —ms3.

VarY (z) = o2

Démonstration. D’apres la proposition 2.7, il vient :

-1

VarY (z) = 02 tg (z) (*XX) g(=)

avec g (x) vecteur de régression construit de maniere identique aux lignes
de X. Ici on a donc (en gardant l'ordre des colonnes de X utilisé pour la
démonstration de la proposition 5.2) :

Vao="(,..an) €E, g(@) = (1,27, 22, T1, e Ty, 2122, ooy T 1T ) -

11 vient alors (en posant ici 02 = 1 pour simplifier) :

. 1 2 1 1 - 53\ —
Var ¥ () _( +m;2> +_Zx%+ (1 n822¢ SQ)ZQE?
n X

i=1

T BPIE W) gt _2;"222_ EOPIT

S
22 i<j z:l

Apres regroupement des termes, on obtient :

o (1  ms3 1 s o 1 _NS22—8§ 4
VarY(x)—( +n¢>+( 2¢>r +54—522<1 5 ;xz
+(L—2m>22z

592 o (54— 822)
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Or, remarquons que :
oo () =St ey
=1 i<j
Il en résulte que :

- (1 — _n522¢— s%) ixf + (i — 2—”822 ) ZZI x

S4 — 522 =1 522 ¢ (84— 522) <]

1 nsae — 53 ) 4 ( 1 ) T 4
— rt4+ | — T;.
(2522 ¢ (54— S22) Sy — So 2829 Z

i=1

D’ou le résultat énoncé B

Proposition 5.6. Soit un plan d’expérience usuel pour un modéle linéaire
d’ordre deux. La variance sphérique moyenne ainsi que les variances
sphériques extrémales sont données par (la fonction f étant toujours celle
de la proposition 5.4) :

DV =a im0+ S (s - e )

m—+2 \ sq4 — S22 2899

Vmin (r) = o2 [f(r) + 1 (; _ L) 7,4] 7

m \ S4 — S22 2522

Vinax () = o2 [ 1)+ (=2 - 5 ) ).

84— S22 2829

2)

Les résultats présentés en 2 sont valables uniquement si s4 < 3S22. Dans le
cas contraire il convient de permuter les réles de Vmin et Vmaz.

Démonstration. Pour la variance sphérique moyenne, il vient (en posant
2 _ 1) .

1 1 "
Vir)y=v r+|——— x| dx
fU ) (84—822 2822)2]
=V (r) f()+< ! ! w/zm
r)=f(r - xrde .
54— 822 2829 U !

Or, la géométrie de U, entraine que :

/ x‘lldz:/ xédz:...:/ zfndz.
U, Uy Ui

Donc :
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/ Zz4dx = WZ/ 4dz = mW/ dz.
Tz 1
La quantité ¥ fU xidz est bien connue puisqu’il s’agit d’un moment sphérique
pur (o4) d’ordre 4 donne par (voir par exemple Giovannitti-Jensen et Myers
[44]) :
3rd
m(m+2)
Il en découle immédiatement la forme de la variance sphérique moyenne
proposée a la relation 1. Concernant maintenant 1’obtention des variances
sphériques extrémales, il s’agit de résoudre le probleme d’optimisation suiv-
ant :

04 =

m
(P) : optimiser VarY (z) sous la contrainte fo =r?
i=1
Comme la fonction f est constante a la surface de toute sphere centrée, le
probléme (P) est donc équivalent & :

1
(P) : optimiser <— 5 )Zx sous la contrainte Zz
522

S4 — S22

Le signe de ’expression prémultipliant la somme peut varier car :

. 1 1
Si S99 < 84 < 3899 alors <— — ) > 0,
84— S22 2822

1 1
si s4 > 3599 alors <— — ) < 0.
84— S22 2820

Placons nous ici dans le cas olt s4 < 3822 (avec saz < s4 puisque le plan utilisé
est & matrice des moments inversible). La fonction & optimiser étant con-
tinue sur un compact atteint bien ses bornes. Celles-ci sont de plus obtenues

immédiatement par le théoréeme des multiplicateurs de Lagrange qui dit que :

1) le maximum vaut 74, il est atteint en 2m points de coordonnées (£, 0, ..., 0),
(0,£7,...,0) ... (0,0, ..., ),

2) le minimum vaut 7*/m, il est atteint en 2™ points de coordonnées de la

forme (£r/\/m,£r//m,...,xr/\/m).

Ces résultats permettent bien d’obtenir les formules explicites de la partie 2.
Si s4 > 3s99 alors le signe de I'expression a optimiser change et il convient
donc de permuter le role des extrema obtenus l
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Proposition 5.8. Tout plan d’expérience composite centré (complet ou frac-
tionnaire) est un plan d’expérience usuel pour un modéle linéaire d’ordre
deuz. Il vérifie de plus (avec ¢ = 0 pour un plan complet) :

S =2M"9 4202 54 =2""942a et 599 =2M7 1

Démonstration. Considérons dans un premier temps la partie factorielle
d’un tel plan, constituée des points (Zu)uzl,...,szq- D’apres les résultats du
chapitre 4 tous les moments impairs d’une tel plan (complet ou obtenu avec
une fraction réguliere de résolution V ou plus) sont nuls jusqu’a ordre 4.
Concernant les moments pairs on a immédiatement, puisque tous les points
ont des coordonnées égales & +1 (avec i,j =1,...,m et i # j) :

2m—a 2m—a 2m—a
2 _ om—gq 4 _ om—gq 2 2 _ om—q
g 2y = 2 , g Zyi = 2 et g ZyiZuj = 2 .
u=1 u=1 u=1

Remarquons maintenant que la partie axiale est constituée par les points,
notés (Zu)u:2m7q+1,...,2qu+2m , de coordonnées (+¢, 0, ...,0), (0, +q,...,0) ...
(0,0,...,£«a). Il en découle que tous les moments impairs jusqu’a lordre 4
d’une telle configuration sont nuls et pour les moments pairs, il vient alors :

2M 94 2m 2M 94 2m 2MT9492m
2 _ 9.2 4 _ o 4 2,2 _
E 2y = 207, E Z,i = 207 et E ZyiZu; = 0.
u=2m=a+41 u=2m=1+1 u=2m=4+1

Le rajout éventuel d’expériences au centre du domaine n’ayant aucun effet sur
les sommes présentées ci-dessus on peut donc conclure, par simple sommation,
que tout plan composite centré est tel que tous ses moments impairs jusqu’a
lordre 4 sont nuls et les moments pairs vérifient :

n

n n
Zzii =271 4 207, Zzﬁl =2""9 420" et Zziizzj =21,

u=1 u=1 u=1

On en déduit bien qu’il s’agit d’un plan d’expérience usuel B
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Plans d’expérience en blocs

6.1 Introduction

Le chapitre précédent a présenté la construction de plans d’expérience adaptés
a lajustement d’une surface de réponse. Le modele utilisé alors est rela-
tivement riche puisqu’il tient compte d’effets linéaires et quadratiques des
facteurs ainsi que d’éventuels effets d’interactions entre couples de facteurs.
Ce modele postule cependant que toutes les observations effectuées sont ho-
mogenes (i.e. le méme modele est utilisé pour toutes les expériences) et ceci
peut s’avérer génant en pratique. En effet, il existe de nombreuses situa-
tions pour lesquelles I'hypothese d’hétérogénéité des observations s’impose
naturellement : production industrielle réalisée a partir de divers arrivages
de matiere premiere, utilisation d’une machine-outil par plusieurs ouvriers,
expériences agronomiques sur plusieurs parcelles situées dans des endroits
différents, etc... Pour s’adapter a ce type de situation il est naturel de re-
grouper les observations en sous-ensembles homogenes, appelés blocs, et de
tenir compte d’un éventuel effet de bloc dans le modele utilisé (dans les ex-
emples précédents les blocs seraient les observations découlant d’un méme
arrivage de matiere premiere, du travail d’'un méme ouvrier ou encore des
mesures effectuées au sein d’'une méme parcelle). Une telle démarche est
d’usage courant, les premiers travaux abordant cette problématique remon-
tent & la fin des années 30 et sont dus & Yates [107] ou [108] dans une optique
d’analyse intra et inter-blocs.

Ce chapitre propose des constructions de plans d’expérience pour effets
de blocs. Pour cela il est nécessaire de généraliser tout d’abord la notion de
plan d’expérience usuel. Ceci permet ensuite de déterminer explicitement bon
nombre d’éléments nécessaires a I’analyse des résultats tels que les estimateurs
des moindres carrés ainsi que leurs dispersions. Des propriétés classiques telles
que l'isovariance sont aussi généralisées au cas des plans en blocs et de nou-
velles propriétés telle que le blocage orthogonal sont présentées. Toutes ces no-
tions sont ensuite appliquées aux plans d’expérience pour surfaces de réponse

W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 203
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_6,
(© Springer-Verlag Berlin Heidelberg 2010
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déja étudiés (composites centrés, Box et Behnken, etc...) afin de définir une
méthode permettant de les partitionner en blocs. La derniere partie de ce
chapitre est consacrée a 1’étude d’un exemple d’application, illustré a ’aide
de programmes SAS.

6.2 Généralités
6.2.1 Modele utilisé

Considérons un plan d’expérience D ={z,,u =1,...,,n} & m facteurs quan-
titatifs décomposé en b blocs et mis en oeuvre sur le domaine expérimental
& C R™ . Un modele polynomial est dit d’ordre deux avec effets de blocs des
lors que lon considere le modele statistique Y (z) = f; (x) + & (x) pour les
réponses associées au bloc I (I = 1,...,b) avec la loi de réponse donnée par la
relation :

Veel, filx)=y+ Zﬁi%‘ + Zﬁuﬂ?? + Z Zﬁij%iﬁj-
i=1 i—1

i<j
Pour un tel modele, on dit que :

v (I=1,...,b) est leffet du bloc I,
Bi (i=1,..,

Bii
Bi;

Ce modele est donc plus complexe que le modele classique pour surfaces de
réponse dans la mesure ou il n'y a plus une seule constante polynomiale (i.e.
leffet moyen général 3y) mais une constante associée a chacun des blocs.
On peut donc considérer ce modele comme une généralisation naturelle
du modele pour surfaces de réponse car ce dernier correspond au cas ou le
plan est considéré comme étant en un seul bloc. Le nombre de parametres
inconnus de ce modele est égal & celui du modele pour surfaces de réponse
diminué de un (puisqu’on a supprimé [y) et augmenté de b (les b effets de
bloc), donc :

.,m) est leffet linéaire du i-éme facteur,

~~ "=

i=1,...,m) est I'effet quadratique du i-eme facteur,

—~

1,7=1,...,m,i < j) est U'effet d’interaction entre les facteurs i et j.

b= Mﬂfl “’:M“’-

L’écriture matricielle de ce modele est :
Y=XB+e=By+ Wt +e.

avec ici X = [B | W] € M (n,p) matrice du modele o B € M (n,b) est la
matrice des indicatrices des blocs (i.e. telle que chacune de ses colonnes est
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associée a un bloc et repere I’absence ou la présence d’expérience au sein du
bloc par, respectivement, les valeurs 0 ou 1) et W € M (n,p — b) est la ma-
trice contenant les effets linéaires, quadratiques et d’interactions considérés.
Donc 'y = (71,72, ..., ) est le vecteur contenant les b effets de bloc et 7 le
vecteur contenant les effets linéaires, quadratiques et d’interaction du modele
(remarquons qu’avec les notations du chapitre précédent on a '8 = (8, i7)).
Désignons dans la suite par k1, ..., ky les tailles des différents blocs, c’est-a-dire
le nombre d’expériences de chacun d’eux (on aura toujours, bien entendu,

Zl ki =mn).

| Exemple |

Considérons un plan factoriel complet pour deux facteurs et supposons
qu’il est décomposé en trois blocs : les deux premieres expériences
(selon lordre de Yates) sont dans le premier bloc, les troisieme et
quatrieme étant respectivement dans les blocs 2 et 3. On a donc b =

3, ky = 2, ks = k3 = 1 et la matrice du modele est donnée par
X =[B|W]ou:
100 —-1-111 1
100 1-111-1
B=1lo1o| "W =11 11121
001 1 111 1

Le modele & effets de blocs est Y = By+ Wr+¢ avec 'y = (71,72, 73)
et '7 = (b1, B2, B11, B2z, B12) . 11 est constitué de p = 8 parametres
inconnus.

Remarque 1. Si un seul bloc est utilisé alors B = I, (i.e. toutes les
expériences sont évidemment dans cet unique bloc) et on retrouve bien la
matrice du modele pour surface de réponse classique.

Remargue 2. On trouve souvent dans la littérature le modele a effets de
blocs écrit sous la forme suivante :

Vezel&, fi(xr)=po+ Zﬁixi + Zﬂiﬂ? + Z Zﬁijxixa‘ +
i=1 i=1

i<j

En d’autres termes 'effet moyen général n’est pas supprimé. Cette convention
n’est pas utilisée ici car elle implique que tout plan est forcément a matrice
des moments non-inversible. En effet, la matrice de ce modele est telle que
la somme de toutes les colonnes de B est toujours égale a I,,, donc elle n’est
jamais de plein rang. C’est pour lever cette singularité structurelle que 'effet
moyen général est systématiquement supprimé par la suite (sinon il faudrait
avoir recours & des contraintes d’identifiabilité afin de pouvoir estimer tous
les parametres).
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6.2.2 Plans d’expérience usuels

La notion de moment des points d’un plan d’expérience a été utilisée a de
multiples reprises dans les chapitres précédents. Maintenant que des config-
urations décomposées en blocs sont utilisées il est nécessaire d’affiner ces in-
dicateurs en considérant des moments par blocs. Désignons dans la suite par
Y bloc 1 1a somme portant sur toutes les expériences z, du bloc . Pour tout
plan d’expérience D ={z,,u = 1, ...,n} décomposé en b blocs de tailles respec-
tives ki, ko, ..., kp on appelle moment par bloc associé au bloc [ = 1,...,b
tout réel obtenu par la relation suivante (avec 1, d9, ..., o € N) :

1
81902 om] — 01 02 Om
[1 2°2..m L_k g 2y B B
U ploc 1

Remarquons que cette définition est naturelle puisqu’elle consiste a dire
qu'un moment du bloc [ est simplement égal au moment classique corre-
spondant obtenu si le plan d’expérience se résume au seul bloc [. Il découle
immédiatement de cette définition que la relation entre moments et moments
par blocs est donnée par :

(17129 mfr] =3

=1

3|

[1012% m®] .

Pour un modele & effets de blocs la matrice des moments généralisée obtenue
a partir de X = [B | W] est donnée par :

‘BB ‘BD ‘BDq 'BD;
‘BB '‘BW| 1 |'DB 'DD 'DDqg 'DD;
‘WB tWW] " n | DB 'DoD 'DgoDg *Dgo Dy

‘DiB 'D;D ‘D;Dq 'DrDy

1
”:_{
n

La structure des blocs DD, *DDg, 'DDy, *Dg Dy ainsi que “D;Dy est con-
nue d’apres les chapitres 3, 4 et 5. Détaillons uniquement la forme des blocs
présentés ci-dessus en gras. Comme B est la matrice des indicatrices des blocs
du plan d’expérience on obtient immédiatement :

tBB = dlag (kﬁl,kg,...,kb),
k[l ka2 -k [mly

tBD — k2 m2 ka2l - ke [m]2

ko 1], ko [2], - ko [,
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i [12], K1 [22], ke [,
tBDQ: k2 [.12]2]“2 [.22}2"']“2 [7.”2]2 7

ko [12], ko [22], - o [,

[ [12]y K1 [13]; ...k [(m = 1) m),
pp, | 1212 213], ke [0 = )m,

|k [12], Ko [13], - ks [(m — 1)m],

La matrice M = (1/n)*X X obtenue lorsque X = [B | W] contient bien & la
fois des moments et des moments par bloc, la qualification de matrice des
moments généralisée et donc adaptée. La forme de la matrice des moments
généralisée étant connue un objectif classique est de chercher des configura-
tions la rendant la plus simple possible. La démarche naturelle consiste a
annuler tous les moments par bloc lorsque cela est possible et & rendre tous
les autres égaux. Ceci conduit a la notion de plan d’expérience usuel :

Définition 6.1. Un plan d’expérience en blocs est qualifié d’usuel si et seule-
ment si il s’agit d’un plan d’expérience usuel pour un modéle linéaire d’ordre
deux vérifiant les conditions supplémentaires suivantes :

1) tous ses moments par bloc impairs jusqu’a l'ordre deux sont nuls :
Vi=1,..,betVi,j=1,...,m aveci#j, [i|,=[ij],=0.
2) tous ses moments par bloc pairs d’ordre deux vérifient :
2 2 2
Vi=1,..,b, [1?],=[2°],= .= [m?],.

En d’autres termes, tous les moments pairs d’ordre deuxr sont égaux au sein
d’un méme bloc. Désignons dans la suite par p; la valeur commune pour
tous ces moments associés au bloc I.

Il résulte de cette définition et des résultats des chapitres précédents
que la matrice des moments généralisée a la forme suivante pour tout plan
d’expérience en blocs usuel :

‘BB 0 ‘{BD, 0

o 1|0 sl 0 0

M= n XX = n 2SDng 0 (54 — 522) I, + so0dm 0
0 0 0 822 (m—1)/2

avec toujours pour tout plan usuel D ={z,,u = 1,...,n} les constantes s3, s22
et s4 définies par (Vi,j =1,..,maveci#j):

n
2 2
52:n[z]:§zm,52 *TL’L] g mu]754—” g g

u=1 u=lu=1
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Les blocs ‘BB ainsi que ‘DgB ont de plus une forme trés simple & manier
lorsque le plan est en blocs usuel.

6.2.3 Inversion de la matrice des moments généralisée

Des conditions algébriques ont été établies dans le chapitre précédent afin
de pouvoir caractériser un plan d’expérience usuel & matrice des moments
inversible pour un modele polynomial classique d’ordre deux. Voici une ex-
tension de ce résultat a la classe des plans d’expérience en blocs. On montre
que pour tout plan en blocs usuel, décomposé en b blocs de tailles k1, ko, ..., ks,
sa matrice des moments généralisée est inversible si et seulement si (la
démonstration est effectuée avec celle de la proposition 6.2) :

b
89 >0, 84 > 899 >0 et 54+(m—1)522—m2klu12>0.
=1

Ces derniers résultats peuvent encore étre interprétés facilement a ’aide, une
nouvelle fois, d’arguments géométriques :

Proposition 6.2. [<(] Soit un plan d’expérience en blocs usuel décomposé en
b blocs de tailles respectives ki, ks, ..., ky. Sa matrice des moments généralisée
est inversible si et seulement si aucune des trois conditions sutvantes n’est
vérifiée :

1) la distribution des points du plan est concentrée sur les azes,

2) tout point du plan a ses coordonnées égales en valeur absolue,

3) chaque bloc est constitué par des points équidistants de 'origine.

6.2.4 Estimations et prédictions

Considérons toujours & partir de maintenant un plan d’expérience usuel en
blocs dont la matrice des moments généralisée est inversible. Un tel plan
permet d’estimer au sens des moindres carrés tous les parametres inconnus
du modele (effets des blocs, linéaires, quadratiques et d’interactions). On a
explicitement :

Proposition 6.3. [<(] Soit un plan d’expérience en blocs D ={zy,u = 1,...,n}
usuel, décomposé en b blocs de tailles respectives ki, ko, ..., ky. Les différents
estimateurs des moindres carrés des paramétres du modéle sont alors
obtenus explicitement par les relations suivantes :
7Bl b n M1
~ ) n =
1)y = : + i <ZszBz/Lz> - Z llzall” Yau
731) =1 u=1

b
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o? mno? i
avec V (7) = dlag( ,k—b> + diag (p1, ..., po) Jp diag (1, -, fip)
2) B tDLY avec V (,B’\L)
82
b
R ) ol s — Y ki | n

3 =——'DoY—— kY +] —= Zu 2Yu L.,

Ba= oy ey =g | ok Vaum + | — 5 | 3 el

-~ 0'2 n b
V(Bo) = —2— I — = (502 =S kg2 | T |,
e ¥ (0) = 5 = (0= ) ]
2
tDY % LA A
4) br = 1Y avec (/5'1) 5 M= 1)/2

avec Y B (l =1,...,b) valeur moyenne des observations associées au bloc l et

b
d=n|s4+ (m—1)8s2 — mZkl,u%] .
=1

Ce résultat permet donc d’affirmer que pour tout plan d’expérience en
blocs usuel la dispersion de lestimateur de effet du bloc I (I = 1,...,b) est
donnée par :

1 mn
Var (7)) = o + —
() ( Tl P Nz)
Concernant maintenant les dispersions des estimateurs des effets linéaires,
quadratiques et d’interactions on a (V 4,5 = 1,...,m avec ¢ # j) :

2 0_2

Var (@) — 7 et Var (ﬁw) = —,

52 522

@)= [ (- o)

Remarquons que cette proposition est une généralisation de la proposition
5.3 relative aux plans d’expérience pour un modele classique d’ordre deux.
En effet si le plan d’expérience est considéré comme étant constitué d’un seul
bloc on retrouve sans peine les résultats de la proposition 5.3 (poser b =1 ,
k1 =n et u; = s2/n).

Considérons maintenant les prédictions réalisées par un tel modele. La
situation est alors plus complexe que dans le cas classique sans bloc car il
n’y a plus maintenant une réponse moyenne prédite au point x € R" mais
b réponses prédites. En désignant par Vi (x) (I = 1,...,b) la réponse moyenne
prédite lorsque le point x du domaine expérimental est supposé associé au
bloc I :
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avec g () € RP vecteur de régression donné pour le modele a effets de blocs
par :

t.g (CE) = (6117 ey 5lb7 L1yeeey Ty (E%, ey :E72n7 L1L2y -ny xm—lxm)
ol d;; est le symbole de Kronecker (i.e. d;; = 1sil = j, d;; = 0 sinon). On
obtient alors le résultat explicite suivant :

Proposition 6.4. [<| Soit un plan d’expérience en blocs usuel, décomposé en
b blocs de tailles ki, ka, ..., ky. En désignant par ||.|| la norme usuelle de R™,
la dispersion de la réponse prédite en un point x =t (x1,...,xy) € € associé
au bloc I =1,...,b est donnée par :

1 1\«
Ji(r)+ <— - E) fo] avec :

S4 — S22 i—1

(1w (L
fl(”‘(kﬁ 5 >+(52 2¢>T2+

VarV; (z) = o

1 n n (Zl ki — 522)] A

2892 @ (54 — $22)

r=lall et p=n

b
Sa+ (m—1) 822 — mZkl,ulQ] .
1=1

Remarque. Durant tout ce chapitre on suppose qu’il est intéressant pour
l'utilisateur d’estimer les divers effets de blocs. Ceci est, par exemple, le
cas lorsque divers matériaux sont testés. Les expériences associées a chaque
matériau sont regroupées dans un méme bloc et l'estimation des effets des
blocs va permettre de comparer la qualités des matériaux testés. Une autre
approche consiste a considérer les effets des blocs comme des étant des ef-
fets de nuisance. Dans ce cas les effets de blocs ont pour role d’enrichir
le modele mais leur estimation n’intéresse pas l'utilisateur. C’est, par ex-
emple, le cas lorsque les blocs regroupent des arrivages de diverses matieres
premieres généralement hétérogenes mais difficilement controlables. Sous cette
hypothese réaliser une prédiction sur la base de la fonction Y, n'a pas vraiment
de sens en pratique puisqu’il va étre impossible de reproduire exactement les
conditions expérimentales du bloc [. Divers auteurs utilisent alors la réponse
prédite moyenne 7 (voir Khuri [54] ou Park et Jang [69]) obtenue & partir de
la moyenne des réponses associées a chacun des blocs :
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6.2.5 Comparaison des effets de blocs

L’analyse d’un modele a effets de blocs peut étre menée de maniere identique
a celle des modeles présentés dans les chapitres précédents. Il est par exemple
encore possible d’évaluer la qualité du modele ajusté a ’aide de la technique
d’analyse de la variance et chacun des parametres peut étre jugé significatif
ou non en utilisant un test d’hypothese le comparant a zéro. On a cependant
maintenant b blocs et il est naturel de se demander si les effets de chaque
couple de blocs sont réellement différents entre eux (i.e. les expériences re-
groupées dans deux blocs sont-elles réellement hétérogenes 7). Pour comparer
les effets des blocs i et j (i, = 1,...,b avec ¢ # j) il faut donc ici tester
I’hypothese suivante :

Hy : 7~ = ;7 contre Hy = H,y.

Utilisons pour cela un résultat classique concernant les hypotheses linéaires
de la forme Hy : 7AB = a” avec A € M (r,p) telle que r = rg (A) (i.e. avec la
dimension de Im A égale au nombre de ses lignes) et a € R”. Il est alors bien
connu (voir, par exemple, 'ouvrage de Searle [88] paragraphe 6 du chapitre
3) que si 'hypothese linéaire considérée est vérifiable (i.e. Ker X C Ker A
avec X matrice du modele) alors elle peut étre testée & I'aide de la statistique
suivante :

t (AB— a) [A ((xx)"t tA} o (AB— a)

T = =
ro?
olt 02 = SSE/(n—p) est l'estimateur sans biais classique de o2 (voir le

paragraphe 2.5.3). La regle de décision est alors donnée par (avec farn—p
fractile de la loi de Fisher & r et (n — p) ddl) :

on rejette Hy au niveau a si t > fo rn—p.
Ceci permet d’obtenir le résultat suivant relatif aux effets de blocs :

Proposition 6.5. [<] Soit un plan d’expérience en blocs usuel, décomposé
en b blocs de tailles respectives ki, ka, ..., ky. Un test de Uhypothese d’égalité
des effets de blocs Hy : "y = ;7 pour i,j = 1,...,b avec © # j contre
Uhypothése Hy = Hy peut étre réalisé o Uaide de la statistique :

~ A2
T — (i =)
e (k2+kj) mn 2
2 (2> J/ - g
o [ 2 -
Ss b
avec 02 = =MSE et p=n S4+(m—l)S22—mZklu12 .
n=pr =1

La régle de décision est alors donnée par (avec fo1n—p fractile de la loi de

Fisher a 1 et (n —p) ddl) :
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on rejette Hy au niveau o si t > fo 1.n—p-

Remarque. Dans le cas particulier ou p; = p; (pour tous les ¢, = 1,...,b
avec { # j) on obtient alors :
kik; 2
T=—o—2 _F-7)".
5 o) )
La statistique de test ne nécessite pas ici de déterminer le coefficient ¢ ce
qui simplifie grandement les calculs. Remarquons enfin que si de plus tous les
blocs sont de méme taille alors T' est encore plus simple puisque dans ce cas :

k
202

noo~ A2
T= (i =) =

~ ~ \2
2%2h (i =7)"

Ces situations sont courantes en pratique car elles correspondent & un blocage
orthogonal du plan (voir la section suivante).

6.3 Plans bloqués orthogonalement

6.3.1 Définition

Lorsque des plans d’expérience en blocs sont utilisés il est naturel de rechercher
une méthode ”optimale” de blocage. Pour cela, un objectif trés intéressant du
point de vue pratique (proposé initialement par Box et Hunter [15]) est le
suivant.

Définition 6.6. Un plan d’expérience en blocs est dit bloqué orthogo-
nalement si et seulement si ses estimateurs des moindres carrés des effets
linéaires, quadratiques et d’interactions sont identiques a ceux obtenus avec le
méme plan d’expérience sans bloc.

Cette définition montre tout l'intérét de ce type de plans d’expérience dans
une démarche séquentielle : il est possible de commencer par ajuster un
modele linéaire classique d’ordre deux et si I’ajustement obtenu s’avere mau-
vais on peut alors Ienrichir par 'ajustement d’un modele a effets de blocs
obtenu tres facilement puisque seuls les effets de blocs sont & déterminer alors
(tous les autres effets restent identiques). Il est possible aussi d’introduire
la problématique du blocage orthogonal dans le cas ou les effets des blocs
sont des parametres de nuisance. Il est alors naturel de rechercher des
plans d’expérience conduisant a des estimateurs des autres effets du modele
indépendants des effets de blocs, sans intérét pour I’étude du phénomene.
L’hypothese de blocage orthogonal se traduit mathématiquement par :
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Proposition 6.7. [<] Soit un plan d’expérience en blocs associé d la matrice
du modéle X = [B | W]. Ce plan d’expérience est bloqué orthogonalement
st et seulement si :

1
tw (In - —Jn> B=0.
n

Cette proposition appliquée a la classe des plans d’expérience usuels donne le
résultat suivant :

Proposition 6.8. [<] Un plan d’expérience en blocs usuel est bloqué or-
thogonalement si et seulement si il vérifie la condition supplémentaire suiv-
ante pour ses moments par bloc d’ordre deux :

52
H1:ﬂ2:---:ﬂb:_-
n
En pratique il est donc tres facile, dans le cas des plans usuels, de traduire la
propriété de blocage orthogonal puisqu’elle ne fait intervenir que les moments
purs d’ordre deux. Remarquons aussi qu’il est suffisant de vérifier que :

H1 = H2 = ... = [

pour en déduire que le plan d’expérience est bien bloqué orthogonalement.
En effet, si ces moments par blocs sont égaux on sait alors d’apres la relation
liant moments et moments par blocs (voir le paragraphe 6.2.2) qu'il vient (V
i=1,..metVI*=1,..b):

) s ky .. s °
=2 =3B 5 e

=1

Remarquons enfin qu’outre le fait de conserver des estimateurs pour les effets
linéaires, quadratiques et d’interaction identiques a ceux du cas sans bloc,
le blocage orthogonal est aussi particulierement intéressant car il entraine
d’importantes simplifications dans ’analyse du modele (reprendre tous les
résultats obtenus précédemment et les simplifier & 1’aide de la proposition 6.8).
On vérifie aussi que les dispersions des différents estimateurs des parametres
du modele restent identiques a celles obtenues avec le modele d’ordre deux
sans bloc.

6.3.2 Reconstruction de I’'information

Lorsque le plan d’expérience est bloqué orthogonalement la plupart des
résultats obtenus sont soit identiques soit tres proches du cas sans bloc. Ceci
permet de reconstruire tres facilement ’estimateur des moindres carrés de

leffet moyen général 3y (absent dans le modele & effets de blocs) & partir
des informations issues de l’analyse du modele en blocs. En effet, d’apres la
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proposition 5.3 du dernier chapitre, il vient pour un modele linéaire d’ordre
deux analysé a ’aide d’un plan usuel :

-~ J— S J— n
Bo=Y + i <m32y >zl yu) .

u=1

Pour un plan d’expérience en blocs usuel bloqué orthogonalement 1’estimateur
des moindres carrés de U'effet du bloc ! (I =1, ...,b) est donné par :

= s - -
Yi=Yp + 32 <m2Y - Z ||Zu||2Yu>

u=1

avec dans les deux cas ¢ = nsy +n (m — 1) sa2 — ms3. 1l en découle que :
Vi=1,..b,B80-9 =Y - Yg.

Cette relation étant vraie pour tous les estimateurs des effets de blocs et
El k1Y gr = nY on en déduit donc le résultat suivant :

Proposition 6.9. Soit un plan d’expérience en blocs usuel et bloqué orthogo-
nalement. L’estimateur des moindres carrés de 1’effet moyen général Gy du
modeéle linéaire d’ordre deux peut alors étre déduit directement des estimateurs
des moindres carrés des effets de blocs par la relation :

b
~ 1

==Y kA
Bo "2 17

Ce résultat montre donc qu’il est tres facile de reconstruire I'estimateur des
moindres carrés de 'effet moyen général Gy puisqu’il est obtenu par simple
calcul d'une moyenne pondérée sur les estimateurs des effets des blocs. En
cas de doute sur '’homogénéité des résultats il est donc conseillé d’utiliser
un plan bloqué orthogonalement quitte a finalement ne pas considérer les
estimateurs des effets des blocs (et & déterminer alors 5y & partir du résultat
de la proposition 6.9) si ceux-ci ne sont pas significativement différents.

6.3.3 Isovariance par transformations orthogonales

Utilisons ici une nouvelle fois la similarité entre ’analyse d’un plan sans
bloc et celle d’un plan bloqué orthogonalement afin de généraliser la notion
d’isovariance. On sait (voir la proposition 5.3) que la dispersion de la réponse
moyenne prédite en un point z € £ est donnée pour tout plan d’expérience
usuel (sans bloc) par :

VarY (z) = o2

f(r)—s-(;_ L )i;&] avec :

54— 822 2822 )
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1 ms%) ( 1 52> ( 1 83 — nsag )
r=(-+—2)+{=—-2—)r*+ + .
fr) (n neg S2 @ 2502 ¢ (54— 522)
On vérifie facilement que pour un plan d’expérience en blocs usuel bloqué

orthogonalement la dispersion de la réponse moyenne prédite en un point
x € € associé au bloc [ =1,...,b est :

5 1 1\«
VarY; (z) = o? r)+ (—— ) ri| avec
@ [fm .

=1

(1 ms3 1 52 1 55 = sz
0= (5+58) (528 (m ot

Comme dans ces deux situations la méme valeur du parametre ¢ est utilisée
(en Poccurence ¢ = nsy +n (m — 1) s22 — ms3) on en déduit alors immédiate-
ment le résultat suivant par simple différence :

Proposition 6.10. Soit un plan d’expérience en blocs usuel et bloqué or-
thognalement. Si Y, (z) désigne la réponse moyenne prédite en un point
x € & associé au bloc I (1 =1,...,b) et Y (x) la réponse moyenne prédite en
ce méme point pour le modele linéaire d’ordre deux alors :

VarV; (z) = VarY (2) + o2 (Lkl> .

nkl
En d’autres termes, lorsque le plan d’expérience est bloqué orthogonalement
la variance de prédiction associée & chacun des blocs est identique a une
constante additive preés a la variance de prédiction du plan sans bloc. Cette
constante étant de plus toujours positive ceci montre que l'introduction de
blocs diminue forcément la qualité de la réponse moyenne prédite par rapport
au cas sans bloc (consulter les articles de Khuri [54] ou bien Park et Jang
[69] pour plus de détails concernant I'impact de la structure des blocs sur la
réponse moyenne prédite). Dans le cas particulier ou tous les blocs sont de
méme taille (i.e. k; = n/b) il existe alors uniquement une seule variance de
prédiction donnée quel que soit le bloc considéré par :

VarV; (z) = Var Y (z) + o (b_Tl> .

La proposition 6.10 permet donc d’étendre la notion d’isovariance au cas des
plans bloqués orthogonalement puisqu’il suffit de réutiliser tous les résultats
obtenus dans le cas sans bloc (voir le paragraphe 5.2.5). On en déduit la
proposition suivante :
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Proposition 6.11. Soit un plan d’expérience en blocs usuel et blogué orthog-
nalement. Ce plan d’expérience est alors isovariant par transformations
orthogonales (i.e. pour tout bloc | = 1, ..., b la dispersion de Y, (z) ne dépend
que de la distance ||x||) si et seulement si :

S4 = 3522.

La dispersion de Y, (V1=1,..,b) est de plus donnée explicitement par :

- - -k
VarY; (r) = VarY (r) + o? (n k l) avec :
nk;

- 1 ms2 1 P 1 52 — nsay
VarYr=o—2[(—+—2)+(——2—>r2+ <1+—2 i,
( ) n TL¢ 52 Qb 2522 d)

r=|z| et & =n(m+2) s — msi.

Remarquons que 1'étude de la propriété d’isovariance a été limitée au cas
des plans bloqués orthogonalement. Cette propriété peut cependant aussi étre
obtenue sans difficulté pour des plans en blocs usuels non bloqués orthogonale-
ment (toujours en posant s4 = 3s92). Si maintenant la propriété d’isovariance
n’est pas vérifiée il est cependant possible de généraliser la notion de graphe
des variances extrémes vue au chapitre 5 (mais la situation est alors plus
complexe car on a maintenant un graphe des variances extrémes par bloc). Le
lecteur souhaitant plus de développements sur ces themes pourra se référer a
Tinsson [100].

6.3.4 Une méthode universelle de blocage orthogonal

Le probleme de la construction de plans d’expérience bloqués orthogonale-
ment est primordial en pratique. Il existe une méthode universelle permettant
d’atteindre facilement cet objectif qui est celle de la réplication de la totalité
des expériences. En effet, soit un plan d’expérience D usuel pour un modele
linéaire d’ordre deux classique selon la définition 5.1. Ce plan d’expérience
peut étre aussi considéré dans sa gobalité comme étant un bloc qui peut étre
répété b fois. Il découle immédiatement d’une telle opération que les moments
obtenus apres b répétitions restent identiques aux moments initiaux, le plan
d’expérience ainsi obtenu est donc bien encore usuel pour le modele d’ordre
deux classique. Concernant maintenant les moments par blocs on peut alors
dire, puisque D est usuel, qu’en particulier tous les moments impairs jusqu’a
I’ordre deux de ce plan sont nuls et tous ses moments pairs d’ordre deux sont
égaux. En d’autres termes :

M1 = U2 = ... = Up.

Ceci permet d’affirmer que :
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Proposition 6.12. Soit un plan d’expérience D usuel pour un modéle linéaire
d’ordre deuz. Le plan d’expérience D' constitué des b blocs D1, ..., Dy obtenus
a la suite de b réplications du plan initial (i.e. V1 =1,...b, D; = D) est
alors un plan d’expérience en blocs usuel bloqué orthogonalement.

Remarquons que cette méthode (parfois implémentée par défaut sur des logi-
ciels de statistique) a pour avantage sa simplicité mais pour principal in-
convénient le fait qu’elle conduit a des plans d’expérience de grande taille
(puisque appliquée & un plan initial en n expériences elle conduit & un plan
en blocs en nb expériences).

Cette méme méthode peut aussi étre appliquée partiellement & partir d’un
des blocs d'un plan d’expérience initial. Considérons un plan d’expérience D
constitué des blocs Dy, ..., Dy, usuel et bloqué orthogonalement. Effectuons
maintenant une réplication d’un des b blocs (supposons, par exemple, que le
nouveau bloc introduit est une duplication du bloc 1, i.e. Dy = Dy). Le fait
de poser Dy+1 = D; entraine immédiatement que les moments impairs pour
ce nouveau bloc jusqu’a 'ordre deux sont nuls et :

H1 = p2 = ... = fbp = Ub+1-

Il faut prendre garde au fait que les constatations faites ci-dessus ne concernent
que les moments jusqu’a 'ordre deux. Le fait de rajouter le bloc D11 peut
poser un probléme car le plan obtenu n’est plus forcément un plan d’expérience
usuel pour un modele d’ordre deux. Pour garder une structure de plan usuel
pour un tel modele il est nécessaire que les moments impairs d’ordre 3 et 4
du bloc dupliqué soient nuls et que tous ses moments pairs d’ordre 4 soient
égaux. Ceci permet alors d’énoncer le résultat suivant :

Proposition 6.13. Soit un plan d’expérience D constitué des blocs D1, ..., Dy
tel que D soit usuel et bloqué orthogonalement. Soit D' le plan d’expérience
obtenu en duplicant un des blocs de D. En d’autres termes, D’ est constitué
des blocs :

Di,y...; Dy, Dpyq et 3i=1,....,b /| Dpy1 = D;.

Le plan d’expérience D' est alors aussi un plan d’expérience en blocs usuel
bloqué orthogonalement si et seulement si le bloc D; constitue un plan
d’expérience usuel pour un modéle linéaire d’ordre deux.

6.4 Exemples de constructions

6.4.1 Plans composites centrés

Conidérons ici un phénomene aléatoire dépendant de m = 3 facteurs. Il est
alors possible d’utiliser, par exemple, un plan composite centré. Un tel plan
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d’expérience est forcément constitué par la partie factorielle complete (23 = 8
points), la partie axiale située & la distance a du centre du domaine (6 points)
et un certain nombre de réplications centrales. On vérifie aisément qu’afin
d’obtenir une structure de plan en blocs usuel il est possible d’utiliser comme
blocs soit la partie factorielle (ou une fraction réguliere de celle-ci), soit la
partie axiale. Voici alors plusieurs plans d’expérience en blocs construits a
partir de cette constatation.

| Configuration 1| Une structure en deux blocs est donnée par :

Bloc 1 : partie factorielle et ny points centraux,
Bloc 2 : partie axiale et ny points centraux.

On vérifie aisément qu’un tel plan est un plan en blocs usuel (voir la défintion
6.1) avec de plus :
202

- 6+TL2.

1 t 2

= —2%e€
8+ n1

| Configuration 2| Une structure en trois blocs est donnée par :

Bloc 1 : fraction réguliere I =123 et ny points centraux,
Bloc 2 : fraction réguliere I = —123 et no points centraux,
Bloc 3 : partie axiale et ng points centraux.

Afin d’obtenir un bloc supplémentaire la partie factorielle a été décomposée
ici en deux fractions régulieres vérifiant les conditions imposées aux plans en
blocs usuels (définition 6.1). Remarquons que d’apres les résultats du chapitre
3 ces conditions (moments impairs jusqu’a ordre deux nuls et moments pairs
d’ordre deux tous égaux) sont bien vérifiées par toute fraction réguliere de
résolution III. On en déduit qu’une telle structure constitue un plan en blocs
usuel avec de plus :

4 4 202

= s = et = .
4+7I1 MQ 4+7I2 ,U/3 6+7’L3

M1

Configuration 3| Une structure en trois blocs est donnée par :

Bloc 1 : partie factorielle et ni points centraux,
Bloc 2 : partie axiale et ng points centraux,
Bloc 3 : partie axiale et ng points centraux.

La technique utilisée ici afin d’obtenir trois blocs consiste simplement a du-
pliquer la partie axiale (ce type de structure ol plusieurs parties axiales
sont utilisées & été proposé initialement par Gardiner et al. [42]). Le plan
d’expérience ainsi obtenu est bien usuel pour un modele linéaire d’ordre deux
et chacun des blocs est bien compatible avec la structure de plan usuel en

blocs avec :
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8 202 ¢ 20
= s = e = .
8+ ny Hz 6 + no Ha 6 + ng

M1

Configuration 4| Une structure en quatre blocs est donnée par :

Bloc 1 : fraction réguliere I =123 et ny points centraux,
Bloc 2 : fraction réguliere I = —123 et no points centraux,
Bloc 3 : partie axiale et ng points centraux,

Bloc 4 : partie axiale et ng points centraux.

Cette structure combine les techniques présentées aux configurations 3 et 4.
Le plan ainsi obtenu est un plan en blocs usuel tel que :

4 4 202 ¢ 202
— , — s = e = .
At P T 0 BT 6 s O T b

H1

Considérons maintenant le probleme du blocage orthogonal en supposant
que 'expérimentateur soit intéressé par la configuration numéro 2. D’apres la
proposition 6.8 le blocage orthogonal est alors obtenu si et seulement si :

12+2TL3
M1 = p2 = p3 < np =ng et a= Trn
+7’L1

On constate donc qu’en fonction du nombre de réplications souhaitées il existe
toujour une valeur du parametre o permettant d’obtenir le blacage orthogonal
(par exemple pour ny = ng = ng =1 il vient o = /14/5 ~ 1.673).

Supposons maintenant que l'utilisateur souhaite travailler avec un plan
composite centré a faces centrées (i.e. avec a = 1). L’égalité p1 = po se
traduit toujours par n; = no et on a de plus :

4 2
44+mny;  6+n3

H1 = U3z <= <:>n1:2(n3+4).

On a donc bien un plan composite centré a faces centrées bloqué orthogonale-
ment des lors que le nombre d’expériences au centre vérifie bien les conditions
déterminées ci-dessus. La configuration de plus petite taille comportant des
expériences au centre est alors telle que : n; = ng = 8 et ng = 0 (donc n = 30).

Supposons enfin que I’on cherche a obtenir un plan d’expérience équiradial.
Il faut alors que a = /m donc les conditions de blocage orthogonal sont
ny =mng et :
4 2m
M1 —Mg@m— 6 + 13 & 2n3 = 3n;.
On en déduit que le plan d’expérience composite centré équiradial et bloqué
orthogonalement de plus petite taille ayant des expériences au centre est donné

par : n; = ng = 2 et ng = 3 (donc n = 21).
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Recherchons maintenant un plan d’expérience qui soit a la fois bloqué
orthogonalement et isovariant. Remarquons tout d’abord qu’il est impossi-
ble d’atteindre simultanément ces deux objectifs en gardant la configuration
numéro 2. En effet, d’aprés les résultats précédents ce plan d’expérience est
bloqué orthogonalement si et seulement si :

" 12+2n3
ny=ngeta=/——.
1 2 4+m

Cependant d’apres la proposition 6.11 I'isovariance est obtenue si et seulement
si: .
1 1
S4 =380 & a = (23)4 = 81,
Ces deux objectifs seront donc atteints simultanément des lors que :
o 4 + ni ’
Il est évidemment impossible de vérifier cette derniere égalité puisque le mem-

bre de gauche est irrationnel.

Afin de pallier ce type de difficulté il est possible de dupliquer la partie
axiale, c’est-a-dire de s’orienter vers la configuration numéro 4. Le blocage
orthogonal est alors obtenu si et seulement si :

12+2n3
M1 =2 =3 =fla N1 =Nz ,N3 =ng et @ = T
+ny

De méme, 'isovariance est obtenue si et seulement si :
1
S4 = 3890 & a0 = 47,
Ces deux objectifs seront donc atteints simultanément des lors que :

124’2713
2=——"--
44+ n

Il est cette fois possible de vérifier cette égalité puisque le membre de gauche
n’est plus maintenant irrationnel. La matrice du plan d’expérience en 4 blocs
est alors la suivante avec les différents blocs séparés par des traits horizontaux
(le plan étant associé aux valeurs ny =ns =2 ,n3=ngs =0et a = \/5) :
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6.4.2 Plans de Box et Benkhen

Il a été montré a la section 5.4 du chapitre précédent que les plans de Box
et Behnken pour m = 3,4,5 et 7 facteurs sont d’analyse aisée puisqu’ils sont
des plans d’expérience usuels pour un modele linéaire d’ordre deux. Etudions
brievement les possibilités de décomposition en blocs.

1) Pour m = 3 facteurs la maniére naturelle de décomposer en trois blocs le
plan de Box et Behnken est donnée ci-dessous (en séparant dans la matrice
du plan chacun des blocs par un trait plein) :

+1£1 0
D=|[£1 0 %1
0 +1+1

Une telle configuration n’est cependant pas un plan en blocs usuel car elle ne
vérifie pas la condition d’égalité de tous les moments par blocs pairs d’ordre
deux (en effet on a, par exemple, [17] = [22] | = 1 mais 32] L =0).
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2) Pour m = 4 facteurs il existe un plan d’expérience de Box et Behnken
isovariant. Il est possible de le décomposer naturellement en trois blocs donnés
ci-dessous :

£1£1 0 0]
0 0 4141
1 0 0 +1
0 £1£1 0
1 0 £1 0
0 £1 0 +1|

Cette structure est bien celle d'un plan d’expérience en blocs usuel.
Utilisée sous cette forme elle conduit cependant & un plan d’expérience a
matrice des moments généralisée non-inversible (puisque tous les blocs sont
constitués de points équidistants de l'origine). On peut donc considérer, de
maniere plus générale, la configuration suivante :

Bloc 1 :(+1,4£1,0,0)U(0,0,+1,41) et ny points centraux,
Bloc 2 : (+1,0,0,+1)U (0,+1,+1,0) et ng points centraux,
Bloc 3 : (+1,0,4+1,0)U (0,+1,0,+1) et ng points centraux.

Le blocage orthogonal est alors obtenu si et seulement si :

o 4 _ 4 _ 4
8+ n1 - 8 4+ no _8+n3

H1 = p2 = H3 < N1 =MN2 =N3.

Le plan de plus petite taille isovariant et bloqué orthogonalement ainsi
obtenu est donc constitué par un total de 27 expériences (9 par bloc). Il
constitue une alternative au plan composite centré en trois blocs tout en
présentant le méme colit pour sa mise en oeuvre puisque ces deux plans ont
un nombre d’expériences identique (leur grande similarité vient du fait qu’ici le
plan de Box et Behnken est obtenu par une simple rotation du plan composite
centré comme cela a été prouvé dans 'annexe B de ’article de Box et Behnken

[10]).

3) Pour m = 5 facteurs il est possible de considérer le plan de Box et Behnken
décomposé selon les deux blocs suivants :

[£14+1 0 0 0 ]
0 0 £141 0
0 £1 0 0 +1
+1 0 +£1 0 0
0 0 0 +1=+1
0 £1+1 0 0
+10 0 £1 0
0 0 +1 0 +1
+1 0 0 0 =41
| 0 £1 0 0 +1]
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Un tel plan n’est pas isovariant mais on vérifie aisément que sa structure est
bien celle d’'un plan en blocs usuel. En considérant que n; expériences cen-
trales sont ajoutées au premier bloc et no au second, le blocage orthogonal
se traduit alors par :

4 4
204+n; 204 ny

H1 = H2 = S Ny = Na.
Le plan régulier de plus petite taille ainsi obtenu est donc constitué par un
total de 42 expériences.

4) Pour m = 7 facteurs il existe un plan de Box et Behnken isovariant par
transformations orthogonales donné par :

[0 0 0 +1+1+1 0]
+10 0 0 0 +1+1
0 £1 0 0 +1 0 +I
D=|41+10 £10 0 0
0 0 £1+1 0 0 +I
+1 0 41 0 £1 0 0
| 0 1410 0 £1 0 |

Il n’existe pas dans ce cas de décomposition en blocs telle que le plan obtenu
soit en blocs usuel (la matrice D ci-dessus est constituée par trois blocs de
tailles k1 = ko = 16 et k3 = 24 mais 'analyse d’un tel plan ne peut pas étre
menée & partir des propriétés des plans en blocs usuels).

6.4.3 Plans hybrides

Il a été montré a la section 5.6 du chapitre précédent que, pour m = 6 fac-
teurs, le plan hybride de Roquemore 628A est particulerement intéressant
dans la mesure ou il est un plan usuel, isovariant par transformations or-
thogonales et de trés petite taille (28 expériences) puisque saturé pour un
modele linéaire d’ordre deux. Une décomposition en deux blocs lui donnant
une structure de plan en blocs usuel n’étant pas réalisable il est cependant pos-
sible d’utiliser deux blocs tels que chacun d’eux soit un plan hybride 628 A.
Ceci assure immédiatement une structure de plan en blocs usuel isovariant
et bloqué orthogonalement d’apres la proposition 6.12 tout en gardant
une taille relativement correcte (n = 56). Le nombre total d’expériences est
plus intéressant que pour un plan composite centré classique (o n = 72).
Remarquons que la méthode présentée ici n’entraine pas forcément une dupli-
cation a l'identique du plan hybride 628 A. En effet, la matrice d'un tel plan
est obtenue en rajoutant une colonne judicieuseusement choisie a la matrice
d’un plan composite centré fractionnaire a 5 facteurs. Cette colonne concerne
le facteur 6 pour la matrice de ce plan présentée au paragraphe 5.6.2 mais
il est possible de D'affecter & deux facteurs différents pour chacun des deux
blocs.
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6.5 Exemple d’application

Considérons une entreprise cherchant a expliquer et modéliser le taux de corro-
sion de différents matériaux. L’objectif final est naturellement de sélectionner
a la fois le matériau et les conditions expérimentales susceptibles de minimiser
ce taux. La corrosion semble étre liée principalement & quatre facteurs qui sont
: la concentration de gaz acide, la température, la pression de gaz acide et en-
fin la durée d’application d’un additif censé protéger le matériau. L’entreprise
souhaite tester de plus trois matériaux différents (désignés par A, B et C).

Minimum | Mazimum
Concentration (en %) 0 10
Température (en °C') 20 80
Pression (en atm) 2 6
Durée (en jours) 5 15
(-1 -1 0 0]

1-1 0 0

-1 1 0 O

1 1 0 0

0 0-1-1

0 0 1-1

0 0-1 1

0 0 1 1

0 0 0 O

-1 0 0-1

1 0 0-1

-1 0 0 1

1 0 0 1

D= 0-1-1 0

0 1-1 0

0-1 1 0

0 1 1 0

0 0 0 0

-1 0-1 0

1 0-1 0

-1 0 1 0

1 01 0

0-1 0-1

0 1 0-1

0-1 0 1

01 0 1

0 0 0 0

La corrosion obtenue est quantifiée par la perte de masse de 1’échantillon
en mg (tous les échantillons étant de méme surface donc comparables). Les
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diverses plages d’utilisation pour les facteurs ainsi que leurs unités de mesure
sont résumées dans le premier tableau. Divers plans d’expérience utilisables
ici ont été présentés durant ce chapitre. On peut par exemple s’orienter (vu
qu’il y a trois matériaux différents a considérer) vers un plan d’expérience de
Box et Behnken décomposé naturellement en trois blocs. En d’autres termes
les n = 27 expériences a réaliser sont données par la matrice D du plan.
Le tableau suivant est cette fois le protocole expérimental c’est-a-dire la liste
des expériences a réaliser exprimées avec leurs unités initiales. Le vecteur Y
contenant les réponses mesurées (donc les différentes pertes de masses) est
donné parallelement. Afin de repérer les blocs une colonne (dénommée Mat.)
est affectée au type de matériau choisi avec les différentes modalités notées
A, B ou C. Une telle écriture montre qu’un plan d’expérience en blocs peut
aussi étre vu comme une structure permettant de tenir compte a la fois de
m facteurs quantitatifs et d’'un facteur qualitatif associé aux différents
blocs (le type de matériau ici).

Mat. | Con. | Tem. | Pre. | Dur. Y
Exp 1 A 0 20 4 10 18.8
Exp 2 A 10 20 4 10 18.1
Ezxp 3 A 0 80 4 10 19.7
Exp 4 A 10 80 4 10 24.4
Exp 5 A 5 50 2 5 22.1
Ezxp 6 A 5 50 6 5 22.7
Exp 7 A 5 50 2 15 23.3
Exp 8 A 5 50 6 15 24.2
Exp 9 A 5 50 4 10 21.0
Exp 10| B 0 50 4 5 24.1
Ezxp 11 B 10 50 4 5 16.2
Exp 12| B 0 50 4 15 16.7
Exp 13| B 10 50 4 15 27.9
Exp 14| B 5 20 2 10 19.4
Exp 15| B 5 80 2 10 22.2
Exp 16| B 5 20 6 10 20.1
Exp 17| B 5 80 6 10 24.9
Exp 18| B 5 50 4 10 20.2
Exp 19| C 0 50 2 10 13.9
Exp 20| C 10 50 2 10 15.0
Ezp 21 C 0 50 6 10 14.2
Exp 22| C 10 50 6 10 16.4
Exp 23| C 5 20 4 5 13.2
Exp 24| C 5 80 4 5 21.7
Exp 25| C 5 20 4 15 19.2
Exp 26| C 5 80 4 15 18.3
Exp 27| C 5 50 4 10 14.8
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Voici un programme SAS permettant de rentrer toutes ces données. La ta-
ble ”donnees” contient ici d’une part la matrice des indicatrices des blocs
(colonnes b1, b2 et b3) et d’autre part la matrice du plan (effets linéaires con,
tem, pre et dur). Tout comme au chapitre 4 les colonnes des effets quadratiques
et des effets d’interaction sont ensuite créées automatiquement (la notation
”con2” désignant 'effet quadratique de la concentration alors que la notation
"tempre” désigne Ueffet d’interaction entre la température et la pression).

Data Donnees;
Input bl b2 b3 con tem pre dur y;
con2 = con*con; tem2 = temx*tem;
pre2 = prexpre; dur2 = dur*dur;
contem = con*tem; conpre = con*pre; condur = conxdur;
tempre = tem*pre; temdur = tem*dur;

predur = prexdur;

Cards;

1 0 0-1.0-1.0 0.0 0.0 18.8
1 0 0 1.0-1.0 0.0 0.0 18.1
expérience i et réponse i
0 0 1 0.0 1.0 0.0 1.0 18.3
0 0 1 0.0 0.0 0.0 0.0 14.8

Run;

Avant de débuter I’analyse vérifions au préalable qu'un modele a effets
de blocs est bien nécessaire dans cette situation. Ajustons alors un modele
linéaire d’ordre deux (i.e. négligeons leffet éventuel du matériau). Selon les
techniques vues au chapitre précédent, I’analyse de la variance entraine que :

SST = 386.08 et SSE = 160.75 donc R? ~ 0.584.

Ce résultat montre donc clairement qu'un tel modeéle est mal ajusté au
phénomene étudié. Un effet dii au matériau est donc peut étre a considérer.
Ceci est de plus confirmé par la représentation graphique des résidus (i.e. des
valeurs Y — Y calculées en chacun des points expérimentaux) donnée a la
figure 6.1 (source : Nemrod). On constate que le nuage de points obtenu n’est
pas homogene puisqu’il est constitué par deux ensembles clairement séparés.
Un premier ensemble est formé par 9 résidus, tous clairement négatifs, il s’agit
en fait de tous les résidus associés au bloc C. L’autre ensemble de points re-
groupe cette fois tous les résidus, clairement positifs, associés aux blocs A
et B. Ceci montre donc que le modele utilisé sous-estime la réponse sur
le bloc C et par contre la sur-estime sur les blocs A et B d’ou l'intérét
évident d’introduire ici trois effets de blocs. Remarquons qu’un tel graphique
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peut étre aussi obtenu facilement avec SAS en récupérant le vecteur Y des
réponses moyennes prédites par le modele a ’aide de 'option "clm” de la
procédure REG (voir I'analyse de 'exemple a la fin du chapitre 3).

Résidus
® ®
o ° e o® ©0° °
)
1241 @ ° ® s
Y Calculé
0.00 1= : - - :
1479 17.06 19.32 21.58 23.85
-1.24
—2.48 1
)
~3.721 s ® °

Fig. 6.1. Résidus obtenus avec un modele sans blocs.

La mise en oeuvre d’'un modele linéaire a effets de blocs permet d’obtenir
maintenant le tableau d’analyse de la variance suivant :

Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 16 | 384.50 24.03 152.33 | 0.0001 ***
Erreur 10 1.58 0.16
Total 26 | 386.08

Ces résultats proviennent de la procédure SAS donnée ci-dessous :

Proc Reg data=Donnees;
Model y = bl b2 b3 con tem pre dur
con2 tem 2 pre2 dur2
contem conpre condur
tempre temdur predur / noint;
Run;

Cette procédure de régression a déja été utilisée dans les chapitres 3 et 4.
L’option ”noint” (no intercept) est ajoutée ici afin d’indiquer au logiciel de ne
pas introduire 'effet moyen général 3y. On constate donc que l'introduction
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d’effets de blocs donne un modele d’excellente qualité puisque (valeur ”R-
Square” de la sortie SAS) :

E
RZ=1- % ~ (0.996.

Un estimateur sans biais de la variance des résidus est alors (valeur ”Root
MSE” de la sortie SAS) :

62 = MSE = 0.158 (donc & ~ 0.397).

Prenons garde au fait que, contrairement au cas sans blocs, il n’est pas possible
ici de décomposer plus finement la somme des carrées due a ’erreur. En effet,
trois expériences ont bien été réalisées au centre du domaine expérimental
mais il ne s’agit pas d’expériences répétées puisqu’a chaque fois le matériau
est différent.

Il est maintenant possible d’obtenir facilement les différents estimateurs
des moindres carrés des parametres du modele par le biais des caractéristiques
du plan d’expérience utilisé. Concernant les différentes tailles, 27 expériences
ont été réalisées et le plan est décomposé en trois blocs de méme taille donc :

n:27, m:4, b:3, k1:k2:k3:9.
Les moments et moments par blocs de ce plan en blocs usuel sont de plus :

52:12754:127522:4

= ¢=T2.
p1 = p2 = pz =4/9 } ¢

On retrouve bien par le biais de ces divers moments que le plan d’expérience
utilisé est a la fois isovariant par transformations orthogonales (s4 = 3s22) et
bloqué orthogonalement (u1 = o = pg). Les estimateurs des moindres carrés
des parametres du modele peuvent étre obtenus explicitement par la proposi-
tion 6.3. Tous ces résultats sont résumés dans le tableau donné ci-dessous. On
remarquera (voir le paragraphe 6.3.1) que le blocage orthogonal entraine ici
que les estimateurs des effets linéaires, quadratiques et d’interactions (ainsi
que leurs dispersions) sont identiques & ceux obtenus avec un modele d’ordre
deux sans bloc. Les résultats du paragraphe 6.3.2 permettent de plus d’affirmer
que si le modele d’ordre deux sans blocs avait été utilisé on aurait eu alors :

3
1
2D =18.6T.
=1

Le tableau suivant donne les valeurs de tous les parametres estimés du modele,
leurs dispersions ainsi que les statistiques de test. Ces résultats proviennent de
la deuxieéme partie de la sortie SAS de la procédure REG (”Résultats estimés
des parametres”).

b

Bo = %Zkﬁz

=1
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Param. | Estimat. | Ec. type | St. Test Proba.
" 20.53 0.254 80.96 [ 0.0001 ***
72 20.24 0.254 79.82 | 0.0001 ***
73 15.24 0.254 60.10 | 0.0001 ***
2 0.833 0.115 7.70 [ 0.0001 ***
B 1.867 0.115 16.28 | 0.0001 ***
B3 0.550 0.115 4.80 | 0.0007 ***
B4 0.800 0.115 6.98 [ 0.0001 ***
P11 —1.021 0.172 | —5.94 | 0.0001 ***
B2z 0.804 0.172 4.68 | 0.0009 ***
B33 0.604 0.172 3.51 | 0.0056 **°
Ba4 2.004 0.172 11.65 | 0.0001 ***
P12 1.350 0.199 6.80 | 0.0001 ***
B3 0.275 0.199 1.38 [ 0.1962 °°°
B4 4.775 0.199 3.63 | 0.0001 ***
23 0.500 0.199 24.04 | 0.0305 *°°
Ba4 —2.350 0.199 2.52 [ 0.0001 ***
B34 0.075 0.199 0.38 | 0.7136 °°°

On déduit de ce tableau que la meilleure réponse moyenne prédite au sens
des moindres carrés (associée au bloc | = 1,2, 3) est donnée par :

~

Y, (z) =7, + 0.83321 + 1.867x2 + 0.55023 + 0.800z4 — 1.02122 + 0.80423
+0.604z§ + 2.00450421 + 1.350x122 + 0.275x123 + 4.775x 124
+0.500x023 — 2.350x9x4 + 0.0752324.

Les coeffficients 313 et surtout (34 ne sont pas significativement différents de
zéro. L’utilisateur souhaitant simplifier le modele peut donc omettre ces deux
quantités (il vient alors R? = 0.993 ce qui confirme que le modele reste de
bonne qualité méme apres ces simplifications).

Concernant maintenant les effets de blocs il est naturel de se demander s’ils
sont significativement différents. On utilise pour cela les résultats du para-
graphe 6.2.5 afin de réaliser un test de I’hypothese ”"v; = «;”. Ceci conduit
donc a réaliser les trois tests d’hypothese donnés ci-dessous :

St. Test Proba.
Hypothese 7y, = 72” 2.395 | 0.1535 °°°
Hypothese 7y, = 73" 797.0 | 0.0001 **°
Hypothese 7o = ~3” 712.0 | 0.0001 °*°*

On en déduit qu’il est possible d’affirmer tres clairement que ’effet du bloc 3
(i.e. du matériau C) est différent des deux autres et on peut aussi remarquer,
d’apres les valeurs des parametres estimés, que 'utilisation de ce matériau
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induit une forte diminution de la réponse moyenne prédite par rapport aux
matériaux A ou B. Par contre il n’est pas possible de rejeter significativement
I’hypothese "y, = 2" c’est-a-dire qu’il n’est pas possible d’affirmer clairement
que les effets des matériaux A et B sont vraiment différents (sinon le risque
d’erreur associé est de l'ordre de 15%).

Une fois le matériau sélectionné il est donc possible de réaliser des
prédictions au sein du domaine expérimental a ’aide du meilleur modele ajusté
présenté ci-dessus. Concernant la qualité des prédictions il a été montré qu’il
est possible de 'obtenir de maniere tres simple puisque le plan d’expérience
est isovariant et bloqué orthogonalement (il suffit donc de rajouter une con-
stante additive & la variance de prédiction du modele sans bloc). Remarquons
de plus qu’ici les trois blocs utilisés sont de méme taille donc (voir la proposi-
tion 6.10) les dispersions associées & chacun des blocs sont égales. D’apres la
proposition 6.11 la dispersion de la réponse moyenne prédite dans le cas sans

1

bloc est donnée explicitement par :
. 1 3
VarY (r) =02 [ = — =r2 + —r).
(r)=o (3 FUERENTS
On en déduit que la dispersion de la réponse moyenne prédite associée a
chacun des blocs est obtenue en rajoutant simplement la constante :

b—1 2
2 (071 _ 2 2
() = 5o

En conclusion on a donc :

. 11 1 3
Vi=1,..,b, VarY;(r) = o2 (§—1r2+1—6r4>.

En remplacant o2 par lestimation 2 = 0.158 on obtient donc la

représentation graphique donnée a la figure 6.2. Cette figure montre que la
qualité des prédictions réalisées est optimale lorsqu’on se situe a une distance
du centre du domaine expérimental de l'ordre de 0.8 unité. Les dispersions
associées a des points proches du centre du domaine sont par contre moins
bonnes (ceci pourrait une nouvelle fois étre amélioré par ajout d’expériences
centrales supplémentaires) et les plus mauvais résultats sont obtenus aux lim-
ites du domaine expérimental (considéré ici comme étant une boule centrée de
rayon v/2 puisque les expériences du plan de Box et Behnken les plus éloignées
du centre sont & cette distance 1a de l'origine).
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0.114
0.1
0.09
0.08-
Var |
0.07-
0.06-

0.05-

004\\\\\\\

0 0.2 0.4 06 . 08 1 1.2 1.4

Fig. 6.2. Graphe de VarY] en fonction de r (1=1,2,3).

Il est maintenant possible de conclure cette étude par la détermination des
conditions optimales (c’est-a-dire associées a un taux de corrosion le plus faible
possible). Le probleme mathématique consiste donc & déterminer le minimum
de 'application ?3 au sein du domaine expérimental choisi (la boule centrée
de rayon v/2) puisque le matériau C' (associé aux expériences du bloc 3) s’est
avéré étre clairement celui qui résiste le mieux a la corrosion. Il convient
cependant d’étre trés prudent ici dans la recherche de cet extremum. En effet
on vérifie facilement que les 4 dérivées partielles de Y3 s’annulent bien en
un point du domaine expérimental mais une analyse plus fine montre que ce
point n’est ni un maximum ni un minimum puisqu’il s’agit en fait d’'un point
selle (voir des ouvrages généraux sur les problemes d’optimisation, tel que
Ciarlet [18], pour plus d’informations). Ceci nous amene donc a une recherche
d’extrema sous containte (la contrainte étant ici de rester dans le domaine
expérimental donc mathématiquement ‘zz < 2). En utilisant des techniques
du type multiplicateurs de Lagrange on montre que le minimum cherché est
obtenu aux limites du domaine expérimental (i.e. & la surface de la sphere
centrée de rayon v/2) et correspond au point (en coordonnées codées) :

x1 = 0.997, 9 = —0.675, z3 = —0.063 et z4 = —0.738.

On vérifie alors aisément que la réponse moyenne prédite par le modele en ce
point est (avec son écart-type associé entre parentheses) :

)A/min = 9.05 (0.32).



232 6 Plans d’expérience en blocs

| Conclusion

Les résultats obtenus précédemment permettent d’affirmer que :

1) Le phénomene étudié ici nécessite bien 'utilisation d’un modele polyno-
mial du second degré car tous les effets quadratiques du modele complet sont
significativement différents de zéro. Il en va de méme pour la plupart des
interactions car, mis & part les interactions concentration/pression et pres-
sion/durée, toutes les autres sont clairement non-négligeables.

2) Concernant les différents matériaux testés, U'introduction d’effets de blocs
permet d’arriver a la conclusion que le matériau C résiste bien mieux a la
corrosion puisque leffet qui lui est associé est inférieur de quasiment 5 unités
aux effets des matériaux A et B. Les expériences réalisées n’ont par contre pas
permis de déceler clairement un comportement réellement différent vis-a-vis
de la corrosion en ce qui concerne les matériaux A et B.

3) L’analyse du modele ajusté permet de proposer les conditions expérimen-
tales suivantes (avec les unités initiales) dans le but de minimiser la réponse,
c’est-a-dire le taux de corrosion :

Facteur Niveau

Matériau C
Concentration 9.98 %
Température 29.7 °C
Pression 3.9 atm
Durée 6.31 jours

D’apres le modele utilisé, la réponse moyenne prédite en ce point est alors
égale au taux de corrosion moyen suivant :

9.05.

II convient, une nouvelle fois, de se placer dans les conditions expérimentales
proposées ci-dessus afin de voir si la réalité correspond bien aux prédictions
du modele.

6.6 Résumé
En conclusion, les divers plans d’expérience présentés dans ce chapitre sont :

1) les plans composites centrés de type CCD (2™, a,np) ou bien encore
CCD (277, a,ng) lorsqu’il est possible de réduire la taille de la partie fac-
torielle. Les blocs sont alors obtenus a partir de la partie factorielle, d’une
fraction de résolution III de celle-ci ou encore de la partie axiale.
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2) les plans de Box et Benhken simples, obtenus & partir d’'un BIBD(m, b, k,
r, A). Les blocs sont alors obtenus & partir d’une partition de ce plan (voir les
exemples du paragraphe 6.4.2).

3) les plans hybrides. Les blocs sont alors obtenus par répétition du plan.

Trois tableaux sont présentés ci-dessous. Ils résument les différentes config-
urations possibles de plans bloqués orthogonalement pour les situations
classiques ou le nombre b de blocs est égal a 2, 3 ou 4. La taille relative de
chaque plan figure entre parentheses. Il s’agit de sa taille ramenée au nombre
de parameétres inconnus du modele donc :

2n
b= ———.
m(m+ 3) + 2b
2 BLOCS | p CcCcD Box-Behn. | Hybride
10 (1.43)
2 facteurs | 7 1SO X X
B=
24 (2.18) 22 (2.00)
3 facteurs | 11 1SO X
27 (1.69)
4 facteurs | 16 X X
30 (1.36) 42 (1.91)
5 facteurs | 22 X
B=
72 (2.48) 56 (1.93)
6 facteurs | 29 150 X 1SO
80 (2.16)
7 facteurs | 37 X X
85 (1.85)
8 facteurs | 46 150 X X
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3 BLOCS | p CcCcD Box-Behn. | Hybride
20 (2.50)
2 facteurs | 8 150 X X
24 (2.00) 33 (2.75)
3 facteurs | 12 X
B=
27 (1.59) 27 (1.59)
4 facteurs | 17 X
60 (2.61)
5 facteurs | 23 1SO X X
72 (2.40) 84 (2.80)
6 facteurs | 30 150 X
80 (2.11)
7 facteurs | 38 X X
85 (1.81)
8 facteurs | 47 150 X X
4 BLOCS | p CCD Box-Behn. | Hybride
20 (2.22)
2 facteurs | 9 1S0O X X
24 (1.85) 44 (3.38)
3 facteurs | 13 1SO X
54 (3.00)
4 facteurs | 18 X X
84 (3.50)
60 (2.50)
5 facteurs | 24 X
—
112 (3.61
6 facteurs | 31 2 232) X ey
—
96 (2.46)
7 facteurs | 39 150 X X
102 (2.13)
8 facteurs | 48 150 X X
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On utilise les conventions suivantes pour chaque plan :

le symbole désigne les configurations en blocs de méme taille,

le symbole désigne les configurations isovariantes par trans-
formations orthogonales ou pouvant ’étre par un choix adéquat du
parametre o pour des plans composites centrés (ces différentes valeurs
sont données dans le dernier tableau de ce paragraphe).

On donne ici le nombre minimal d’expériences a réaliser pour que le plan
obtenu soit & matrice des moments généralisée inversible (tout en étant iso-
variant si cela est possible). Ces tableaux montrent tout I'intérét de la classe
des plans composites centrés, facilement décomposables en blocs, et permet-
tant d’obtenir bon nombre de propriétés en jouant sur la distance des points
axiaux au centre du domaine.

Le tableau suivant détaille alors ces différents types de constructions.
Les plans composites centrés présentés sont isovariants et bloqués orthog-
onalement pour un nombre de facteurs compris entre m = 2 et m =
8 (voir le paragraphe 6.4.1 pour un exemple de telle construction). La
premiere colonne du tableau est le nombre de facteurs considérés. La sec-
onde est la valeur du parametre « (distance des points axiaux au centre
du domaine) permettant d’obtenir 'isovariance. La troisieéme colonne est le
nombre total n d’expériences a réaliser. On donne encore ici le nombre min-
imal d’expériences a réaliser tout en prenant garde au fait que les plans pro-
posés soient & matrice des moments généralisée inversible (voir la proposition
6.2).Comme précedemment, le symbole est utilisé pour désigner les con-
figurations composées de blocs de méme taille. Pour les quatre dernieres
colonnes détaillant le type de bloc la terminologie suivante et utilisée :

2777 © désigne une fraction réguliere de la partie factorielle,

P A désigne la partie axiale,

P A2 désigne la partie axiale dupliquée.

Le nombre d’expériences a réaliser pour chacun des blocs figure aussi entre
crochets.

En ce qui concerne le détail des constructions proposées ici remarquons que
la méthode générale du foldover introduite initialement par Box et Hunter
[13] est parfois utilisable. En effet a partir d’une fraction réguliere de type
271" (voir la définition 5.12 pour ce type de fractions) le plan d’expérience

de matrice :
D
-D
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est toujours une fraction réguliere de type 2{;
de synthese de Draper et Lin [33]). Cette méthode permet donc ici de constru-
ire deux blocs usuels (puisque définis par une fraction réguliere de résolution
ITT*) tels que leur union constitue bien un plan d’expérience usuel (puisque
défini par une fraction réguliere de résolution supérieure & V). Ceci permet,
par exemple, d’obtenir la configuration en trois blocs pour m = 6 facteurs

présentée dans le tableau ci-dessus.

(p—1) (

voir par exemple 'article

| m | « | n | Bloc 1 | Bloc 2 | Bloc 3 | Bloc 4
1.414 | 10 [s= | 22 5] PA 5 x X
211.414 | 20 22 [5] 22 5]  PA2 [0 X
1.414 | 20 [s= | 22 5] 22 ] PA [5 PA [5
1.414 | 24 [s= 23 21| PA2 119 X X
31414 24 2250 1| 23t 6| PA2 2 X
1414 | 24 [o= ] 237" @] 25" w@| PA [g| PA [
2.000 | 27 24 [13) PA (9] X X
412000 | 27 [5=] 25" 0] 2% [ PA 9 X
2.000 | 54 200 nsl| 24yt o) PA (9] PA (9]
2.000 | 30 257" 20 PA [10] X X
52.000| 60 [5= 25 ol 257! 20| PA2 [20 X
2.000 | 60 22,_1 [20] 22,_1 [20] PA [10] PA [10]
2.000 | 72 2971 g)|  PA2 24 X X
62000 | 72 [B= 2052 2| 2057 pa)|  PA2 24 X
2.000 | 72 2?1_12 [24] 2?1_12 [24) PA 12 PA [12]
2.828 | 80 20" 64]]  PA g X X
7|2.828| 80 2[p° 32| 2{p% 32| PAnqe X
2.828 | 96 2171_12 [32] 2171_12 [32] PA [16] PA [16]
2.828 | 85 2572 (e8] PA 17] X X
82828 | 85 205% 3| 287 34 PA 17] X
2.828 | 102 287% eyl 2852 134 PA 7 PA 17
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6.7 (Compléments) Démonstrations

Proposition 6.2. Soit un plan d’expérience en blocs usuel décomposé en b
blocs de tailles respectives ki, ko, ..., ky. Sa matrice des moments généralisée
est inversible si et seulement si aucune des trois conditions sutvantes n’est
vérifiée :

1) la distribution des points du plan est concentrée sur les azes,

2) tout point du plan a ses coordonnées égales en valeur absolue,

3) chaque bloc est constitué par des points équidistants de 'origine.

Démonstration. Ecrivons le vecteur des parametres inconnus du modele
dans l'ordre suivant :

(‘v 1'7) = (v "Ba | *Br | *Br) -
La matrice des moments généralisée est dans ce cas diagonale par blocs

puisque :
‘XX = dlag (A; solim, 822‘[m(m71)/2)

avec :
‘BB 'BDq

A =
tDQB (54 - 522) Im + 522Jm

D’apres les propriétés des déterminants, on a donc :
m(m—1)
Det ("X X) =s5"s5, = Det(A).

Concernant le déterminant du bloc A, on a d’apres le lemme 5.8 (en posant
Aoz = (54— 822) Im + 522Jm)

Det (A) = Det (*BB) Det (*Azz) .
Le complément de Schur de Ay est donné par :
*Ago = (54— $22) L + 822Jm — "D B ("BB) ™' 'BDyq.
Or, on sait que pour tout plan usuel :
tBDQ = diag (k1p1, -, kotiv) Jom
11 vient alors (puisque ! BB = diag (k1, ..., kp)) :

'BDq (‘BB) ' 'DoB
= me diag (k}l,ul, ceey kb,ub) (tBB)il diag (klul, . kb,ub) me

= L'Ty diag (k17 -, ki) 'Ly <Z/~wl)
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On en déduit que le complément de Schur de Ags est :

b
%Ago = (84 — S22) I, + <522 — Zhu?) JIm

=1

Il s’agit donc d’une matrice completement symétrique dont le déterminant est
facilement obtenu par utilisation du lemme 5.B :

Det (X X) =

m(m—1) _
<Hkl> 0890 2 (4 — S22)™ Mey + (m—1) 823 — mZ?:l kluﬂ .

La matrice ‘X X étant positive elle est donc inversible si et seulement si son
déterminant est strictement positif. Ceci permet donc d’énoncer les conditions
suivantes pour atteindre cet objetif :

b
859 >0, 84 > 899 >0 et 84+(m—1)522—m2kl/ﬁ>0.
1=1

Traduisons géométriquement ces différentes relations. Les conditions sq > 0
et s4 > s92 > 0 ne different en rien des conditions énoncées pour un modele
polynomial d’ordre deux classique. Leur interprétation géométrique corre-
spond donc toujours aux situations 1 et 2 de la proposition ci-dessus (voir
la démonstration & la proposition 5.2). Considérons maintenant la condition :

b

S4+(m—1)322—m2kl,ul2>0. (1)
=1

Si dy (u = 1,...,n) désigne la distance du u-iéme point du plan & Porigine
alors :

n

u—Z it DD w=>Zd4 D) IERD ) ) SEEH

i#£] i=1 u=1 i#j  u=1

d

Mais on sait que :

Vij=1,. mavecz;«éj7z,zm—54et szw_

Donc :

Zdi:m54+m(m—1)522:m[54+(m—1)522].

De méme, on a pour tout [ =1,...,b:
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Z dz = Z Zz = 212” = ki = mkypy.

bloc [ bloc I i=1 1=1 bloc I =1

m
Ceci permet donc d’affirmer que :

b
1
(1) <= m[ss+ (m — 1) s99] Zk_ mky ) 250

:}Zd‘* Zkl <Z_dg)2 >0

=1 bloc [
b
4__ 2
=y > dl <Zd> > 0.
=1 |bloc! bloc [

D’apres l'inégalité de Cauchy-Schwarz appliquée aux vecteurs ¢; = (di)bloc .
et Iy, on sait de plus que :

Vi Zd4——<2d2> > 0.

bloc [ bloc 1

Chacune de ces expressions est nulle si et seulement si les vecteurs ¢; et I,
sont colinéaires donc la relation (1) ne sera pas vérifiée uniquement dans le
cas ou tous les blocs sont constitués de points équidistants de l'origine B

Proposition 6.3. Soit un plan d’expérience en blocs D ={z,,u=1,...,n}
usuel, décomposé en b blocs de tailles respectives ki, ko, ..., ky. Les différents
estimateurs des moindres carrés des paramétres du modeéle sont alors
obtenus explicitement par les relations suivantes :

7Bl b n M1
1)7 = m <Zk1731m> = llzl* Y
Y sb =t u=t b
. ) o? o? mno? )
avec V(7)) =diag | —,...,— | + diag (p1, ..., po) Jp diag (1, .., fip)
k1 Ky ¢
~ 1, ~ o2
2) B = —'DrY avec V (ﬁL) =—1I,,
S92 52
b
R ] ol S22 — D k| n
3 =——'DoY—— kY + — =1 Zu QYU L
)Ba = —De¥—7 ; Y g pyp— uz:ll |

S4 — 522

b
avec V (BQ) = 0—2 l[m — g <822 — ka?) Jm] ,
=1
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-~ 1, ~ o?
4) Br = —"'DrY avec V (ﬁl) = —Im(m-1)/2;
522 522
avec Y gy (I =1,...,b) valeur moyenne des observations associées au bloc | et

b
¢p=n S4+(m— 1)822 —mZkl,ulQ‘| .

=1

Démonstration. Posons tout d’abord :
(v ') = (v Ba | "B | 'Br).

Les estimateurs des moindres carrés de ces parametres sont solutions des
équations normales données ci-dessous :

‘BB tBDy 0 0 j tBY

tDQB (54 — $22) I + S22J, 0 0 é@ _ tDQY
0 0 s2lm 0 B | |'DLY
0 0 0 sa2lm(m—1)/2 31 ‘DY

Ceci permet d’obtenir immédiatement les estimateurs BL et 3 7 ainsi que leurs
dispersions. L’obtention des estimateurs de ’effet moyen général et des effets
quadratiques nécessite maintenant de déterminer la matrice :

‘BB *BDq - _ | Biu1 Bi2
'DoB (s4 — 522) Im + 522Jm T | 'Byg B |
Le lemme 5.8 permet de déterminer explicitement les blocs By1, Bia et Bog

puisqu’en suivant une démarche identique a celle de la proposition 5.3 on
obtient :

mn

) 1 1 . .
By = dla‘g <I€_1’ ) k_b> + 7 dla'g (Mla ) Mb) Jb dla'g (:u’la ) Mb) )

n .
By = —adlag 11y oo 1) Jom,s

b
1 n
Byg = —— lfm ~ % <822 - E kzu?) Jm17
=1

S4 — S22

b . e
avec ¢ = nsg+n(m—1)ssa—mny kyp. I en découle les caractéristiques
de dispersion suivantes :

V() =0?Bi1 et V (BQ) = 2 Bas.

Déterminons enfin la forme explicite des estimateurs 7 et ,@Q. On a:

) = 175 5] [cpgy ] o
Bol|  |'Biz Ba2 | |'DqQY ’
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~ : 1 1 mn .. :
Y= |:dla‘g <_7 ) _> + — dla'g (:ula ) Mb) Jb dla‘g (:u’la ) /J'b):| 'BY
k' ky ¢

n .
3 diag (pi1, - po) Jom ' DQY .

Remarquons alors que si I'on désigne par Y g; la moyenne des observations
associées au bloc [ on obtient :

'BY ="' (k1Y g1, .. kY ) et 'In' DY =Y ||z]* Ve,
u=1
En utilisant le fait que Jy,, = 'L, et J, = I'T, il vient immédiatement :

?Bl M1

b n
m <Z kl?Bl,ul> - Z 2]l Y
=1 u=1

?Bb 122

On obtient de méme pour BQ la valeur suivante :

‘DgY.

n . 1
_E mbd1ag (ul, ...,,LLb) 2SB}/—I— m l[m - — <822 — Zkl“l>

A Taide des mémes arguments que pour le calcul de 5 on aboutit alors a la
forme simplifiée donnée ci-dessous :

b
~ Ez 1kl#z

E kY + | ——= E zull” Yu
1Y Bip ( 54 || ||

=1

~ 1 n
Ba = —tDQY—E

S4 — S22

Ceci termine bien la démonstration l

Proposition 6.4. Soit un plan d’expérience en blocs usuel, décomposé en b
blocs de tailles k1, ks, ..., ky. En désignant par ||.|| la norme usuelle de R™, la
dispersion de la réponse prédite en un point x =" (x1,...,xy) € € associé au
bloc l =1,...,b est donnée par :

Var Vi (z) = o2 [fl () + <; - ﬁ) ix‘l] avee -

S4 — S22

Ji(r) = (1 +m"/‘l2>+(i_2w>r2+[ ! +n(21kl“12_522)]r4

ki ] S2 ] 2592 ¢ (54 — 522)

r=|z|| et p=n

b
Sa+ (m—1)8s9 — mZkl/ﬁ] .
1=1
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Démonstration. Ecrivons une nouvelle fois, pour simplifier les calculs, le
vecteur des parametres inconnus sous la forme :

(v ') = (v |"Bo | "B | *6r) -
On a alors (pour tout z € Eet I =1,...,b) :

-1

VarV; (z) = o?tg (z) ('XX) g(=)
avec ici g (z) vecteur de régression tel que :
tg(x) = (511, oy Oy 2 TR T, e T, T T, ...,xm,lxm) .

L’inverse de la matrice *X X est connue explicitement et on a de plus (avec
les notations de la démonstration de la proposition 6.3) :

VarV; () = (811, ..., 01) Buat (611, ..., Ou) + (gc%7 oy @2)) Bog® (23, ..., 22) +
2 (011, .., O1p) Bia® (wl,..., Zm +;sz
1<

La définition des blocs By1, Bis et Bas entraine que :
1 mn

1) (&1, -, 0p) Buat (611, .o, O1p) = & + 7;&,

2) (af,...,x},) Bao" (a1,...,23,) =
: ixé‘ - n(822 Zi- 1klul) zm:x“rzzzx ,

S4 — S
4 22 i=1 1<j

(84 - 522

—2 —2n 1
3) 2 (61, ..., On) Bia® (23, ...,22,) = gbn(uh..,m)t(x%,...,x%l): ;LMZZ.T%.

Il vient donc (en posant o2 = 1 pour simplifier) :
~ 1 mn , 2n,ul 2
VarY (z) = —+ —pui+ | — — — Z
ke ¢
1 (822 —Ez 1kzﬂz) ”
S4 — S22 (54 - 822

Zx
. i - 2n (Szil %;2 1]€l:ul> sz

s
22 Py

+

Remarquons alors (tout comme & la proposition 5.4) que :

m(z 3) DIEED ) eE

1<j
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Ceci permet de supprimer les termes en Zfoz? d’ott le résultat M

Proposition 6.5. Soit un plan d’expérience en blocs usuel, décomposé en b
blocs de tailles respectives ki, ks, ..., ky. Un test de Uhypothése d’égalité des
effets de blocs Hy : 7y; = ;" pour i,j =1,...,b avec i # j contre l’hypothése
H, = H, peut étre réalisé & laide de la statistique :

~ A2
T_ (i — )
o [ (ki +kj)  mn 2
o |\ T Rg) o
(o) [ kikj + P (,uz MJ)
SSE ’
avec G2 = =MSE et ¢p=n S4+(m—1)522—m2kl,ul21 )
n=pr =1

La régle de décision est alors donnée par (avec fo1n—p fractile de la loi de
Fisher a 1 et (n —p) ddl) :

on rejette Hy au niveau o st t > fo 1.n—p-

Démonstration. L’hypothese considérée ici est bien une hypothese linéaire
puisque la relation ; = 7; peut encore étre écrite A3 = a avec a = 0 et
A € M (1,p) matrice telle que ses seuls éléments non nuls sont A;; = 1 et
Ay1; = —1. Remarquons que cette hypothese est bien vérifiable puisque le plan
d’expérience considéré ici est a matrice des moments généralisée inversible
donc Ker X = {0}. D’apres le résultat général rappelé ci-dessus I’hypothese
Hj peut alors étre testée a ’aide de la statistique suivante :

t (A,@— a) [A (txx) tA} o (A,@— a) B L3t A [A txx)eal 4B

ro? o?

T =

puisqu’icia=0et r =7rg(A) =1. Or A@\: ~; —7; donc :
(i _/7\‘)2 t —1¢ .17t
T= Il A (xx) T ]

L’inverse de la matrice X X est connue explicitement (voir la démonstration
de la proposition 6.3) et on a (avec les notations de cette démonstration) :

A(XX) A= (Bu), + (Bn);; — 2(Bn)y,

1 mn . 1 mn mn
= —+7#i {7t g ) = 2y

k; k; 0] 0]
(L L1y mn o
—(ki+kj>+¢(m wi)?

Ceci démontre bien le résultat énoncé
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Proposition 6.7. Soit un plan d’expérience en blocs associé a la matrice du
modéle X = [B | W]. Ce plan d’expérience est bloqué orthogonalement
st et seulement si :

1
tw (In - —Jn> B=0.
n

Démonstration. Déterminons au préalable la forme explicite de ’estimateur
des moindres carrés des effets linéaires, quadratiques et d’interaction (i.e. du
vecteur 7). Dans le cas du modele linéaire d’ordre deux sans bloc X = [I,, | W]
et donc :

7 t 7 t
t 60 ot n HnW 60 o HnY
(xx) <a) = Xre <tW]In fWW) <a) - <tWY '
Par utilisation du lemme 5.8 il est possible d’inverser la matrice ‘XX

et Pestimateur des moindres carrés de 7 est donné explicitement par (*A
désignant le complément de Schur de la matrice A) :

B [ (W) T WY 4 [ (W) .

Pour un modele & effets de blocs on a cette fois X = [B | W] et il vient :

~ t t = t
‘ T\ BB '‘BW\ (7\ _('BY
(XX) <?2> = XVe (tWB ww )\ %) = Ltwy )

Une nouvelle fois le lemme 5.8 entraine que :
7= — [ (WW)] 'WB (‘BB) 'BY + [ (WW)] WY

Examinons maintenant sous quelle condition I’estimateur des moindres carrés
71 obtenu avec un plan sans bloc est égal a I'estimateur des moindres carrés
T obtenu avec un plan en blocs. On a :

A=ne /) (WW) TWLILY = [ ((WW)] " ‘WB(‘BB) ' 'BY

& (1/n)'WI,'L,Y = 'WB (*BB) " 'BY.
Ce résultat devant étre vérifié pour tout vecteur des réponses Y on en déduit
que :
A=< (1/n)'WL,', ='WB(‘BB)”''B
= (1/n)'W1L,'I,B = 'WB (‘BB)" ' 'BB.

Comme I,,*I,, = J,, il en découle que :
~ ~ 1t t ~ ~ t 1
1=y =>—-—WJ,B="WBdonchn=n="W|(I,——-J,| B=0.
n n

Réciproquement, supposons que ‘W (I, — (1/n) J,,) B = 0. Il est donc possible
de remplacer la matrice "W B par (1/n)" W.J, B et ceci entraine que :



6.7 (Compléments) Démonstrations 247

_ _ 1
A —T=[WW)! [tWB (‘BB)''B — EtW]IntHn] Y

1

= [ (CWW)]~ [ltWJnB (tBB) "B — ltW]Int]In} Y
n n

1 ~ B
= [ (WW)] WL, [tHnB(tBB) “By_tﬂny]

n

Remarquons que :

_ 1 1
'1,B (*BB) "tBY = (ki, ..., ky) diag (k_1 k_b> tBY
Zbloc vai
=1, : =, Y.
Zbloc vai

Ceci prouve donc bien que :
t 1 A~ _ =
Wil,——J, | B=0=7 =7.
n

D’ou le résultat énoncé B

Proposition 6.8. Un plan d’expérience en blocs usuel est bloqué orthog-
onalement si et seulement si il vérifie la condition supplémentaire suivante
pour ses moments par bloc d’ordre deux :

52

H1 = M2 = ... = Hp = —.
n

Démonstration. Considérons un plan d’expérience bloqué orthogonalement.
D’apres la proposition 6.7 :

‘W <In - %Jn> B=0s'WB= %tWJnB = % (‘WL,) (‘I.B). (1)

Or, le plan d’expérience étant par hypothese usuel il vient :

n[1] C k]
: ko
. n [12] 0L ks
Wi, = . = Soly, , tBI,, = . et :
: O e (m—1) .
n[12] : kp—1
: kpy
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[ k[, ... ke [1, 0 ... 0
ki 12] .k [12 [ - OJme
‘WB = [. h [. | _ . S| = | T diag (ki)
. : . : OJm(ma)b
ky [12]; ... ke [12], 0 ... 0 z

On en déduit que la relation (1) est vérifiée par tout plan en blocs usuel
concernant les moments d’ordre un ainsi que les moments croisés d’ordre deux.
Concernant maintenant les moments pairs d’ordre deux la relation (1) est
équivalente a :

k
Vi=1,..b, k= 2 ey = 2,
n n

Le résultat est donc bien démontré B
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Plans d’expérience pour mélanges

7.1 Introduction

Les dispositifs expérimentaux considérés jusqu’a présent sont tels que le
niveau de chacun des facteurs est indépendant des niveaux des autres fac-
teurs étudiés. Il existe cependant des situations qui, par nature, ne vérifient
pas une telle hypothese. Un exemple classique, bien connu des chimistes, est
celui de I’élaboration d’'un mélange a partir de m composants. Les propriétés
du mélange dépendent alors couramment des proportions de chacun des
composants et ces proportions ne sont, par définition, pas indépendantes les
unes des autres puisque leur somme est toujours égale a 'unité. Ce chapitre
aborde le probleme de 1’élaboration de plans d’expérience tenant compte de
ce type de contrainte. Les travaux initiaux concernant cette classe de plans
d’expérience sont dus a Scheffé dont on pourra consulter les deux articles de
référence [85] et [86].

La premiere partie de ce chapitre a pour objet de présenter des définitions
et généralités relatives a 'utilisation des mélanges ainsi que les techniques
classiques de représentation graphiques de ces mélanges. Une seconde par-
tie est consacrée aux modeles polynomiaux pour mélanges car l'utilisation
des modeles usuels (d’ordre un ou deux complets) n’a pas de sens ici. Les
modeles polynomiaux spécifiques aux mélanges sont présentés et étudiés en
détail jusqu’a l'ordre trois. Les deux grandes classes de plans d’expérience pour
mélanges que sont les réseaux de Scheffé et les réseaux de Scheffé centrés sont
introduites. La partie suivante traite du probleme de I'introduction d’effets de
blocs dans les plans pour mélanges. Certaines techniques de blocage partic-
ulierement simples sont présentées avec principalement pour objectif d’obtenir
la propriété de blocage orthogonal du plan d’expérience.

Comme a l'accoutumée la derniere partie de ce chapitre est ensuite con-

sacrée a la mise en oceuvre d'un exemple d’application pratique. Il est illustré
a aide de divers codes SAS.

‘W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 249
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_7,
(© Springer-Verlag Berlin Heidelberg 2010
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7.2 Généralités

7.2.1 Hypothéses fondamentales

Comme cela a été précisé dans l'introduction on considére maintenant un
mélange constitué par m composants. L’objectif principal est d’expliquer et
de modéliser au mieux les caractéristiques du mélange considéré. Supposons
dans la suite que la réponse observée ne dépend que des proportions des com-
posants présents (et non de leurs quantités totales dans le mélange). On note
alors classiquement z1, x2, ..., T,, les m proportions associées a tout mélange
(i.e. les niveaux des m facteurs définis comme étant les diverses proportions).
Le fait de considérer uniquement des proportions entraine immédiatement les
deux hypotheses fondamentales suivantes :

(H1) :Vi=1,..,m,0<2; <1 et (H2):) a;=1

=1

Notons que la non-indépendance des proportions des m composants découle
clairement de I'hypothese (H2) (si, par exemple, ;1 = 0.6 alors forcément
les proportions des autres composants sont liées a ce résultat puisqu’elles ne
pourront pas dépasser la valeur 0.4). On désigne couramment par mélange
binaire tout mélange obtenu a partir de seulement deux composants (i.e.
seulement deux des x; sont non-nuls). De méme un mélange élaboré a partir
de trois composants est qualifié de mélange ternaire. On utilise aussi parfois
le composant ¢ seul (avec donc z; = 1 et x; = 0 pour j # i), il s’agit dans ce
cas d’'un corps pur.

7.2.2 Représentation graphique d’un mélange

Un mélange de m composants est entierement défini par la donnée des m
proportions 1, ..., Z,,. Il est possible de représenter un tel mélange par un
point de R™ ayant pour coordonnées xi,...,T,, dans un repere adéquat.
Cette démarche, utilisée dans tous les chapitres précédents, pose ici probleme
dans la mesure ou elle ne tient pas compte du fait que les coordonnées sont
liées d’apres I'hypothese (H2). Une technique classique de représentation
graphique des mélanges tenant compte & la fois des hypotheses (H1) et (H2)
est présentée ici.

1) Cas des mélanges binaires. Il s’agit du cas le plus simple oti un mélange
est obtenu a partir de deux composants : le composant 1 en proportion x1 et
le composant 2 en proportion xz. D’apreés ’hypothese (H2) il est évident qu’il
est inutile de conserver ici ces deux quantités puisqu’une seule suffit (gardons
par exemple 1 et posons o = 1 — x1). Un tel mélange, caractérisé par une
seule coordonnée, peut donc étre représenté graphiquement dans un espace
de dimension un, c’est-a-dire sur une droite. Considérons alors deux points
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A et B associés respectivement aux composants 1 et 2. Une technique simple

de représentation graphique du mélange consiste a l'identifier au point du
segment [AB] de coordonnée (1 — 1) dans le repere d’origine A ayant pour

vecteur unitaire AB (voir la figure 7.1).

Mélange
Composant1 J Composant2
A G @ O B

P V] I
< " 4

(1-x1) x1

Fig. 7.1. Représentation graphique d’un mélange binaire.

Cette technique de représentation est intuitivement facile a comprendre car
plus la concentration du composant 1 est élevée plus le point représentant le
mélange est proche de 'extremité du segment associée & ce méme composant.
Un mélange a égale proportion des deux composants est situé au milieu du
segment [AB] alors que les deux extrémités correspondent aux deux corps
purs. Plus généralement en désignant par M le point associé au mélange ou
le composant 1 est en proportion x; il vient :

—_— e —
1‘1MA+(1—,’E1)MB: 0.

En d’autres termes le mélange est donc géométriquement identifié au bary-
centre des points A et B affectés des pondérations x1 et o =1 — 7.

2) Cas des mélanges ternaires. Considérons ici le cas ot un mélange est
élaboré a partir des composants 1, 2 et 3 en proportions respectives x1, x2 et
x3. L’hypothese (H2) entraine, une nouvelle fois, que seulement deux des trois
proportions sont nécessaires a la caractérisation du mélange. Tout mélange va
donc pouvoir étre représenté dans un espace de dimension deux (i.e. un plan)
et il est possible de généraliser la technique vue précédemment. Considérons
pour cela tout d’abord trois points du plan A, B et C associés respectivement
aux corps purs 1, 2 et 3. Ces trois points sont aussi les sommets d’un triangle,
on les dispose conventionnellement de maniere a ce que ABC' soit un triangle
équilatéral. Tout mélange peut alors étre représenté de maniére unique comme
barycentre des points A, B et C affectés des pondérations x1, xo et x3.
D’apres 'hypothese (H1) Pensemble de tous les mélanges décrit exactement
le triangle ABC' (tout point situé & la frontiere du triangle est soit un corps pur
soit un mélange binaire alors que tout point situé a l'intérieur est réellement
un mélange ternaire). En pratique la localisation d’'un mélange ternaire dans
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le triangle est obtenue aisément d’apres la figure 7.2 (schéma de gauche).
Un maillage du triangle & partir de segments paralleles a chacun des cotés
est couramment utilisé afin de pouvoir travailler aisément avec ce type de
coordonnées (figure 7.2 schéma de droite). Remarquons pour terminer que le
mélange o les composants 1, 2 et 3 sont en égales proportions (r1 = a9 =
x3 = 1/3) est représenté par le centre de gravité du triangle ABC.

Composant1

Composant1
P A

A

2/

Mélange *,

x1

B C

—_—
Composant2 x3 Composant3

Composant2 Composant3

Fig. 7.2. Représentation graphique d’'un mélange ternaire.

3) Cas général. La technique présentée précédemment pour des mélanges
binaires et ternaires peut étre généralisée mathématiquement sans la moin-
dre difficulté. Un mélange obtenu a partir de m composants est alors to-
talement déterminé par la connaissance de (m — 1) proportions, il peut donc
étre représenté dans un espace a (m — 1) dimensions (du type R™~1). Con-
sidérons alors m points Ay, As, ..., A, de cet espace associés & chacun des
corps purs. Par souci de simplicité on place ces points de maniere a obtenir une
figure géométrique la plus réguliere possible de maniere a ce que AjAs... A,
soit un simplexe de R™~! (voir la section 3.5 pour plus de détails concer-
nant les simplexes). Il s’agit donc de considérer un triangle équilatéral lorsque
m = 3, un tétrahedre régulier lorsque m = 4, etc... Tout mélange est alors
représenté de manieére unique par le barycentre des sommets A;, Ag, ..., Ay
affectés des pondérations xy, x2, ..., z,, égales aux différentes proportions.
Cette technique, tres générale, correspond a la représentation d’un mélange a
I’aide des coordonnées x1, xo, ..., T, dites barycentriques. L’utilisation de
telles coordonnées est fréquente dans d’autres branches des mathématiques,
notamment en analyse numérique pour la méthode des éléments finis (voir
par exemple Raviart et Thomas [80]). Remarquons qu’un mélange équilibré
(x1 = 2 = ... = 2y, = 1/m) est identifié a 'isobarycentre des m sommets,
souvent appelé centroide du simplexe.
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7.2.3 Notation standard des réponses

Il est classique, dans le cas des plans d’expériences pour mélanges, d’utiliser
une notation standard pour désigner les différentes réponses. Lorsque m com-
posants sont considérés on note Y; (i = 1, ..., m) chacune des réponses obtenues
lorsque le corps pur 4 est utilisé. De méme, Y;; (¢,5 = 1,...,m avec i < j)
est la réponse observée pour un mélange binaire dans lequel les composants
i et j sont en méme proportion. Enfin on désigne, par exemple, par Yj;;
(i, =1,...,m avec i < j) la réponse observée pour un mélange binaire ou les
composants i et j sont respectivement en proportions 2/3 et 1/3. De maniere
générale :
Yi1..122..2 ... mm...m

ou le symbole i apparait r; fois (avec Vi =1,...,m ,r; € N), et r = > r;,
désigne la réponse observée pour le mélange tel que :

r
le composant i (i = 1,...,m) est en proportion —.
r

Le nombre de coefficients r; non-nuls est donc égal au nombre de composants
réellement utilisés dans le mélange. Ce type de notation permet de décrire les
réponses observées pour la plupart des plans d’expérience pour mélanges. La
figure 7.3 donne (dans le cas de 3 composants) quelques exemples graphiques.

Composant1
Yy

Composant2 Composant3

Fig. 7.3. Diverses réponses observées.
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7.3 Modeles pour mélanges

Les modeles polynomiaux classiques utilisés jusqu’a présent ne sont pas
adaptés & une étude de mélanges car 'hypothese (H2) entraine une
dépendance entre divers parametres du modele qui devient ainsi surparamétré.
Détaillons ici la forme des principaux modeles adaptés aux mélanges.

7.3.1 Modeéle d’ordre un

Tout comme dans le cas classique le modele polynomial le plus simple a mettre
en oeuvre est celui de degré égal a un. La aussi un tel modele peut étre
intéressant lorsque, par exemple, le nombre de composants est élevé et qu’'une
premiere étude est nécessaire afin d’évaluer quels sont les plus influents sur
la réponse étudiée (technique de criblage). Le modele statistique classique est
toujours de la forme Y (z) = f (x) + ¢ (z) . Supposons tout d’abord que la loi
de réponse peut étre correctement approchée au voisinage £ du centroide du
simplexe par :

Vaef, f(z)=PFo+ ) B

i=1
Ce modele ne tient cependant pas compte de ’hypotheése fondamentale (H2).
On peut l'introduire simplement en remarquant que 5y = B9 X 1 et donc :

m

Vze&, f(x <Z:&)+Zﬁzwzzz (Bo + Bi) =
i=1

On constate donc qu’il est donc inutile de conserver l'effet moyen général (3
(qui devient impossible & estimer ici) et en posant b; = By + 8; (i = 1,...,m)
il vient :

Proposition 7.1. Le modele polynomial d’ordre un adapté a I’étude
des mélanges, pour m composants, est donné par :

Veel, f(x mez.

Il en résulte que le nombre de parametres inconnus d’un tel modele est :
p=m.

Notons que lorsque ce modele est mis en oeuvre avec un plan d’expérience
adapté, la matrice du modele X € M (n,m) est donc identique & la matrice
du plan D.

Interprétation des coefficients. Considérons un mélange binaire obtenu a
partir des composants ¢ et j en proportions respectives x; =pet x; = 1—p. I
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est clair qu’avec un tel modele la réponse moyenne (située sur une des arétes
du simplexe) est donnée par :

f(p,1=p)=0bip+0b;(1—p)=b;+ (bi —bj)p.

L’interprétation concréte des coefficients du modele est donc aisée puisque
b; est simplement la réponse obtenue lorsque le corps pur i est utilisé (poser
dans la formule ci-dessus p = 1). Avec ce modele la réponse pour tout mélange
binaire est de plus affine en p. Attention au fait que le parametre b; n’est pas
I’effet linéaire du composant 7. Il ne peut plus étre qualifié de tel puisqu’il est
obtenu par une sommation faisant intervenir a la fois le ”vrai” effet linéaire
0B; mais aussi l'effet moyen général 3.

| Exemple |

Voici un exemple de surface ajustée a I’aide d'un modele d’ordre un
(source : logiciel Nemrod). Il s’agit de la représentation graphique
du modele ajusté au sens des moindres carrés obtenu a partir d’un
réseau de Scheffé de type {3,3} (voir la suite du chapitre). La qualité
de l'ajustement est donnée ici par R? = 0.636.

Légende Composanti
! 500 X1

: . = :
. ®
w2 Composant]
Composant2

Composant3

X2 X3
Composant2 Composant3

Fig. 7.4. Modélisation par un polynéme d’ordre un.

7.3.2 Modeéle d’ordre deux

Le modele polynomial d’ordre un présenté précédemment n’est pas assez riche
afin de décrire correctement bon nombre de situations pratiques. Il est alors
naturel d’utiliser un modele polynomial de degré supérieur. Partant du modele
classique d’ordre deux on montre (tout comme dans le paragraphe précédent)
que 'hypothese (H2) entraine la suppression de I'effet moyen général 5y mais
aussi (voir la démonstration) celle de tous les effets quadratiques §;;. Ceci
entraine que :
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Proposition 7.2. [<] Le modéle polynomial d’ordre deux adapté a
l’étude des mélanges, pour m composants, est donné par :

i=1

i<j
Il en résulte qu'un tel modele est constitué par m parametres inconnus (les
b;) auxquels il faut rajouter les C2, parametres b;; (il y en a autant que de
choix non-ordonnés de 2 éléments parmi m). On a donc :

m(m—1) m(m+1)

= 02: - .
p=m+Cy =m+ 5 5

Interprétation des coefficients. Examinons une nouvelle fois le comporte-
ment d’un tel modele dans le cas d’'un mélange binaire ou les composants i et
Jj sont en proportions respectives x; = p et x; = 1 — p. Il est immédiat que :

f(p,1—p) =bj+ (bi — bj + bij) p — bi;p*.

La modélisation ainsi obtenue est donc plus riche que celle du modele d’ordre
un puisque le parametre b;; permet d’introduire une courbure dans la réponse.
Plus précisemment lorsque le mélange est équilibré la réponse moyenne est :

£(0.5,0.5) = 0.5 (b; + b;) pour le modele d’ordre un,
£(0.5,0.5) = 0.5 (b; + b;) + 0.25b;; pour le modele d’ordre deux.

Le coefficient b;; peut donc étre interprété comme le quadruple de la quantité
a rajouter a une réponse affine afin de modéliser correctement le phénomene
pour un mélange équilibré entre les composants i et j.

| Exemple |

Voici un exemple de surface ajustée au sens des moindres carrés a
laide d’un modele d’ordre 2 (source : logiciel Nemrod).

Légende Composant1
l e X1
| |

050

3 =1
X2 Composant]
Composant2

w3
Composant3

X2 X3
Composant2 Composant3

Fig. 7.5. Modélisation par un polynome d’ordre deux.
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Cette modélisation utilise les mémes données que pour l'exemple du
paragraphe 7.3.1. On constate ici une amélioration de I’ajustement par
rapport au cas affine car la surface est maintenant légerement courbée
mais la qualité de I’ajustement reste insuffisante car R? = 0.667.

7.3.3 Modéele d’ordre trois complet

Il a été montré précédemment que 'utilisation d’un modele polynomial d’ordre
deux dans le cas des mélanges entraine la disparition de I'effet moyen général
ainsi que des effets quadratiques. Il en résulte que ce modele est beaucoup
moins riche que le modele d’ordre deux classique et va dans certaines situations
s’avérer trop pauvre pour décrire correctement le phénomene étudié (voir
par exemple la figure 7.5). Ceci implique donc que 'utilisation d’un modele
polynomial d’ordre trois est envisageable. La prise en compte de 'hypothese
fondamentale (H2) conduit alors & considérer la classe de modeles suivante :

Proposition 7.3. [<] Le modeéle polynomial d’ordre trois adapté a
l’étude des mélanges, pour m > 3 composants, est donné par :

Veel, f(x)= Zbixi + Zzbijxi% + ZZéijxixj (z; — CEj)
i=1

1<j i<j

—i—ZZZbijkmi%‘iEk

i<j<k

Les parametres inconnus d’un tel modele sont alors : les b; au nombre de m,
les b;; ainsi que les §;; au nombre de C?, et enfin les bijr au nombre de c3.
Le nombre total de parametres inconnus est donc donné par :
m(m+1)(m+2
p=m+2C% +C3 = ( 6)( )

Interprétation des coefficients. Détaillons le role des nouveaux coefficients
0;; et bijr, de ce modele. Pour un mélange binaire ol z; = pet z; =1 —pla
réponse obtenue est cubique, donnée explicitement par :

f(p,1=p) =bj + (bi — bj + bij — 6i;) p+ (3655 — bij) p* — 204"

Il en résulte en particulier que pour un mélange équilibré il vient f (0.5,0.5) =
0.5 (b; + bj) + 0.25b;5. La réponse dans ce cas est donc égale & celle donnée
par le modele d’ordre deux. Evaluons alors les réponses obtenues pour des
proportions dans le mélange de 1/4 et 3/4 :

£(0.25,0.75) = (0.25b; + 0.75b; 4 0.1875b;;) — 0.093758;;,
£(0.75,0.25) = (0.25b; + 0.75b; 4 0.1875b;;) + 0.093758;;.

Les quantités entre parentheses ci-dessus sont les réponses obtenues a ’aide du
modele d’ordre deux. On en déduit que le coefficient d;; est 1ié a la déviation
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introduite par rapport au modele quadratique. Concernant maintenant le co-
efficient b;;i, il permet d’affiner 'analyse des mélanges ternaires (et au-dela).
Plus précisemment, la réponse pour un mélange ternaire équilibré est donnée
pour les différents modeles étudiés par (avec de haut en bas les modeles d’ordre
un, deux et trois) :

0.333 (bz + bj + bk) +0.111 (bU + bir, + bjk) ,

| Exemple |

Voici un exemple de surface ajustée au sens des moindres carrés a
Paide d’un modele d’ordre trois complet (source : logiciel Nemrod).

Légende Composant1
l 500
M
050
I-a.w
y ®1
2 omposant]
Composant2
w3
Composant3
X2 -1.55 X3
Composant2 Composant3

Fig. 7.6. Modélisation par un polynome d’ordre trois.

Cette surface est toujours obtenue a l'aide des mémes données que
dans les paragraphes précédents. Il est clair ici que 'introduction des
termes cubiques dans le modele a beaucoup modifié I'allure de la sur-
face ajustée par rapport a ce que 'on avait pour 'ordre un ou deux.
On retrouve bien ce résultat quantitativement puisque le coefficient de
corrélation linéaire multiple est maintenant R? = 0.917. Ce résultat
est bien entendu lié directement a ’enrichissement du modele qui a
10 parametres inconnus au total (contre respectivement 6 et 3 pour
les modélisations de degrés 2 et 1).

7.3.4 Modéele synergique d’ordre trois

Le modele complet d’ordre trois permet d’effectuer des modélisations relative-
ment complexes (voir la figure 7.6). En contrepartie le nombre de paramétres
inconnus de ce modele est assez élevé et peut constituer un obstacle au niveau
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du nombre d’expériences a réaliser. C’est pourquoi on s’oriente parfois vers un
modele d’ordre trois plus simple. Une solution classique consiste a supprimer
les coefficients d;;. Ceci conduit alors au modele d’ordre trois suivant qualifié
de synergique (ou aussi de ”special” dans la littérature anglophone) :

Définition 7.4. Le modele polynomial synergique d’ordre trois adapté
d l’étude des mélanges, pour m > 3 composants, est donné par :

Veel, f(x)= ibﬂ?z‘ + ZZbijzix]— + ZZZbijkzm]—xk
i=1

1<j i<j<k

Les coefficients inconnus d'un tel modele sont alors les b; (au nombre de m),
les b;; (au nombre de C2,) ainsi que les b;jx (au nombre de C32,). Ceci donne
pour total :
m (m2 + 5)

5 .
Interprétation des coefficients. La aussi les coefficients b;;, ont pour prin-
cipal intérét d’introduire une modélisation cubique des lors qu'un mélange au
moins ternaire est utilisé.

p=m+C2 +C3 =

| Exemple |

Voici une analyse de la méme situation qu’aux paragraphes précédents
avec cette fois un ajustement réalisé a ’aide du modele synergique
d’ordre trois (source : logiciel Nemrod).

Légende Composanti

X2 X3
Composant2 Composant3

Fig. 7.7. Modélisation par un polyndéme synergique d’ordre trois

Concernant la qualité de ’ajustement on obtient ici R? = 0.791. Ceci
montre donc tout l'intérét de ce modele car la qualité de ’ajustement
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est bien supérieure a celle obtenue avec le modele d’ordre deux alors
qu’un seul parametre inconnu supplémentaire a été rajouté (pour un
total de 7 parametres). L’ajustement est par contre moins bon qu’avec
le modele complet d’ordre trois mais celui-ci nécessite 'utilisation de
trois parametres d;; supplémentaires.

7.3.5 Modéle synergique d’ordre quelconque

Une fois présenté le modele synergique d’ordre trois il est naturel d’essayer
de le généraliser a un ordre quelconque des lors que plus de 3 facteurs sont
utilisés. En effet ce modele a été obtenu en rajoutant au modele d’ordre deux
les mondomes de la forme x;x;75 et on peut envisager maintenant de rajouter
aussi ceux de la forme x;x;z,2; (3 Vordre 4) on bien x;x;x,xixym (& Vordre
5), ete... En d’autres termes il est possible d’utiliser la classe des polyndmes
affines (comme cela a été fait dans un contexte différent dans le chapitre 3)
et ceci entraine la définition suivante :

Définition 7.5. Soit un entier A et m > X composants. Le modele poly-
nomial synergique d’ordre ) est donné par (Vz € &) :

anz“ F YD BT iy DD Y biiniy Ty Ty Ty

i1=1 i1 <ig 11 <i2<ig
“+...+ E E E biliQ,,,iAmilaziz...xiA
11 <t <...<ix

Dans le cas particulier ou A = m le modéle synergique est dit complet.

Les coefficients inconnus d’un tel modele sont alors les b;; (au nombre de m),
les b;,4, (au nombre de C2), les b;,i,i, (au nombre de C3)), etc... Le nombre
total de parametres inconnus est donc égal a :

Dans le cas particulier du modele synergique complet il vient :

PZiC,ZZQm—lcariC;:2m
i=1 i=0

d’apres la formule du binéme de Newton.

Interprétation des coefficients. L’interprétation faite avec le modele syn-
ergique d’ordre trois est généralisable ici sans difficulté. Utiliser les coefficients
biyiqgizis Permet d’introduire une modélisation de degré égal a 4 des lors qu’au
moins quatre composants sont utilisés dans le mélange. Utiliser les coefﬁcients

moins cinq composants sont utilisés dans le mélange, etc...
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7.3.6 Résumé

La table 7.1 présente le nombre de parametres inconnus de tous les modeles
vus précédemment pour un nombre de facteurs compris entre 2 et 10. Les
colonnes sont associées respectivement de gauche a droite au modele d’ordre
un, au modele d’ordre deux, au modele complet d’ordre trois, au modele
synergique d’ordre trois et enfin au modele synergique complet. Le nombre de
parametres inconnus du modele classique d’ordre deux est présenté aussi (&
droite du tableau) afin de pouvoir réaliser une comparaison avec la situation
des chapitres précédents ou il n’y avait pas de mélange. On constate dans
un premier temps le peu de parametres inconnus du modele d’ordre deux
pour mélanges (ce qui est logique puisque Deffet moyen général ainsi que les
effets quadratiques ont été supprimés). A contrario I'utilisation du modele
d’ordre trois complet devient rapidement prohibitive (au dela de 5 facteurs il
nécessite obligatoirement plus du double des expériences du modele d’ordre
deux classique). Concernant par contre le modele synergique d’ordre trois, il
s’avere tres intéressant lorsque le nombre de facteurs est égal a 3, 4 ou 5.
Enfin le modele synergique complet, relativement facile a mettre en oeuvre
pour 4 ou 5 facteurs, compte ensuite un nombre de parametre inconnus en
augmentation tres rapide.

Table 7.1. Nombre de parametres inconnus de différents modeles.

d°1 d°2 | d°3 | d°3 syn.| Syn com. d°2 class
2 facteurs 2 3 X X X 6
3 facteurs 3 6 10 7 7 10
4 facteurs 4 10 20 14 15 15
5 facteurs 5 15 35 25 31 21
6 facteurs 6 21 56 41 63 28
7 facteurs 7 28 84 63 127 36
8 facteurs 8 36 120 92 255 45
9 facteurs 9 45 165 129 511 55
10 facteurs 10 55| 220 175 1023 66

Considérons maintenant la qualité de I'ajustement en terme de richesse du
polynome utilisé. La table 7.2 résume les différentes possibilités. Divers types
de mélanges figurent en ligne : binaires, ternaires, a 4 composants et le cas
général o m composants sont utilisés. Les colonnes sont associées aux modeles
étudiés précédemment avec, de gauche a droite, les modeles d’ordre un, deux,
trois complet, synergique d’ordre trois, synergique d’ordre quatre et enfin
synergique complet. A 'intersection de chaque couple ligne-colonne figure la
forme du polynéme obtenu qui est soit affine (i.e. de degré un), soit quadra-
tique (i.e. de degré deux), soit cubique (i.e. de degré trois) soit enfin d’un
degré quelconque supérieur a trois.
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Table 7.2. Nature des différentes modélisations.

d°1 d°2 d°3 d®3 syn. | d°4 syn. | Syn com.
Mel. binaire affine | quadra. | cubique | quadra. | quadra. | quadra.
Mel. ternaire | affine | quadra. | cubique | cubique | cubique | cubique
Mel. 4 comp. | affine | quadra. | cubique | cubique d°4 d°4
Mel. m comp. | affine | quadra. | cubique | cubique d°4 d°m

Ce tableau permet de visualiser clairement les avantages et inconvénients
des divers modeles. On retiendra que la principale qualité du modele com-
plet d’ordre trois est de proposer un ajustement cubique pour les mélanges
binaires. Ce modele peut donc s’avérer étre tres intéressant dans les situa-
tions ou le comportement des mélanges binaires semble complexe. Par contre
I’'utilisation d’un modele synergique d’ordre A se distingue par le fait que tous
les mélanges faisant intervenir A composants (ou plus) vont étre modélisés par
un polynome de degré . Un tel modele sera donc préférable lorsque ce type
de mélanges semblent étre plus complexes & modéliser.

7.3.7 Analyse de la variance

Une fois un modele choisi et ajusté au sens des moindres carrés le probleme
de la qualité de I'ajustement réalisé se pose une nouvelle fois. Dans le cas des
modeles pour mélanges la technique d’analyse de la variance reste identique
au cas classique et les formules suivantes (voir la proposition 2.8) sont toujours
utilisables :

SST =SSR+ SSFE avec :
SST =YY —nY", SSE =Y (I, — P)Y et SSR='YPY —nY .

Ce résultat est étonnant au premier abord car il a été prouvé que cette
décomposition est vraie pour les modeles classiques (voir la démonstration
de la proposition 2.8) car il y a toujours dans ces modeles un effet moyen
général (et donc une colonne de la forme I, dans la matrice X) ce qui
n’est pourtant plus le cas ici. D’apres 1’énoncé de la proposition 2.8 il
n’est cependant pas nécessaire d’utiliser un modele avec une constante pour
que cette décomposition soit valide car la seule hypothése (moins contraig-
nante) a vérifier est I,, C Im X. Cette hypothese est bien vérifiée par tout
modele pour mélange d’aprés 'hypothese fondamentale (H2) qui impose
que ), x; = 1, donc la somme des colonnes de la matrice du plan d’expérience
D est toujours égale & I, (et donc I, C Im X puisque D est toujours une sous-
matrice de X).
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7.4 Réseaux de Scheffé

7.4.1 Définition

Présentons ici une classe de plans d’expérience pour mélanges désignés clas-
siquement par le terme de réseaux et introduits par Scheffé [85].

Définition 7.6. Considérons un mélange élaboré a l'aide de m composants.
On appelle réseau de Scheffé de type {m,q}, avec ¢ € N* le plan
d’expérience D ={z,,u=1,...,n} constitué par tous les points dont les co-
ordonnées barycentriques sont des multiples de 1/q.

En d’autres termes on a donc pour tout réseau de Scheffé de type {m,q} :

Il découle de cette définition que :

Proposition 7.7. [<| Le nombre d’expériences d réaliser avec un réseau de
Scheffé de type {m,q} est donné par :

— 1
n=0Chig1-

Remarquons que les nombres d’expériences associées aux réseaux de Scheffé
de type {m, 1}, {m, 2} et {m, 3} sont alors :

réseau {m,1} : n=CL =m,

réseau {m,2} : n=Cz , =m(m+1)/2,

réseau {m,3} : n=C3 , =m(m+1)(m+2)/6.
On retrouve exactement le nombre de parametres inconnus des modeles
pour mélanges d’ordre un, d’ordre deux et enfin d’ordre trois complet. Les

trois réseaux de Scheffés présentés ci-dessus sont donc des plans d’expérience
saturés pour ces trois modeles.

| Exemple |

Voici diverses représentations graphiques de réseaux de Scheffé dans
le cas ou m = 3 facteurs sont considérés (source : logiciel Nemrod).
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Fig. 7.8.

Réseau de Scheffé de type {3,1}.

Fig. 7.9.
Réseau de Scheffé de type {3,2}
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Fig. 7.10.
Réseau de Scheffé de type {3,3}.

Fig. 7.11.
Réseau de Scheffé de type {3,4}.

7.4.2 Ajustement de divers modeles

Abordons tout d’abord I'ajustement au sens des moindres carrés du modele
polynomial le plus simple c’est-a-dire d’ordre un. Un plan d’expérience adapté
a lajustement d’un tel modele est alors le réseau de Scheffé de type {m, 1}
utilisé classiquement soit tel quel soit en répétant r fois chacune des expériences
(si le total n’est pas prohibitif) afin de pouvoir réaliser une analyse de la
variance. On montre que 'on a explicitement les résultats suivants (avec les
différentes réponses en notation standard, voir le paragraphe 7.2.3) :
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Proposition 7.8. [<t] Soit un réseau de Scheffé de type {m,1} tel que les
expériences sont répétées v € N* fois et un modéle polynomial d’ordre un. Un
tel plan est constitué par un total de n = rm expériences (il est donc saturé
lorsque 7 = 1) et les estimateurs des moindres carrés des paramétres du
modele sont donnés par :

Vi=1,..m, b =Y,

\ X7 gz / 1 2 T
ou Y; désigne la moyenne des T réponses Yi( ), Yi( ), e Yi( ) obtenues lorsque
le corps pur i est considéré. Tous ces estimateurs sont de plus non-corrélés

et leur dispersion vérifie :

Vi=1,..,m, Varb; = —.
r

Remarque. On démontre aussi sans difficulté (en suivant un cheminement
identique & celui de la démonstration de la proposition 7.8) que les résultats
sont identiques dans le cas général ou le nombre de répétitions est de 1 pour
le corps pur 1, ...., 7, pour le corps pur m (alors Vi = 1,...m , b; = Y;
et Varb; = 02/r;). Il est cependant courant d’utiliser un nombre identique
de répétitions afin d’obtenir une qualité d’estimation identique pour tous les
facteurs (le plan est dit équilibré).

Remarquons que ce plan d’expérience est satisfaisant d’un point de vue
mathématique mais peut s’avérer tres étonnant pour un utilisateur non averti
dans la mesure ou il est constitué exclusivement par des corps purs donc ne
contient aucun véritable mélange ! Ceci est di au modele trés simple utilisé
ici qui, s’il est valide, ne nécessite que la connaissance des diverses réponses
associées aux corps purs puisque tout autre type de réponse est alors obtenue
par une simple relation affine & partir de celles-ci (voir le paragraphe 7.3.1
pour plus de détails).

Considérons maintenant la modélisation plus riche obtenue & l'aide du
modele polynomial pour mélanges d’ordre deux (voir le paragraphe 7.3.2). Un
plan d’expérience adapté a I’ajustement d’un tel modele est alors le réseau de
Scheffé de type {m,2}. 1l s’agit donc, par définition, d’un plan d’expérience
pour lequel on teste tous les corps purs ainsi que tous les mélanges binaires
équilibrés (avec ; = z; = 0.5 pour tous les ¢ et j différents). On a alors le
résultat suivant :

Proposition 7.9. [<] Soit un réseau de Scheffé de type {m,2} tel que les
expériences sont répétées v € N* fois et un modele polynomial d’ordre deu.
Un tel plan est constitué par un total de n = rm (m + 1) /2 expériences (il
est donc saturé lorsque v = 1) et les estimateurs des moindres carrés des
parametres du modéle sont donnés par :
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o o u=Y,
Vi,j=1,....m avec i <j, ¢ ~ A —
iy =4Yi; =2 (Yi+Y;).

o Y (resp. ?z-j) désigne la moyenne des r réponses de la forme Yl(l)7

ey YT(T) (resp. Yiy), ...,Yigr)). La dispersion de ces estimateurs est de plus
donnée par :

2 2

~ ~ 24

Vi,j=1,...,m avec i # 7, Varbi:U— et Varb;; = 7.
r r

Il n’a pas été précisé ici que les divers estimateurs sont non-corrélés entre
eux car cette propriété n’est pas vérifiée. Les diverses covariances entre es-
timateurs peuvent étre déterminées a partir des résultats obtenus lors de la
démonstration de la proposition 7.9.

Si les deux modeles présentés précedemment ne sont pas assez riches il est
alors possible de s’orienter vers le modele polynomial complet d’ordre trois
(voir le paragraphe 7.3.3). Une nouvelle fois, un plan d’expérience adapté &
Pajustement d’un tel modele est le réseau de Scheffé de type {m,3}. Dans
ce cas la on teste donc tous les corps purs, deux types de mélanges binaires
(en permutant les proportions 1/3 et 2/3) et enfin tous les mélanges ternaires
équilibrés (avec x; = x; = o = 1/3 pour tous les i,j et k différents). Il est
encore possible d’obtenir explicitement tous les estimateurs des parametres
du modele ainsi que leurs dispersions (la démonstration de ces résultat, cal-
culatoire et laborieuse, n’est pas donnée. Le lecteur intéressé pourra se référer
par exemple & I'ouvrage de Cornell [22] pour plus de détails) :

Proposition 7.10. Considérons un réseau de Scheffé de type {m,3} tel
que les expériences sont répétées r € N* fois et un modéle polynomial
complet d’ordre trois. Un tel plan est constitué par un total de n =
rm (m 4+ 1) (m+2) /6 expériences (il est donc saturé lorsque r = 1) et les
estimateurs des moindres carrés des paramétres du modele sont donnés par
(Vi,j=1,....,maveci<j<k):

b =Y,

by =9/4(Yiy + Y5 - Vi = Y;),
0ij =9/4(8Y iy — 3V Vi +Yj),
gz'jk =27V +9/2 (Y + Y, + Yz)

—27/4 (Yiij + Yijj + Yiie + Yier + Ve + Y jkk) -
Y A désigne la moyenne des r réponses de la forme YA(l), . YX).

Les différentes dispersions de ces estimateurs sont données par la proposition
suivante :
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Proposition 7.11. Considérons un modéle complet pour mélanges analysé
a Vaide d’'un réseau de Scheffé de type {m,3} tel que les expériences sont
répétées r € N* fois. Les dispersions des divers paramétres estimés sont
alors données explicitement par (¥ i,5,k=1,....,m avec i < j < k) :

R 2 R 81 . 405 ~ 8505
Varbi — 0—77 Varbij = EO—Q’ Varéij = ?02 et Varbz_]k; = _87» 0'2.

La forme explicite des diverses covariances n’est pas précisée ici mais il
faut encore prendre garde au fait que les différents estimateurs obtenus ici
sont généralement corrélés entre eux (i.e. le plan d’expérience utilisé n’est pas
un plan orthogonal).

Remarque. L’ordre de grandeur des différentes dispersions obtenues peut
s’avérer étonnant au premier abord. En effet en supposant que 02 = 1 et que
les expériences ne sont pas répétées (r = 1) il vient :

Varb; = 1, Varb;; = 20.25, Vard;; = 101.25 et Var by = 1063.25.

Considérons le parametre estimé gijk dont la variance est ici bien plus im-
portante que les autres. Il ne faut pas oublier que dans le modele étudié
ce parametre prémultiplie un monéme de la forme z;x;x; et que, puisque
les coordonnées utilisées sont barycentriques, la plus grande valeur que peut
prendre un tel monéme est seulement de 1/27 (valeur atteinte si et seulement
si x; = x; = xx = 1/3). Il en résulte que globalement la quantité E-jka:ixjxk
est telle que sa dispersion est toujours majorée par la valeur suivante d’un
ordre de grandeur beaucoup plus faible :

~ 1.458.

Var (Ejkmixjxk) = (mixja:k)2 Vargijk < S27)

7.5 Réseaux de Scheffé centrés

7.5.1 Définition

Les plans d’expérience étudiés jusqu’a présent présentent un inconvénient
au niveau de leur mise en oeuvre séquentielle. En effet, si un réseau de
Scheffé de type {m, 2} est utilisé et si le modele ajusté (d’ordre deux) s’avere
trop pauvre pour expliquer le phénomene étudié on s’oriente alors souvent
vers l'ajustement d’'un modele de degré supérieur via un réseau de type
{m, 3} .1l peut alors s’avérer génant que certaines expériences réalisées pour le
réseau {m, 2} ne soient pas réutilisées par le réseau {m, 3} (en occurence les
mélanges binaires équilibrés). Ceci entraine la définition suivante des réseaux
de Scheffé dits centrés :
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Définition 7.12. Soit un mélange élaboré a l'aide de m composants. On
appelle réseau de Scheffé centré de type {m,q}., avec ¢ € N* tel que
1 < g <m, le plan d’expérience D ={z,,u = 1,...,n} constitué par la réunion
des q ensembles de points donnés ci-dessous :

1) tous les corps purs (zy; = 1),

2) tous les mélanges binaires équilibrés (zy; = zu; = 1/2),

q) tous les mélanges équilibrés d’ordre q (zui1 = Zuigrr = Zuiy = 1/q) )
Un réseau de Scheffé centré de type {m,m}. est dit complet.

Cette définition entraine bien les relations d’inclusion suivantes permettant
une mise en oeuvre séquentielle de ces plans d’expérience :

{m,1}, C {m, 2}, C {m,3}, C...C {m,m}..

Concernant la taille de ces plans il est clair que 1’étape 1 utilise un total de
m = C}, corps purs, puis C2, mélanges binaires a 1’étape 2, ..., et enfin CY,
mélanges équilibrés d’ordre g correspondent a la derniere étape. Le nombre
d’expériences a réaliser avec un réseau de Scheffé centré de type {m, ¢} est

donc donné par :
q
_ i
n = E Cr..
i=1

Pour un réseau complet de type {m, m} il vient donc n = 2™ —1. D’apres les
résultats du paragraphe 7.3.5 le nombre d’expériences d’'un réseau de Scheffé
centré de type {m,q}, est donc exactement égal au nombre de parametres
inconnus du modele synergique d’ordre q.

| Exemple |

Voici pour m = 3 facteurs la représentation graphique du réseau de
Scheffé centré (complet) de type {3,3}. (comparé au réseau de Scheffé
de type {3,3}). Par définition, les réseaux de Scheffé de type {3,1} et
{3,2} centrés ou non sont identiques (ceci est d’ailleurs vrai quelque
soit le nombre de facteurs).
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Fig. 7.12.
Réseau de Scheffé de type {3,3}.

Fig. 7.13.

7.5.2 Ajustement d’un modele synergique

Table 7.3. Estimateurs des parameétres de divers modeles synergiques.

analysés a l'aide de réseaux de Scheffé centrés.

Réseau de Scheffé centré {3,3} .

Plan Modeéle Estimateurs
Syner. ~ =
{m.1}c ordre 1 bi =Y.
Syner. bi= Y,
{m, 2}, ~ Z —
ordre 2 bij = 4Y;; — 2 (Yz + yj)
b; = ?ia
fm.3)e | Dmer by= Ay =2t Y),
ordre bijr = 27Yig_‘k — 1_2 (Yz‘i‘f' Yir + ij)
H3(Yi+Y,;+Yy).
E’L = ?iv
by = 4, -2(Yi+Y)),
bijk = 27V iji — 12 (Vij + Vip + Vi)
{m, 4} Symer. | +3 (?l +Y;+ Yk) J
m,ayo ordre 4 bijkl = 256?1']‘]@1 . o o
—108 (Yije + Yiji + Vi + Vjm)
+32 (?ij +Yu+Yu+Yu+Y+ Y )
AV +Y;4+Y,+Y)
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Il est possible de déterminer la forme des estimateurs de chacun des
parametres du modele (ainsi que leur dispersion) a laide de formules ex-
plicites. Celles-ci sont cependant relativement complexes, le lecteur intéressé
pourra les trouver dans les compléments de fin de chapitre (paragraphe 7.10.1).
La table 7.3 résume la forme des estimateurs des moindres carrés des modeles
les plus couramment utilisés.

7.6 Autres plans pour mélanges

7.6.1 Réseaux de Scheffé déséquilibrés

Seulement des réseaux de Scheffé équilibrés (dans le sens ou toutes les
expériences sont réalisées un méme nombre r € N* de fois) ont été considérés.
Ceci permet d’obtenir des résultats relativement simples a écrire, des plans
saturés lorsque r = 1 ainsi que des décompositions en blocs aisées a analyser
(voir la suite). Une telle démarche peut cependant étre génante pour obtenir
un plan de petite taille non-saturé afin de mener une analyse de la variance (on
est obligé avec 'approche précédente de considérer alors » = 2 réplications des
expériences et le plan obtenu contient donc deux fois plus d’expériences que
de parametres & ajuster). Une démarche plus économique consiste a s’orienter
vers des plans d’expérience déséquilibrés ou l'expérience i est répétée r; fois
avec les r; non forcément égaux. Lorsque les entiers non-nuls r; sont quelcon-
ques il est laborieux d’obtenir les formules explicites pour les estimateurs du
modele ainsi que leurs dispersions, un logiciel est indispensable afin d’obtenir
les solution des équations normales. Considérons les deux situations présentées
ci dessous, intéressantes d’un point de vue pratique.

1) Répétiton des expériences associées aux corps purs. Considérons un
modele polynomial d’ordre deux pour mélanges. On sait qu’il est aisé d’ajuster
ses coefficients & 1'aide d’un réseau de Scheffé de type {m,2}. Lorsqu'une
analyse de la variance est souhaitée une alternative a la répétition de toutes
les expériences du réseau consiste a ne répéter que les expériences associées
aux corps purs. En s’inspirant de la démonstration de la proposition 7.9 on
vérifie que si les expériences associées aux corps purs sont répétées r* fois
alors que celles associées aux mélanges binaires ne sont pas répétées il vient :

Vi j=1,.,maveci<j, b =Y etby;=4Yy; —2(Y; +Y;).
Les dispersions de ces estimateurs sont alors :
N 2 ~ 8
Varb; = U—* et Varb;; = (16 + —*> 2.
r r

Ce type de plan déséquilibré est donc d’analyse aisée et peut s’avérer intéres-
sant lorsque la duplication complete du plan initial est trop cotteuse. Concréte-
ment, le nombre minimal d’expériences a réaliser (obtenu pour r* = 2) est :
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n:2C’r1n+C'72n:2m+m(nﬂ;71) :m(n”;Jr?)).

Ceci est quantifié dans le tableau ci-dessous ou figurent p (nombre de
parametres inconnus du modele), la taille de ces divers plans ainsi que
leur taille relative (entre parentheses) c’est-a-dire le rapport du nombre
d’expériences du plan sur le nombre de parametres a estimer dans le modele.

Table 7.4.
Taille (et taille relative) de réseaux de Scheffé {m,2} déséquilibrés.

D Réseau P Réseau
3 facteurs | 6 9 (1.50) 7 facteurs | 28 | 35 (1.25)
4 facteurs | 10 | 14 (1.40) | 8 facteurs | 36 | 44 (1.22)
5 facteurs | 15 | 20 (1.33) | 9 facteurs | 45| 54 (1.20)
6 facteurs | 21 | 27 (1.29) | 10 facteurs | 55 | 65 (1.18)

2) Répétition des expériences associées au centroide. Dans le cas des
plans d’expérience classiques il est courant de répéter les expériences au centre
du domaine expérimental afin d’obtenir des informations supplémentaires sur
la qualité de I'ajustement. On peut envisager la méme procédure ici en util-
isant cette fois le centroide du simplexe (i.e. le point associé au mélange tel
que T3 = Tg = ... = &, = 1/m). Considérons, pour m composants, un réseau
de Scheffé complet de type {m,m}. (ce réseau contient bien le centroide du
simplexe) tel que les expériences faisant intervenir jusqu’a (m — 1) composants
ne sont pas répétées alors que ’expérience au centroide est répétée r,, fois.
On montre alors que les différents estimateurs des parameétres du modele sont
obtenus de maniére quasiment identique au cas classique équilibré (voir la fin
du paragraphe 7.10.1 des compléments de fin de chapitre pour plus de détails).

7.6.2 Autres types de plans d’expérience

Les présentations et analyses ont été limitées ici aux plans pour mélanges tres
courants que sont les réseaux de Scheffé. Il existe cependant bien d’autres
configurations utilisables afin de mener des expériences sur des mélanges. Un
des reproches couramment formulé a encontre des réseaux de Scheffé (centrés
ou non) est que bon nombre des points expérimentaux sont situés a la frontiere
du simplexe et peu de mélanges font réelement intervenir tous les composants.

Afin de pallier ce probléme des plans qualifiés de plans axiaux sont parfois
utilisés. Leur construction repose sur 1'utilisation des axes de Cox c’est-a-dire
des m segments situés a l'intérieur du simplexe, se coupant au centroide et
joignant chacun des m sommets. Un plan est alors qualifié d’axial lorsque tous
les points expérimentaux sont situés sur les axes de Cox (avec généralement
des conditions supplémentaires comme un positionnement a égale distance
du centroide). Le lecteur souhaitant plus de détails sur ce type de plans
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d’expérience pourra se référer & Cornell [21]. Les plans pour mélanges proposés
par Lambrakis [61] ont aussi pour objectif de ne proposer que des expériences
ou tous les composants sont réellement utilisés simultanément.

Dans le but de s’affranchir des expériences associées au corps purs
(présentes dans tous les réseaux de Scheffé et n’ayant parfois aucune utilité
pratique) Gammon propose de les supprimer et de les remplacer par les
expériences faisant intervenir (m — 1) des m composants en proportions égales
(ceci va donc entrainer une duplication de ce type d’expériences pour un réseau
centré de Scheffé). Le plan ainsi obtenu a la méme taille que le réseau de Scheffé
initial puisque les expériences rajoutées sont au nombre de Cm~1 = CL =m
(consulter Darticle de Lambrakis [61] pour plus de détails).

7.7 Introduction d’effets de blocs

7.7.1 Modéle a effets de blocs

N

Tout comme dans le cas des plans d’expérience classiques il est tout a
fait possible qu’une modélisation faisant intervenir des mélanges présente
des problemes d’hétérogénéité. Il est alors naturel de regrouper les diverses
expériences en sous-groupes homogeénes encore appelés blocs puis d’introduire
pour chacun d’eux un effet mesurant leur influence sur la réponse. Con-
sidérons un plan d’expérience pour mélanges faisant intervenir m composants,
décomposé en b blocs et mis en oeuvre sur le domaine expérimental £. On con-
sidére le modele statistique Y (z) = f; (z) 4+ € (z) pour les réponses associées
aubloc! (I=1,...,b) avec :

Veel, filr)=y+ f(x)

ou f est la fonction associée a I'un des modeles classiques pour mélange
présenté dans ce chapitre. Le réel v, (I = 1,...,b) est l'effet du bloc I. Re-
marquons que le nombre de parametres d’un tel modele est égal & (b+ §) ou
0 désigne le nombre de parametres inconnus dans 1’expression de f.

| Exemple |

Considérons un modele pour mélange d’ordre deux, & m composants,
utilisé avec une configuration décomposée en deux blocs. Il vient :

pour le bloc 1: f1 (z) =71 + Zbimi + ZZbiiximﬁ
i=1 i<j
pour le bloc 2 : fo (z) =72 + Zbimi + ZZbijximj.
i=1 i<j
Onaicib=2et § =m+ C2 =m(m+1)/2 donc le nombre total
de parametres inconnus est égal a :
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m(mzﬂ) +2=m2+2m+4.

p:

D’apres 'hypothese fondamentale (H2) on peut dire que :

m m
Mn=mn <Z$z) et y2 = 72 <Z$z)
i=1 i=1

et donc le modele a effets de blocs peut aussi parfois étre écrit sous la
forme suivante, similaire & celle du modele sans bloc (avec | = 1,2):

frl) = blai + > bijzia; ot bl = b; + .
i=1

i<j

Lorsqu’il n’y a qu’un seul bloc alors b} = b; et on retrouve ainsi le
modele classique sans bloc précédemment étudié.

Remarque. Prenons garde tout au long de cette section a ne pas confondre
le nombre b de blocs considérés avec le vecteur b des parametres inconnus du
modele pour mélange. La méme lettre est utilisée pour ces deux notions mais
en pratique peu de confusion est possible puisqu’elle représente deux élements
tres différents.

7.7.2 Singularité liée au modele

Remarquons au préalable que le modele pour mélange tel qu’il vient d’étre
écrit entraine que tout plan d’expérience est singulier. En effet, matricielle-
ment :

Y = [B| X] (’g) +e=By+Xb+e.
avec B € M (n,b) matrice des indicatrices des blocs (voir I’exemple du para-
graphe 6.2.1 pour la construction d’une telle matrice), X € M (n,d) matrice
du modele sans bloc (avec § nombre de parametres inconnus), v € R® vecteur
des effets de blocs et b € R? vecteur des parametres inconnus du modele. On
supposera toujours dans la suite que la matrice X a été choisie de maniere a
étre de plein rang (c’est le cas notamment lorsqu’elle découle d’un des plans
d’expériences présentés dans ce chapitre). Malgré cette précaution il est cepen-
dant impossible que la matrice [B | X] du modele & effets de blocs soit de
plein rang puisque :

1) la somme des b colonnes de B est toujours égale a I,,,

2) la somme des m colonnes de X associées aux effets linéaires est toujours
égale a I,, d’apres ’hypothese fondamentale (H2) .
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| Exemple

Considérons un modele pour mélanges d’ordre deux, & 3 composants,
mis en oeuvre sur un réseau de Scheffé de type {3,2}. Supposons
que les trois corps purs sont dans le premier bloc alors que les trois
mélanges binaires sont dans le second bloc. La matrice [B | X] du
modele a effets de blocs est alors donnée par :

10 1 0 0 0 0 0
10 01 00 0 0
10 00 1 0 0 0
B=1lo1| ®*X=1]1/21/2 0 14 0 0
01 1/2 0 1/2 0 1/4 0
01 0 1/21/2 0 0 1/4

La somme des deux colonnes de B ainsi que la somme des trois
premieres colonnes de X valent 5. En d’autres termes le noyau de la
matrice du modele [B | X] contient le sous-espace vectoriel engendré
par t(1,1,—1,—1,-1,0,0,0), cette matrice n’est donc pas de plein
rang.

Il résulte de tout ceci que pour tout plan pour mélange il sera toujours
impossible d’estimer tous les parametres du modele proposé (car X n’est
pas de plein rang donc !X X n’est pas inversible, les équations normales
n’admettent pas une solution unique). Il est donc naturel d’utiliser des condi-
tions d’identifiabilité c’est-a-dire des conditions imposées aux parametres
inconnus du modele afin de le rendre régulier. On ne s’étend pas ici sur la
théorie liée & ce type de contraintes (le lecteur désirant en savoir plus pourra
consulter le paragraphe 8.2.5 du chapitre relatif aux plans d’expérience pour
facteurs qualitatifs) et on retient la contrainte tres classique imposant au
vecteur des effets de blocs d’étre un contraste de R®. En d’autres termes la
contrainte (C') suivante sera désormais utilisée systématiquement :

b
Z%‘ =0 ()
i=1

Cette contrainte implique que seulement (b— 1) des effets de blocs sont &
estimer. Attention a ne pas confondre dans la suite le nombre total de
parameétres p* = (b + J) du modele (selon les notations du paragraphe 7.7.1)
avec le nombre p de parameétres inconnus donné ici par (puisqu’un des effets
de bloc n’est pas a estimer) :

p=b+46—-1

7.7.3 Plans bloqués orthogonalement

Il convient de déterminer maintenant des plans d’expérience adaptés a la
structure en blocs. On considére ici uniquement le cas le plus simple a analyser
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ou les divers blocs vérifient la propriété de blocage orthogonal définie au
chapitre 6. En d’autres termes un plan pour mélanges en blocs est bloqué
orthogonalement si et seulement si les estimateurs des parametres du modele
considéré sont identiques a ceux obtenus avec le méme plan d’expérience sans
bloc. Diverses études ont été menées concernant le probleme de la construction
de tels plans suite aux premiers travaux de Nigam [67] (le lecteur pourra se
référer au chapitre 8 de 'ouvrage de Cornell [22]). Sachant que tous les plans
d’expérience étudiés dans ce chapitre sont de petite taille (la plupart d’entre
eux étant saturés) on propose ici de répliquer le plan pour mélange choisi
autant de fois qu’il y a de blocs a considérer. Ceci entraine le résultat suivant
(identique & celui énoncé au chapitre 6 pour des plans en blocs usuels) :

Proposition 7.13. [<] Soit un plan d’expérience pour mélanges D adapté au
modéle linéaire choisi. Le plan d’expérience D' constitué des b blocs D1, ..., Dy
obtenus d la suite de b réplications du plan initial (i.e.V1=1,..,b,D; =D)
est alors bloqué orthogonalement.

L’estimation au sens des moindres carrés des différents parameétres du modele
utilisé est donc obtenue ici immédiatement en utilisant les divers résultats
relatifs aux réseaux de Scheffés (ou bien aux réseaux de Scheffé centrés) sans
bloc.

7.7.4 Estimation des effets de blocs

L’estimation des divers effets des blocs est souvent souhaitée lorsqu’un tel
modele est utilisé. Pour un plan bloqué orthogonalement on obtient :

Proposition 7.14. [<] Soit un plan d’expérience pour mélanges D, constitué
par k expériences, adapté au modéle linéaire choisi. Pour le plan d’expérience
bloqué orthogonalement D' constitué des b blocs D1, ..., Dy obtenus a la suite
de b réplications du plan initial (i.e. Y1 =1,..,b, Dy = D) les estimateurs
des moindres carrés des effets des blocs sont donnés par :

Vi=1,.,b, =Yg -Y

Concernant la dispersion de ces estimateurs il vient :
b—1
Vi=1,.,b, Vary =0 | — |.
7 ) ) r/-yl g < bk )

Le résultat suivant permet de réaliser un test d’hypothese sur les effets des
différents blocs. Il s’agit donc d’une extension au cas des plans pour mélanges
de la proposition 6.5 des plans en blocs usuels.

Proposition 7.15. [<(| Soit un plan d’expérience pour mélanges D, constitué
par k expériences, adapté au modéle linéaire choisi. Pour le plan d’expérience
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bloqué orthogonalement D' constitué des b blocs D1, ..., Dy obtenus a la suite
de b réplications du plan initial (i.e. ¥ 1 = 1,...,b , D; = D) un test de
Uhypothése d’égalité des effets de blocs Hy : 7v; = v;” pour i,j =1,...,b
avec i # j contre Uhypothése Hy = Hy peut étre réalisé a laide de la statistique

suivante : )
k(i — ”Yj)
202

ou 62 = SSE/(n—p) = MSE. La régle de décision est alors donnée par
(avec fo1,n—p fractile de la loi de Fisher a 1 et (n —p) ddl) :

T =

on rejette Hy au niveau o st t > fo 1.n—p.

7.8 Exemple d’application

Considérons ici une entreprise souhaitant mélanger ”au mieux” trois lubrifi-
ants différents pour un moteur & explosion (qualifiés de lubrifiant 1, 2 et 3 par
la suite). Le probleéme est donc de quantifier la qualité de chacun des lubrifi-
ants et de savoir si un mélange de deux ou trois d’entre eux peut s’avérer plus
intéressant. La procédure expérimentale mise en oeuvre ici consiste simple-
ment a tester un moteur sur un banc d’essai a 'aide de chacun des mélanges
proposés. La réponse obtenue traduit le rendement du moteur, il faut donc
la maximiser. Un autre probléme soulevé par les spécialistes est ’origine des
lubrifiants utilisés. En effet, les diverses compositions élaborées proviennent
de deux fournisseurs (appelés fournisseur A et B par la suite) et ils craignent
que la qualité des produit livrés ne soit pas la méme.

Au vu de la problématique présentée on peut s’orienter vers la mise en oeu-
vre d'un réseau de Scheffé centré, de type {3, 3}, afin de tester tous les corps
purs, mais aussi divers mélanges binaires et ternaires. La recommandation
d’effectuer des expériences issues des deux fournisseurs conduit a dupliquer
ce plan d’expérience (pour un total, trés raisonnable, de 14 expériences). En
d’autres termes il faut donc réaliser, pour les mélanges associés aux four-
nisseurs A et B, le plan d’expérience donné par la matrice suivante :

1
0
0

o = O

0
0
1
D= [—1} avec D1 =Dy = [1/21/2 0
1/2 0 1/2
0 1/21/2
1 1/31/31/3]

Ceci est équivalent au protocole expérimental donné ci-apres. Une colonne
” Four.” permet de distinguer les mélanges issus du fournisseur A ou bien B.
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Le plan d’expérience utilisé ici peut étre mis en oeuvre séquentiellement en
partant des modeles les plus simples vers les modeles les plus complexes (par
exemple la réalisation des expériences 1, 2, 3 puis 8, 9 et 10 est suffisante afin
d’ajuster un modele pour mélanges d’ordre un).

Four. | Lubri. 1 | Lubri. 2 | Lubri. 3 Y
Exp 1 A 100% 0 0 512
Exp 2 A 0 100% 0 644
Ezxp 3 A 0 0 100% 632
Exp 4 A 50% 50% 0 455
Exp 5 A 50% 0 50% 489
Exp 6 A 0 50% 50% 698
Exp 7 A 33.3% 33.3% 33.3% 692
Exp 8 B 100% 0 0 508
Exp 9 B 0 100% 0 632
Ezp 10 B 0 0 100% 635
Ezxp 11 B 50% 50% 0 430
Ezxp 12 B 50% 0 50% 455
Ezxp 13 B 0 50% 50% 675
Ezxp 14 B 33.3% 33.3% 33.3% 664

Voici un programme SAS permettant d’entrer ces données. La table ”donnees”
contient ici la matrice du plan d’expérience avec une premiere colonne repérant
le bloc & laide de la variable qualitative "blc” (modalités A et B), trois
colonnes relatives aux concentrations des trois lubrifiants puis une derniere
colonne avec les réponses observées.

Data Donnees;
Input blc$ lul 1lu2 1lu3 y;
Cards;
A 1.000 0.000 0.000 512
A 0.000 1.000 0.000 644

expérience ¢ et réponse i

B 0.000 0.500 0.500 675
B 0.333 0.333 0.333 664
Run;

Considérons tout d’abord 'ajustement d’un modele synergique d’ordre trois
sans introduire de bloc. Le tableau d’analyse de la variance est :
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Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 6 | 125285.4 20880.9 89.59 | 0.0001 °°*
Erreur 7 1631.5 233.07
Total 13 | 126916.9

L’analyse de la variance peut étre, par exemple, obtenue a ’aide du logiciel
SAS en utilisant une nouvelle fois la procédure de régression GLM ci-dessous.

Proc Glm data=Donnees;
Model y = 1lul 1u2 1u3d lul*lu2 lul*lu3
lu2*1u3 lul*lu2*1lu3d / noint;
Run;

L’option "noint” (no intercept) indique au logiciel de ne pas introduire d’effet
moyen général dans le modele. Attention au fait que cette commande entraine
que SAS construit alors un tableau d’analyse de la variance avec des valeurs
différentes de celles proposées ici. En effet, la suppression de l’effet moyen
général implique automatiquement pour ce logiciel la réalisation d’une analyse
de la variance & 'aide des sommes de carrés non-centrées (voir la remarque
a la fin du paragraphe 2.5.1). Le recours a de telles techniques est cependant
inutile d’apres les résultats de ce chapitre (paragraphe 7.3.7). Les valeurs
correctes pour l'analyse de la variance peuvent cependant étre obtenues en
exécutant la procédure GLM sans l'option "noint” (mais il ne faut pas alors
tenir compte des parametres estimés qui sont différents de ceux proposés ici
puisqu’un effet moyen général est ajouté dans ce cas).

Le modele utilisé est donc bien valide puisqu’il est possible de rejeter
clairement I’hypothese ”tous les parametres du modele sont nuls”. La qualité
de 'ajustement par rapport aux expériences réalisées semble de plus étre tres
correcte puisque la quantité SSFE est faible devant SST. Plus précisemment,
le coefficient de corrélation linéaire multiple vaut ici (valeur ”R-Square” de la

sortie SAS) :

E
RZ=1- % ~ ().987.

La dispersion des résidus est estimée par (valeur "Root MSE” de la sortie
SAS) :
% = MSE = 233.07 (donc & ~ 15.27).

Les divers estimateurs des moindres carrés des coeflicients du modele syn-
ergique ainsi que leurs dispersions sont résumés dans le tableau ci-dessous
(voir le paragraphe 7.10.1 pour les formules explicites). Ces résultats sont
disponibles & la fin de la sortie SAS de la procédure GLM (sans oublier ici
Poption "noint” garantissant la non prise en compte de l'effet moyen général).
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Param. | Estimat. | Ec. type | St. Test Proba.
b1 510.0 10.8 47.24 | 0.0001 °*°*
ba 638.0 10.8 59.10 | 0.0001 *°*
b3 633.5 10.8 58.68 | 0.0001 *°*°
bi2 —526.0 52.9 —9.95 | 0.0001 *°*
b1s —399.0 52.9 —7.54 | 0.0002 **°
bas 203.0 52.9 3.84 | 0.0065 **°
bi2s 4438.5 372.1 11.93 | 0.0001 *°°

On constate que tous les parametres du modele sont significativement
différents de zéro. Ceci conduit donc a prédire la réponse moyenne pour un
mélange de proportions x = (21, x2, 23) & laide de la relation :

Y (2) = 510.021 + 638.025 + 633.525 — 526.0z1 75
—399.0z1x3 + 203.0x0x3 + 4438.5x12223.

La figure 7.14 donne une représentation graphique de ce modele (source :
logiciel Nemrod).

Lubrifiant 1
X1

503

2 '
Lubrifiant 2 w1
Lubeifiant 1
w3

Lubsifiant 3

X2 649 X3
Lubrifiant 2 Lubrifiant 3

Fig. 7.14. Surface de réponse ajustée.

Voici enfin une comparaison entre les réponses et les réponses moyennes
prédites. Les deux derniére colonnes donnent les divers résidus ainsi que la
dispersion associée & chacune des prédictions (ces résultats sont obtenus di-
rectement en rajoutant I’option ”clm” a la suite de ”"noint”).
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Y obs. | Y pred. | Y — Y | Ec. type
Exp 1 512.0 | 510.0 2.0 10.8
Exp 2 644.0 | 638.0 6.0 10.8
Exp 3 632.0 | 633.5 -1.5 10.8
Exp 4 | 455.0 | 4425 12.5 10.8
Exp 5 | 489.0 | 472.0 17.0 10.8
Exp 6 | 698.0 | 686.5 11.5 10.8
Exp 7 | 6920 | 678.0 14.0 10.8
Exp 8 508.0 | 510.0 -2.0 10.8
Exp 9 | 632.0 | 638.0 —6.0 10.8
Exp 10 | 635.0 | 633.5 1.5 10.8
Exp 11 | 430.0 | 4425 —12.5 10.8
Exp 12| 455.0 | 472.0 | —17.0 10.8
Exp 13| 675.0 | 686.5 —11.5 10.8
Exp 14| 664.0 | 678.0 | —14.0 10.8

La figure 7.15 donne une représentation graphique de la variance de prédiction
au sein du domaine expérimental (source : logiciel Nemrod). Il existe une
symétrie de la variance de prédiction par rapport au centroide. C’est pourquoi
les dispersions obtenues pour les diverses expériences du réseau de Scheffé
centré sont égales. Les dispersions les plus importantes sont rencontrées a la
fois au niveau des trois sommets (i.e. des corps purs) et du controide (i.e.
du mélange équilibré). On vérifie que (tout comme avec les plans classiques)
rajouter des expériences au centroide diminue la variance de prédiction au
voisinage du centre du domaine et permet de se rapprocher d’une situation
de ”dispersion uniforme”.

Lubrifiant 1

X

®2 Lubsifiant 1
Lubrifiant 2

w3
Lubrifiant 3

X20.5040 0.50 0.40 0.50
Lubrifiant 2 Lubrifiant 3

Fig. 7.15. Représentation de VarY (avec 02 = 1)

Intéressons-nous maintenant au deuxieme aspect du probléme concer-
nant les substances livrées par les deux fournisseurs. Il est alors possible de
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considérer un modele a effets de blocs & partir des deux répétitions présentées
précédemment dans le protocole expérimental (associées aux valeurs A et B
de la variable ” Four.”). L’analyse de la variance pour un tel modele conduit
au tableau suivant :

Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 7 | 126366.0 18052.3 196.6 | 0.0001 *°°
Erreur 6 550.9 91.8
Total 13 | 126916.9

Ces résultats peuvent étre obtenus a ’aide de la procédure suivante (la com-
mande ”Class” indique au logiciel que la variable ”blc” est qualitative).

Proc Glm data=Donnees;
Class blc;
Model y = blc 1lul 1u2 1u3 lul*1u2 lul*lu3
1u2*1u3 lul*1u2*1lu3;
Run;

La qualité de I'ajustement est donc maintenant meilleure, elle est quantifiée
par (valeur "R-Square” de la sortie SAS) :

SSE
R?=1- —— ~0.99.
SST
L’estimateur sans biais de la dispersion des résidus est maintenant égal a
(valeur ”Root MSE” de la sortie SAS) :

62 = MSE = 91.8 (donc 7 ~ 9.58).

D’apres les résultats de la section 7.7 les estimateurs des divers coefficients
du modele sont identiques & ceux obtenus dans le cas sans bloc (propriété de
blocage orthogonal) et les estimateurs des effets des blocs (sous la contrainte
classique (C)) sont alors donnés par d’apres la proposition 7.14 (avec v, associé
au fournisseur A et 75 au fournisseur B) :

Param. | Estimat. | Ec. type
0! 8.79 2.56
Y2 —8.79 2.56

Le tableau des diverses prédictions découlant de ces résultats est donné ci-
dessous. La colonne ”Y; pred.” présente cette fois les prédictions associées
au bloc 1 pour les 7 premieres expériences puis associées au bloc 2 pour les
dernieres (ces résultats sont encore obtenus en rajoutant Uoption ”clm” apres
le modele).
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Y obs. | V] pred. | Y — Y, | Ee. type
Exp 1 512.0 518.8 —6.8 6.3
Exp 2 644.0 646.8 —-2.8 6.3
Ezp 3 632.0 642.3 —10.3 6.3
Exp 4 | 455.0 451.3 3.7 6.3
Exp 5 489.0 480.8 8.2 6.3
Exp 6 698.0 695.3 2.7 6.3
Exp 7 | 692.0 686.8 5.2 6.3
Exp 8 508.0 501.2 6.8 6.3
Exp 9 | 632.0 629.2 2.8 6.3
Ezp 10| 635.0 624.7 10.3 6.3
Exp 11 | 430.0 433.7 -3.7 6.3
Exp 12| 455.0 463.2 —8.2 6.3
Exp 13| 675.0 677.7 2.7 6.3
Ezxp 14| 664.0 669.2 —5.2 6.3

Un test d’hypothese peut ensuite étre réalisé a ’aide de la propostion 7.15
afin de juger si les effets des blocs sont significativement différents ou non. Il
vient :

St. Test Proba.
| Hypothese "1 = 72" 11.77 | 0.0140 *°°

On constate que I'on peut admettre ici, avec un coefficient de sécurité de
Pordre de 1% que les effets des deux blocs sont bien différents. Il semble donc
bien y avoir une différence entre les matieres premieres livrées. Ceci est bien
en accord avec les résultats précédents qui montrent que 'utilisation d’un
modele a effets de blocs apporte bien un gain de qualité non-négligeable.

Terminons par la recherche du mélange optimal maximisant la réponse
prédite. D’apres les résultats obtenus précédemment (voir la figure 7.14) le
modele ajusté semble prédire une réponse maximale pour un mélange défini
par les proportions suivantes :

z1 = 0.143 , z2 = 0.420 et 3 = 0.437.

La réponse moyenne prédite (arrondie) lorsque le modele sans bloc est utilisé
est donnée en ce point par (avec son écart-type associé entre parentheses) :

~

Yinax = 715 (8.98).

Remarquons qu’en dehors d’une lecture directe (souvent peu précise) issue
des représentations graphiques du logiciel il est possible de déterminer cet
extremum a ’aide de la démarche suivante. On peut au préalable réécrire le
modele ajusté uniquement en fonction de deux proportions non-liées par la
contrainte fondamentale (H1) . En posant ici x5 = 1 — 21 — a9 il vient donc :
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-~

Y (z1,22) = 633.5 — 522.5x1 + 207.5z2 + 4108.5z1 22
+399.02% — 203.023 — 4438.523 x5 — 4438.51123.

Il ne reste plus maintenant qu’a déterminer le maximum de cette fonction a
deux variables sur le domaine de R? défini par :

D:{($17$2)€R2/1‘12071'220€t$1+$2§1}.

Si le maximum cherché est atteint a 'intérieur de ce domaine il annulle donc
les deux dérivées partielles de Y c’est-a-dire qu’il vérifie le systeme d’équations
suivant :

4108.5x1 + 798.0z1 — 8877.0x129 — 4438.523 = 522.5
4108.5x1 — 406.0z2 — 4438.522 — 8877.0x122 = —207.5

Il n’est pas aisé de résoudre un tel systeme de deux équations a deux incon-
nues a cause des non-linéarités présentes. Ceci est d’autant plus complexe
qu’un modele polynomial de degré égal a trois a été choisi ici. Divers logiciels
de calcul scientifique permettent cependant d’obtenir une solution approchée
pour ce type de systeme d’équations. Plusieurs solutions sont proposées ici, il
convient de ne garder que celle qui correspond a une réponse maximale.

| Conclusion

Tous les résultats vus précédemment entrainent les constatations suivantes :

1) Le phénomene étudié ici est correctement modélisé & 1’aide d’un modele
synergique d’ordre trois. Il était bien nécessaire ici d’aller jusqu’au degré trois
puisque Deffet cubique by23 estimé est significativement différent de zéro.

2) La structure en blocs du réseau de Scheffé permet de quantifier l'effet 1ié
aux deux fournisseurs. Il en ressort que le fournisseur A semble livrer des
produits de meilleure qualité que le fournisseur B.

3) L’ajustement étant effectué au sens des moindres carrés, le modele prédit
une réponse maximale lorsque le mélange est constitué des proportions suiv-
antes :

Facteur Proportion
Lubrifiant 1 13.8%
Lubrifiant 2 42.1%
Lubrifiant 3 44.1%

Le rendement moyen prédit est alors de :

724 si le mélange provient du fournisseur 1,
706 si le mélange provient du fournisseur 2.
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7.9 Résumé

Il a été montré dans ce chapitre que deux grandes classes de plans d’exérience
peuvent étre utilisées pour aborder le probleme des mélanges :

1) les réseaux de Scheffés de type {m, ¢} adaptés & 'ajustement d’un modele
complet d’ordre g,

2) les réseaux de Scheffés centrés de type {m, ¢} adaptés a 'ajustement d'un
modele synergique d’ordre g.

Les tableaux ci-dessous résument les tailles de ces différentes configuations
pour un nombre de composants m variant entre 3 et 10 et un ordre ¢ égal
a 1, 2, 3 (situations classiques) ainsi que 4. Les tailles relatives ne sont pas
précisées car tous ces plans sont saturés par rapport au modele adapté.

Taille des réseaux de Scheffé de type {m, ¢} :

g=1|q=2|q=3|q=14

m=3 3 6 10 15
m=4 4 10 20 35
m=>5 5 15 35 70
m =6 6 21 56 126
m="7 7 28 84 210
m=38 8 36 120 330
m=29 9 45 165 495
m=10| 10 55 220 715

Taille des réseaux de Scheffé centrés de type {m,q} :

g=1|q=2|q=3|q=14
m=3 3 6 7 X
m=4 4 10 14 15
m=>5 5 15 25 30
m =6 6 21 41 56
m=7 7 28 63 98
m=8 8 36 92 162
m=9 9 45 129 255
m=10| 10 55 175 385




7.9 Résumé

COMPLEMENTS

285



286



7.10 (Compléments) Résultats théoriques 287

7.10 (Compléments) Résultats théoriques

7.10.1 Ajustement d’un modeéele synergique

La proposition suivante permet de déterminer explicitement les divers estima-
teurs des moindres carrés des parametres de tout modele synergique ajusté
a l'aide d’un réseau de Scheffé centré. La démonstration de cette proposi-
tion, relativement longue, n’est pas proposée (elle est réalisable a 1’aide d’un
raisonnement par récurrence sur 'ordre du modele).

Proposition 7.A. Soit un réseau de Scheffé centré de type {m,q} tel que
les expériences sont répétées r € N* fois et un modéle polynomial synergique
d’ordre q. Un tel plan est constitué par un total de n =1 ¢_, C! . expériences
(il est donc saturé lorsque r = 1). En désignant par At = {i1,ia,...,it} un
ensemble de t < q indices distincts de {1,2,...,m} les estimateurs des moin-
dres carrés des paramétres du modele sont donnés par :

¢
bar = |t < Z t iy (At)) ot L; (At) Z Y A

i=1 AiC At

La notation Y a; désigne toujours ici la moyenne des r réponses de la forme
Y(l) Y(T)
A e YA,

Remarquons que, par définition des notations standard (voir le paragraphe
7.2.3), la quantité L; (At) est la somme de toutes les réponses moyennes con-
stituées par ¢ composants, en égale proportion, de ’ensemble At. La somme
intervenant dans la détermination de L; (At) porte donc sur un total de Cf
réponses moyennes.

| Exemple |

Déterminons la forme de 'estimateur des moindres carrés 512 obtenu
a l'aide d’un réseau de Scheffé centré de type {m, 2}, . En posant ici
A2 ={1,2} il vient :

2
bio=baz =2 (—1)*"iL; (A2) = —2L; (A2) + 4L (A2).
i=1

Li(A2)= > Yai=Yi+Yset Ly(A2)= Y Ya=Yp.
AICA2 A2C A2

On en déduit que : 312 = 4?12 —2 (?1 + 72) .
Ce résultat était prévisible puisqu’il a déja été constaté que les réseaux
de Scheffé de type {m, 2}, ou {m,2} sont identiques.
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Il est aussi possible de connaitre explicitement la forme de la dispersion de
ces divers estimateurs a ’aide du résultat suivant :

Proposition 7.B. Soit un modéle synergique d’ordre q analysé a l'aide d’un
réseau de Scheffé centré de type {m, q}. tel que les expériences sont répétées
r € N* fois. Les dispersions des divers parametres estimés sont alors données
explicitement par (avec At = {iy,i2,...,71} un ensemble de t < q indices
distincts de {1,2,...,m}) :

~ 2 (2
b § (o4 2(t—1) 2
varoa¢ = r <i_1 + g

Le tableau suivant résume les dispersions associées aux estimateurs les plus
couramment utilisés lorsqu’il n’y a pas de répétitions (r =1) :

At Var by
{i} o2
{i, 5} 2402
{i,5,k} 118802
{i, g, k, 1} 118400052
{i, 4, k,1,m} | 1966000002

Tout comme au paragraphe 7.4.2, les variances obtenues sont fortement crois-
santes en t (cardinal de At). La raison en est toujours la méme : il s’agit de
variances de coefficients prémultipliant des monémes du modele qui prennent
des valeurs d’autant plus faible que ¢ est grand.

Remarque. Au paragraphe 7.6.1 a été présenté un réseau de Scheffé centré
complet de type {m,m}. tel que seulement l'expérience située au centroide
est répétée r,, fois. On vérifie dans ce cas que les différents estimateurs gAt
sont encore obtenus a l'aide de la proposition 7.A. Lorsqu’un nombre de com-
posants inférieur ou égal & (m — 1) est utilisé (i.e. i < m dans Ai) alors Y a;
est simplement égal & Y a; puisque aucune répétition n’a été effectuée. Par con-
tre lorsque ¢ = m alors Y A est bien la moyenne des 1, réponses observées
au centroide du domaine. En généralisant les résultats de la proposition 7.B
on vérifie aussi que la dispersion des estimateurs obtenus est donnée par :

i=1

¢
Pour t <m —1: Varbu; = t2 <ZC§@'2(’51)> o2

Pourt=m

~ m2(m—1)
. Varba,, = m> <ZC’1 j2m=2 4 ) o2
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Proposition 7.2. Le modele polynomial d’ordre deux adapté a I’étude
des mélanges, pour m composants, est donné par :

Vee&, f(x Zb T+ > > bijwi.
1<J
Démonstration. Soit le modele polynomial classique d’ordre deux :
Vree& f 50 + Zﬁzxz + Zﬁux + Z Zﬁz]xzm]
i<j

D’apres la relation (H2) il vient 3 #; = 1 donc ; = 1-3_.,z;. En tenant
compte de cette hypothese on peut donc réécrire ce modele en :

<ZI1> + Zﬂlxz + Zﬂnxz 1- ZI] + Zzﬂljzlxj

J#i i<j
Z (/80 + /6)1 T + Zﬂnxz Zﬂ’wzlzxj + ZZBijlxj
i=1 i=1 JFi 1<j
= Z (/80 + /81 + /6)12 z; + ZZ 623 /6)12 ﬂjj) ZTiZj.

=1 1<J

Pour obtenir le modele proposé il suffit maintenant de poser :

bi = Bo + Bi + Bis et byj = Bij — B — B;; B

Proposition 7.3. Le modéle polynomial d’ordre trois adapté a l’étude
des mélanges, pour m > 3 composants, est donné par :

Veel, f(z Zb T; + ZZb”xzzj + Zz&szxj ; — Zj)

i<j i<j
+ E E E bijinIjIk
i<j<k

Démonstration. Réalisons ici la démonstration pour m = 3 facteurs (la
démonstration dans le cas général est en tout point identique). Le modele
classique d’ordre trois est donné par (V = = (21,22, 23) € €):

[ (x) = Bo + Brw1 + Poxz + B33
+B11a7 + Pogas + Bssai + Brax1a + Prsr12s + Paszoxs
+B11123 + Bao2ah + B33373 + Proax123 + frizaias + Brszwi a3
+B11373 x5 + Boszwaxs + Poozw3xs + BiazwixaTs.
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La technique présentée a la proposition 7.2 permet encore d’éliminer 'effet
moyen général ainsi que les effets quadratiques. Le modele obtenu devient

(avec a; = Bo + Bi + Bii et aij = Bij — Bii — Bjj) :
[ (x) = a1y + azxe + azxs + a1201272 + 132103 + a237273
+B11123 4 B22223 + Bas323 + (Br222123 + Brizaias)
+ (Brssz123 + Brisaizs) + (Passwaal + Pozsaias) + Brosziwaws.

On peut supprimer les termes de la forme z3 en remarquant que :
I = 1— To — I3 donc l‘? = ‘T%.Tl = CE% — 1‘%1‘2 — l‘%xg.
Ce raisonnement peut aussi étre tenu avec 3 et z3 et on obtient :

f(x) = a121 + apw2 + azxs + a122102 + a130123 + 232273
+011127 + Pa22a3 + 33323 + (B122 — Paz2) ®123 + (Br12 — Pr11) 2w
+ (B133 — B333) 2173 + (B113 — P111) #1ws + (B33 — Fas3) 2223
+ (Bazs — Paz2) w323 + Prasw12213.

Il est possible de supprimer une nouvelle fois les termes en x? puisque :
x% =ax =21 (1 — 22 —x3).
On obtient alors (avec bz =a; + 6“2 et 61-3- = Qijj — ,8”1 — ﬂjjj) :

[ (x) = biwy + bawo + b3xs + Q122102 + 137123 + A23T203
+ (Bi22 — Bo22) z123 + (B112 — Bu11) w3w2 + (B133 — Bs33) w173
+ (B113 — B111) 23 w3 + (Pass — Pass) T2x3 + (Baz3 — Pazo) w323
+5123T1T273.

2 (i g 2 ; .
On peut ramener tous les termes de la forme x;2% (i < j) en x7x; puisque :
2 2
2125 = (x122) T2 = x122 (1 — 1 — 23) = 122 — T{XT2 — T1TaT3.
Ceci conduit donc & une expression du modele sous la forme suivante (avec
* __ e * —
ai; = aij + Bij; — Bijj» ¢ = Biij — Bisi — Bijs + Bijj et ajag = P23 — Proz +
Baza — (233 + Bazs — Pias + Pass):

f(x) = b1y + bawa + b3z + ajom172 + aj3v173 + 337273

+Cl0T3T0 + Ci313 T3 + Ch323T3+a] 0571 02T 3.

(2)

Il est maintenant possible de repartir de lexpression (1) du modele et de
supprimer cette fois les termes en z?z; & partir de la relation :

x%xg =121 (x122) = (1 — 22 — x3) T122 = T122 — xlmg — T1T2T3.
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Le modele obtenu est alors (avec a;i’ = aij + Biij — B, ci; = Biij — Biii —

Biji + Bjjj et aiss = Bi2s — Priz + P11 — Buis + P11 — Baos + Fa22):

f(x) =bixy + baxa + baxs + afsr122 + ajizixs + a5ixaxs

(3)

* 2 * 2 * 2 *
—C19T1T5 — C13X1T3 — c23x2x3+a123z1x2x3.

Considérons maintenant le modele obtenu a partir des deux résultats précé-
dents en évaluant la quantité ((2) + (3)) /2. Il vient :

f(x) = bix1 + baxy + b3xs + biax1 22 + bi3x123 + bozwoxs
+512I1$2 (561 - SCQ) + 513561173 (CCl - Ig) + 523172563 (IQ - Ig) +
+b1237122T3.

avec : b = (aj; + ajf) /2, 6ij = ¢f;/2 et bizg = (af93 + aiss) /2 W

Proposition 7.7. Le nombre d’expériences a réaliser avec un réseau de
Scheffé de type {m,q} est donné par :

Démonstration. Considérons un point z, (u =1,...,n) du réseau de Scheffé
de type {m, ¢}. D’apres la définition 7.6 les coordonnées barycentriques de ce
point ont la forme suivante :

. Ayl Gu2 Qum,
(zu172u27---72um) - Ty T e
q q q
Ol Qy1, Ay2, .- 5 Gym SONt des entiers tels que :
m a m
ur
E =1¢& E Aui = Q.
-1 4 i=1

En d’autres termes il existe dans le réseau de Scheffé autant d’expériences qu’il
y a de solutions entieres a I’équation ci-dessus. Or ce nombre de solutions
entieres est un résultat de dénombrement classique, donné par (se référer
par exemple & 'ouvrage de Comtet [20] et consulter la partie relative aux
combinaisons avec répétitions) :

q — 4
Km - Oerqfl

Le résultats énoncé est donc bien démontré

Proposition 7.8. Soit un réseau de Scheffé de type {m,1} tel que les
expériences sont répétées r € N* fois et un modéle polynomial d’ordre un.
Un tel plan est constitué par un total de n = rm expériences (il est donc
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saturé lorsque r = 1) et les estimateurs des moindres carrés des paramétres
du, modéle sont donnés par :

Vi=1,..m, b =Y,

\ X7 gz / 1 2 T
ou Y; désigne la moyenne des T réponses Yi( ), Yi( ), e Yi( ) obtenues lorsque
le corps pur i est considéré. Tous ces estimateurs sont de plus non-corrélés

et leur dispersion vérifie :

Vi=1,..,m, Varb; = —.
r

Démonstration. Soit un réseau de Scheffé de type {m,1} tel que chacune
des expériences a été répetée r fois. Un tel plan étant constitué exclusivement
par les m corps purs le modele statistique s’écrit donc Y = Xb+ ¢ ou :

[10...07 (v
10...0 by v,
X=|:i0 i|b=|fey=]
00...1 by v
100...1] Y,;S”

On constate immédiatement que 'XX = diag(r,...,r) = rl,, donc ces m
estimateurs sont non-corrélés entre eux et leur dispersion est donnée par :

2
v(b) =o? (Xx) " = T,
r

Concernant maintenant les estimateurs eux-mémes, il vient :

~ _ 1

b= ("XX)'XY = ~'XY

r

Or:

Yl(l) +Y1(2) + . +Y1(r)

XY = doncVi=1,..m,b;=Y; R

vV v 1yl

Proposition 7.9. Soit un réseau de Scheffé de type {m,2} tel que les
expériences sont répétées v € N* fois et un modele polynomial d’ordre deuz.
Un tel plan est constitué par un total de n = rm (m + 1) /2 expériences (il
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est donc saturé lorsque v = 1) et les estimateurs des moindres carrés des
parameétres du modéle sont donnés par :
b =Y,

Vi,j=1,....m avec i <j, ¢ ~ : —
{ i =4Yi =2 (Yi+Yj).

ot Y (resp. ?ij) désigne la moyenne des r réponses de la forme Yl(l)7
v, (resp. }le), ...,YigT)). La dispersion de ces estimateurs est de plus
donnée par :
o? 2402

Vi,j=1,...,m avec i # 7, Vargi = et Vargij =—

Démonstration. Effectuons dans un premier temps la démonstration des
résultats énoncés ci-dessus lorsque les expériences ne sont pas répétées (r = 1).
Par définition des réseaux de Scheffé la matrice X € M (n,m (m + 1) /2) du
modele est alors :

rtT 0 ... 0(0 0... 0 17

0 0...1[00...0
1/21/2... 0 |1/40... 0

L0 0 ...1/2/ 0 0...1/4
La séparation verticale distingue les coefficients des termes b; (& gauche) des
coefficients des termes b;; (& droite). L’ordre des colonnes associées aux b;;
est lordre lexicographique (b12, bis, b14, ..., b(m,l)m). De méme, la séparation
horizontale distingue les corps purs (en haut) des mélanges binaires (en bas).
En d’autres termes, le modele statistique est Y = Xb + ¢ avec :

Y1 bl
Ln| 0 Y, b
X — LY = -m th= [
[DQ ‘ (1/4) Lt Yi2 ¢ b1z
_}/(m—l)m | _b(m—l)m |

ou D désigne donc la partie de la matrice du plan d’expérience relative aux
mélanges binaires effectués. Déterminons maintenant la forme de la matrice
tXX .

. I | 0
= | D ‘ (1/4) Imtm-n

I, + tDQDQ | (1/4) tDQ
(1/4) D, ‘ (1/16) It

=1XX=
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La matrice Dy est, par construction, telle que chacune de ses colonnes contient
(m — 1) fois la valeur 1/2 et le produit scalaire de chaque couple de colonnes
est toujours égal & 1/4. Il en résulte immédiatement que * Dy Do est une matrice
completement symétrique donnée explicitement par :

t _(m—2) 1
DoDsy = 1 1, + 4Jm.

On peut donc écrire la matrice X X sous la forme :

((m+2)/4) I, + (1/4) Jo | (1/4)'D5
(1/4) D, ‘ (1/16) L1

P X — [All AIQ]'

tA1p Ago

L’inverse d’une telle matrice peut maintenant étre obtenue facilement a 1’aide
du lemme 5.B (en I'appliquant non pas & partir du bloc A7 comme énoncé
mais & partir du bloc Agy tres facile & manier) :

(X3)7 = [8 AS—;] ! [—Aiﬁmz] (Aw) " [1d Ay |
ou *Aj; est le complément de Schur du bloc Ay1. On a ensuite :
1) Ay = 16 men -1 done A1 Ay = 44Dy et Ayt Ay = 4D,
2) “Ay = Ay — A12Ay tAvs = Iy, + tDyDy — tDy Dy = Iy,.
On en déduit que :

Im | _A12A2_21
|~ At A | Ay + Ayt A Avs Ay

((xx)"' =

I, | —4'Dy
—4D, | 16 (IM + thDz)
L 2

Sachant que les éléments diagonaux de la matrice D2* Dy sont tous égaux &
1/2 (puisque chacune de ses lignes a pour seuls éléments non nuls deux fois

la valeur 1/2) et que V (Z) =02 (!XX) " ce résultat entraine donc que :

Vi,j=1,...m avec i # j, Vargi =02 et Vargij = 2402

Déterminons maintenant la forme des estimateurs des moindres carrés des
. N . -~ —1
divers parametres du modele sachant que b = (!X X)™ XY . Posons :

Yy pD)
V= |y | [ |
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ot YU € R™ désigne les réponses observées avec les corps purs, Y2 e
R™(m=1)/2 1eg réponses observées avec les mélanges binaires, b() € R™ les
effets des corps purs et enfin b2 € R™(m=1)/2 Jes effets des mélanges binaires.
Il vient :

" - L TY® D,y ®
b= ("xx) "Xy = (‘xx) " {(Y]L/TJ;%

D’aprés la forme de la matrice (‘X X)~" on a donc :

S 50 =y
b= (XX) XY‘:*{3<2>_4y<2>_4D2y<1>'

On a donc prouvé que :

P =yD avi=1,..,m,b =Y,
b =4y@ 4D, YWD Vi j=1,.,m, i+ by =4Y;,; —2(Y; +Y;).

La proposition est bien démontrée dans la cas sans répétition (r = 1). Lorsque
toutes les expériences sont répétées r € N* fois il suffit de noter que la matrice
du modele, notée X,., est simplement obtenue en répétant r fois chacune des
lignes de la matrice X utilisée ici. Il en résulte que ‘X, X, = r'X X, le cas
avec répétitions des expériences se déduit donc facilement de la démonstration
précédente B

Proposition 7.13. Soit un plan d’expérience pour mélanges D adapté au
modéle linéaire choisi. Le plan d’expérience D’ constitué des b blocs Dy, ..., Dy
obtenus d la suite de b réplications du plan initial (i.e. V1 =1,...,b, D, =D)
est alors bloqué orthogonalement.

Démonstration. Désignons par Xy € M (k, p) la matrice du modele choisi,
relativement au plan d’expérience initial D (constitué par k expériences).
Lorsque ce plan est répliqué b fois la matrice du modele est alors donnée,
dans le cas sans bloc, par X € M (n,p) avec n = bk et :

"X =['"Xo|'Xo |...| ' X0 ].

En notant le vecteur des réponses 'Y = (1Y () | ty (2) || ty® Youy® e
R* contient les réponses observées lors de la i-eme réplication du plan (1 <
i < b) on en déduit que les équations normales sont données dans le cas sans

bloc par :
b

((XX)b="'XY & ("XoXo) b= % > XY O, (1)
i=1
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Considérons maintenant le modele a effets de blocs. Comme b effets de blocs
Y1, ---, Yo o1t été introduits le modele peut étre maintenant écrit :

I. 0...0

v 01Ig...0

Y:[B|X }(b>+5avecB: - )
00 .1

ot v € R? est le vecteur des effets de blocs. On a déja constaté qu’un tel
modele est toujours singulier. Utilisons donc la contrainte (C') afin de le rendre

régulier :
b b—1
D ri=0sp==> %
i=1 i=1

Il est possible de tenir compte de la contrainte (C') en supprimant a l'aide de
cette derniere relation la colonne de la matrice B associée a 'effet de bloc ;.
Apres une telle transformation le modele devient :

I 0.. O

. 0 Itz.. O

Y = [B*|X }(’Yb>+savecB*_ Do ;
0 0.. I

—Ip I ... =1

ou B* € M (n,b — 1) (la matrice B* est parfois qualifiée de matrice " centrée”)
et ‘v* = (y1,...,7%—1) - Remarquons alors que :

tp* (BYIX ] = ‘B*B* 'B*X| [kl 1) +kJp1y O
5% T tXBF XX | T 0 b X0 Xo |

Les équations normales du modele a effets de blocs sont donc :

kI(b—l) + kJ(b_l) 0 7\* _ tB*Y 2)
0 b X0 X b Xy '

On constate bien que I'estimateur des moindres carrés b des parametres du
modele est le méme dans les équations (1) et (2). La configuration proposée
est donc bien bloquée orthogonalement B

Proposition 7.14. Soit un plan d’expérience pour mélanges D, constitué par
k expériences, adapté au modéle linéaire choisi. Pour le plan d’expérience
bloqué orthogonalement D' constitué des b blocs D1, ..., Dy obtenus a la suite
de b réplications du plan initial (i.e. V1 =1,..,b, Dy = D) les estimateurs
des moindres carrés des effets des blocs sont donnés par :
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Vi=1,.,b, =Yg -Y.
Concernant la dispersion de ces estimateurs il vient :
b—1
Vi=1,.,b, Vary, =% | —— .
Vi < ok )
Démonstration. Utilisons les résultats déja obtenus lors de la démonstration
de la proposition 7.13. Les équations normales ont alors été déterminées et
d’apres la structure en blocs orthogonaux on a pour I’estimation des effets des
blocs :
k(Ip-1)+ Jp-1)) 7" ="'BY

avec toujours B* € M (n,b — 1) matrice "centrée”, k la taille de chacun des
blocs et 'v* = (v1,...,7—1). D’apres le lemme 5.4 relatif & I'inversion des
matrices completement symétriques il vient :

1

—1
Uo-n+Je-1)  =Te-1) = 301

Il en découle dans un premier temps que :

en O 1
V{@E") = T (I(b—l) - EJ(b—n) .

Les variances des estimateurs 7; pour ¢ = 1,...,b — 1 sont donc bien égales &
02/k (1 —1/b). Concernant maintenant les estimateurs eux-mémes il vient :

7= % <I(b—1) - %J(b—l)> 'B'Y
Déterminons alors la forme de 7; (i =1,...,0 — 1). Il vient :
M 0... 0 —' Ly — Ly ®
‘Br=1: : Do donc 'B*Y = :
0 0...%, —'I, LY (-1 _t vy (®)

oit Y € RF contient les réponses observées lors de la i-eme réplication du
plan (1 <4 <b). Il en découle que :

b—1

1 . 1 .
Bi= o [Ty D =Ly ® - 23 (tﬂkyw - tHkY(b)) .
=1
Or, "I, Y = kY p; donc :
1 b—1
Yi=YpBi—YnByr— ZZ (Ygi — Yp)
=1
b—1
- 184 b—1\ —
=Yg —Ypy,— —;Y&' — <T> Y gy
1
=Ypi— ZZYBZ =Ypi—-Y
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Concernant maintenant la valeur 73 on pose, d’apres la contrainte (C) :

On montre sans difficulté que ceci entraine que 7, vérifie lui aussi les diverses
relations proposées précedemment pour les termes 5; aveci=1,....b6—1 1

Proposition 7.15. Soit un plan d’expérience pour mélanges D, constitué par
k expériences, adapté au modéle linéaire choisi. Pour le plan d’expérience
blogué orthogonalement D’ constitué des b blocs D1, ..., Dy obtenus a la suite
de b réplications du plan initial (i.e. V1 = 1,..,b , Dy = D) un test de
Uhypothése d’égalité des effets de blocs Hy : 7v; = v;” pour 1,5 =1,...,b
avec i # j contre Uhypothése Hy = Hy peut étre réalisé a Uaide de la statis-
tique :
k(G —=7,)°

202
ot 62 = SSE/(n—p) = MSE. La régle de décision est alors donnée par
(avec fo1,n—p fractile de la loi de Fisher a 1 et (n —p) ddl) :

T =

on rejette Hy au niveau o st t > fo 1.n—p-

Démonstration. Utilisons ici les résultats généraux du paragraphe 6.2.5 re-
latifs aux hypotheése de la forme ” A3 = a”. Sous la contrainte (C) du para-
graphe 7.7.2 la matrice du modele considéré est X* = [B* | X| (avec B*
matrice ”centrée” construite selon la démonstration de la proposition 7.13)
et donc ’hypothese Hy considérée ici a bien cette forme générale avec a = 0,
t3 = (*4* | 'b) et enfin A matrice & une seule ligne avec pour seuls éléments
non nuls A;; = 1 et Ay; = —1. On vérifie aisément que cette hypothese est
bien vérifiable (car Ker X* = {0}). Il en découle que I’hypothese Hy peut étre
testée a ’aide de la statistique suivante :

L (4B —a) [ax=x7)"" 1] (A5 -a)

ro?
~ -1
15t A [A (tx*x*)"t tA} AB

puisque r = rg (A) = 1. Or Ag =7; —7; donc :

T — @i_%)Q {A(tX*X*)_ltA}il.

o2

L’inverse de la matrice ! X * X * est connue explicitement (voir la démonstration
de la proposition 7.14) et donc :
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_ 1 b—1 -1 2
A(X X)) a=—|2(——)-2(=—)| ==
( ) k b b k
Ceci démontre bien le résultat énoncé pour tout couple d’effets de blocs de

~v*. On étend sans difficulté ce résultat lorsque l'effet v, du dernier bloc est
utilisé dans 'hypothése B
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Plans d’expérience pour facteurs qualitatifs

8.1 Introduction

Les plans présentés dans les chapitres précédents utilisent des facteurs quan-
titatifs c’est-a-dire directement mesurables a ’aide d’une grandeur physique
(température, masse, concentration, etc...). L’objet de ce chapitre est de
s’'intéresser maintenant aux problémes faisant intervenir des facteurs qual-
itatifs donc non directement quantifiables (couleur d’une peinture, variété de
blé, catégorie socio-professionelle, sexe, etc...). Le type de plan d’expérience
mis en ceuvre dans un tel contexte est fondamentalement différent des diverses
configurations étudiées jusqu’a présent.

Le modele principal de ce chapitre est le modele additif classique. Divers
plans d’expérience adaptés a l'analyse de ce modele sont présentés : plans
factoriels complets, plans fractionnaires obtenus a ’aide de la généralisation
de la notion de fraction réguliere, tables de Taguchi, etc... L’objectif principal
est, une nouvelle fois, d’obtenir des plans d’expérience de petite taille d’analyse
la plus simple possible. Ce dernier point entraine la définition naturelle de la
notion d’orthogonalité d’un plan d’expérience pour facteurs qualitatifs.

Ce chapitre est structuré de la maniere suivante. Une premiére partie est
consacrée a des généralités pour 'utilisation de facteurs qualitatifs telles que la
notion de codage, de contrainte d’identification ou bien encore d’orthogonalité
d’un plan d’expérience. Le modele additif est ensuite présenté ainsi que les
contraintes d’identification qui lui sont associées. Les plans d’expérience facto-
riels complets sont ensuite définis et analysés. La généralisation de la théorie
des fraction réguliéres au cas des plans pour facteurs qualitatifs est introduite
dans la section suivante. Enfin, divers cas plus généraux sont étudiés (nombre
de modalités des facteurs différents, non-premiers, etc...) et le modele & effets
d’interactions est présenté brievement. Un exemple d’application, illustré par
des codes SAS, est proposé en conclusion.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 303
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_8,
(© Springer-Verlag Berlin Heidelberg 2010
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8.2 Généralités

8.2.1 Codage des facteurs qualitatifs

Considérons ici un phénomene aléatoire dépendant de m facteurs qualitatifs et
supposons que le facteur i (i = 1, ..., m) peut prendre h; niveaux différents. On
dit alors que ce facteur a h; modalités. Afin de pouvoir uniformiser le traite-
ment mathématique des expériences réalisées il est nécessaire d’avoir recours
a un codage pour chacune des modalités utilisées. Deux techniques, présentées
ci-dessous, sont retenues tout au long de cet ouvrage afin d’atteindre cet ob-
jectif.

1) Codage naturel. Afin de quantifier chacune des modalités il est na-
turel d’affecter chacune d’elle & un entier naturel. Lorsque h; modalités sont
présentes on peut les coder & l'aide de I'ensemble {0,1,2,....,h; —1}. Il n’y a
pas de fagon unique pour réaliser un tel codage, il convient donc de choisir
arbitrairement quelle modalité est affectée & chacun des entiers de I’ensemble
précédent (le nombre total de choix possibles est donc égal a h;!).

2) Codage binaire. Le codage naturel est trés pratique pour décrire de fagon
simple et précise un plan d’expérience. Il s’avére cependant plus problématique
dans une optique de modélisation. En effet, chacune des modalités est alors
affectée a un entier naturel plus ou moins grand et ceci de fagon tout a fait
arbitraire (dans ’exemple donné a la suite la couleur rouge est affectée & une
valeur ” deux fois plus grande” que la couleur blanche ce qui, bien entendu, n’a
pas de sens concret). Afin de pallier cet inconvénient et de pouvoir comparer
les effets des différentes modalités entre elles il est alors classique d’utiliser un
codage binaire : la valeur 1 est affectée a la modalité lorsqu’elle est présente
dans P'expérience considérée, la valeur 0 lui est affectée sinon. Ceci conduit
donc a résumer toutes les expériences effectuées dans un tableau contenant
uniquement les valeurs 0 et 1 appelé matrice des indicatrices des modalités
(on parle aussi de tableau disjonctif).

| Exemple |

Une étude médicale est menée afin de mesurer I'impact psychologique
de la couleur d’un médicament sur l'amélioration de la santé du
malade. Deux facteurs qualitatifs sont étudiés : la couleur du médica-
ment avec les modalités dans I’ensemble {blanc, bleu, rouge} (h1 = 3)
et le sexe du patient avec les modalités cette fois dans 1’ensemble
{homme, femme} (hy = 2). Les trois premiéres expériences sont
réalisées de la maniere suivante :

Couleur | Sezxe

Ezpérience 1 blanc | homme
Ezxpérience 2 blanc | femme
Expérience 3 | rouge | femme
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Un codage naturel peut étre, par exemple, le suivant :

blanc (0) | homme (0)
bleu (1) | femme (1)
rouge (2)

Les trois expériences réalisées sont alors associées a la matrice du plan
d’expérience ci-dessous (la premiere colonne étant celle des modalités
de la couleur et la seconde celle des modalités du sexe) :

00
D={01
21

Dans lT'optique d’un codage binaire les expériences réalisées sont
représentées a ’aide de la matrice des indicatrices des modalités. Cette
matrice a toujours 3 lignes (pour les trois expériences) mais main-
tenant autant de colonnes que de modalités c’est-a-dire 5 au total. La
matrice du plan d’expérience est donnée ci-dessous, en affectant les
colonnes aux indicatrices des modalités suivantes (de gauche & droite)
: blanc, bleu, rouge, homme et femme.

100]10
D=[X1| X, ]={100]01
001]01

Les sous-matrices X7 et X5 sont les matrices d’indicatrices des modalités
des facteurs 1 et 2.

Remarque. 11 existe des ouvrages et des logiciels ol les h; modalités du fac-
teur ¢ sont codées naturellement & laide de I'ensemble {1,2,3, ..., h;} (i.e. le
niveau zéro n’est pas utilisé). On considére cependant ici I’ensemble de la
forme {0,1,2,...,h; — 1} car, comme il sera montré par la suite, il peut étre
identifié au groupe Z/h;Z lorsqu’il est muni de la loi d’addition modulo h;.
Dans le cas particulier ot seulement deux modalités interviennent alors les
groupes ({0,1},4) et ({—1,1}, x) sont isomorphes. Ceci justifie I'utilisation
alternative des niveaux —1 et +1 pour coder les modalités (dans le cas quali-
tatif) ou les niveaux extrémes (dans le cas quantitatif) d’un tel facteur comme
cela a déja été fait, par exemple, avec les plans factoriels a deux niveaux.

8.2.2 Notation standard des réponses

Dans le cas de m facteurs qualitatifs toute expérience peut étre repérée
par un vecteur de N™ contenant les divers codages naturels associés aux
modalités utilisées. Plus précisemment le vecteur en question est élément
du domaine expérimental £ ={0,1,2,...,h — 1} x {0,1,2,...,;ha — 1} X ... X
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{0,1,2, ..., hy, — 1}. Lorsque i1, ia,..., i, désignent les m codages naturels des
modalités de I'expérience réalisée, la réponse mesurée est alors notée :

Y (i1,42,...,im) ou bien Y i, ..

Si la seconde notation abrégée est utilisée on prendra garde a ne pas la con-
fondre avec la notation standard pour les réponses d’un plan pour mélanges
(voir le paragraphe 7.2.3). Lorsque r répétitions sont réalisées on distinguera
encore les différentes réponses mesurées a laide des valeurs (1), (2),...,(r)
placées en exposant de Y. Remarquons qu’'un plan d’expérience D va étre a
présent identifié a un sous-ensemble du domaine expérimental £. L’ensemble
I désignant tous les indices utilisés par le plan considéré on note alors :

D:{(ihig,...,im) el / IC 5}

Si 'expérience repérée par le vecteur (i1, g, ..., im) est répétée r > 1 fois on le
signifiera dans 1’ensemble D en la notant (iy, iz, ..., im)" -

| Exemple |

En reprenant I'exemple de la section précédente, les diverses réponses
mesurées sont repérées ici par :

Couleur Sexe Réponse

Ezp. 1 | blanc (0) | homme (0) | Y (0,0) ou Yy
Ezp. 2 | blanc (0) | femme (1) | Y (0,1) ou Yo,
Ezp. 3 | rouge (2) | femme (1) | Y (2,1) ou Yo,

Le plan d’expérience est : D = {(0,0),(0,1),(2,1)}. Si la premiére
expérience a été réalisée deux fois alors 'ensemble I = {(0,0), (0, 1),
(2,1)} est toujours le méme (i.e. aucune nouvelle expérience n’a été
réalisée) mais le plan d’expérience est maintenant : D = {(0,0)?, (0, 1),

(2,1)}.

8.2.3 Matrice d’incidence

Introduisons ici la notion de matrice d’incidence issue du croisement des
deux facteurs qualitatifs i et j (i,7 = 1,...,m avec i < j ). Une telle matrice,
notée Nj;, est définie par :

Nij = tXin

ou X; est la matrice des indicatrices des modalités du facteur 7. On désigne
dans la suite par A;; (I, ¢) le terme général de la matrice N;; € M (h;, h;) situé
a lintersection de la ligne [ et de la colonne c. Voici alors un certain nombre
de propriétés, immédiates a démontrer, pour toute matrice d’incidence :

1) Pentier naturel A;; (, ¢) représente le nombre de fois ou la [-iéme modalité
du facteur 7 et la c-ieme modalité du facteur j apparaissent simultanément
dans le plan d’expérience utilisé,
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2) la somme de tous les éléments de la matrice N;; donne le nombre
d’expériences :
hi hj

TL:ZZ)\” (Z,C),

=1 c=1

3) les sommes marginales (i.e. par ligne et par colonne) donnent les nombres
d’apparitions de chacunes des modalités des facteurs du plan utilisé. Si r; (1)
est le nombre d’occurences de la modalité [ du facteur ¢ alors :

h; h;
ri ()= Xij(le) etrj () = N (L)
c=1 =1

Remargue. On note aussi, de maniére plus condensée :
n=M\;(e,e) etr;(l)=Aj; (o) ,rj(c)=Nj(e,c).

Chaque point indique une sommation a réaliser par rapport a l’indice corre-
spondant.

| Exemple |

Reprenons I'exemple du paragraphe précédent. En considérant que le
premier facteur est la couleur et le second est le sexe il vient alors :

11
Nip=100
01

On en déduit que les seuls éléments non-nuls sont :
A2 (1,1) = A2(1,2) = M2(3,2) = 1.

Ceci montre bien que, par exemple, la troisieme modalité du facteur un
et la seconde modalité du facteur deux (i.e. comprimé rouge et patient
femme) apparaissent simultanément une seule fois dans le protocole
expérimental (il s’agit bien de la troisieme expérience). Concernant
maintenant les marges du tableau Nis il vient :

1 1 7’1(1):2

N12 0 0 7“1(2):0
0 1 m(3) =1
ro(1)=1[mr(2)=2| n=3

Ceci montre, par exemple, que 7o (2
ont participé a I’expérimentation.
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8.2.4 Modele additif

Considérons ici un modele trés souvent utilisé lorsque m facteurs qualitat-
ifs avec respectivement hq, hs, ..., by, modalités interviennent. Un tel modele
postule que les effets des différents facteurs s’ajoutent les uns aux autres
de maniere indépendante. Ce modele statistique peut toujours étre écrit
mathématiquement sous la forme générale Y (z) = f(x) 4+ e(z) avec ici
x = (i1,12,...,%m) € & vecteur associé aux différents codages naturels de
Pexpérience réalisée (voir le paragraphe 8.2.2). On dit que Pon utilise un
modele additif si et seulement si :

F(i1yi2, eerim) = Bo + B0 + 65 + . 4 gl

On peut encore écrire ce modele sous la forme complete donnée ci-dessous :

hi—1 ho—1 hm—1
Flinyingeyim) = Bot D 8700+ Y 05 00ga ot Y B85 5,
Jj1=0 Jj2=0 Im=0

ol d;; est le symbole de Kronecker (i.e. d;; =1 si i = j, §;; = 0 sinon). Pour
un tel modele on dit aussi que (avec j =1,...,met i =0,....h; — 1) :

{50 (i.e. la constante) est 'effet moyen général,

5}“ est I'effet de la modalité i du facteur j.

Le nombre total de parameétres (noté p* pour le distinguer du nombre de
parametres inconnus & estimer p < p*) de ce modele est donné par :

Notons enfin que matriciellement 1’écriture du modele additif est Y = XG+¢
avec :
X = []In | D] = []In | X1|...| Xm}

ou X; (i =1,...,m) est la matrice des indicatrices des modalités du facteur i.
Le vecteur 3 € RP" contient tous les parametres du modele, il peut naturelle-
ment étre partitionné en :

B="(Bo| B || Bm )

ott le vecteur 3; € R (i = 1,...,m) regroupe tous les effets relatifs au fac-
teur i (attention & ne pas confondre le vecteur des effets des modalités 3;
pour facteurs qualitatifs et le réel (§; traduisant l'effet linéaire d’un facteur
quantitatif).
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| Exemple |

Toujours pour l'exemple utilisé depuis le début de ce chapitre, le
modele additif est donné par la relation :

2 1
f(inia) = Bo+ B 0igy + 3 B 00 = o + B + 817

j1=0 Jj2=0

avec (i1,12) € £ ={0,1,2} x {0,1}, 5¥” étant Deffet de la couleur iy
sur la réponse et ,Bgz] Peffet du sexe i sur la réponse. Matricellement
il vient donc:

1110010 Bo i g0
X=|1/100]01 |,8=(5 |.6=]pV 752=<%1])-
1/001]01 B2 2 &

8.2.5 Contraintes d’identification

Il sera prouvé par la suite que 'utilisation de facteurs qualitatifs entraine
automatiquement une surparamétrisation des modeles utilisés. En d’autres
termes la matrice du modele X € M (n,p*) n’est jamais de plein rang.
Il en résulte que sous cette forme les équations normales n’admettent pas
une unique solution. Plusieurs techniques sont utilisables afin de rendre un
tel modele régulier. L’une d’elle consiste tout simplement a supprimer des
modalités (c’est-a-dire des colonnes de la matrice du modele) jusqu’a ce que
X soit de plein rang (tout comme au chapitre 6 ot 'introduction d’effets de
blocs a été faite tout en supprimant l'effet moyen général 5p). On s’oriente
plutét dans ce chapitre vers des contraintes d’identifications identiques a celles
déja utilisées avec les plans pour mélanges en blocs. Considérons alors, de
maniere générale, un modele statistique surparamétré sous la forme matricielle
Y = X[ +¢e avecdonc X € M (n,p*) telle que rg (X) < p*. Afin de rendre un
tel modele régulier on impose w contraintes linéaires supplémentaires données
matriciellement par :

Cp =0 avec C € M(w,p*).

On dit qu’il s’agit de contraintes d’identification (on parle aussi de con-
traintes d’identification minimales) pour § des lors que :

KerC @ Ker X = R?"

ou @ désigne classiquement 'opérateur de somme directe de deux sous-espaces
vectoriels. On montre ensuite (voir par exemple Pouvrage de Searle [88]) que
I'unique estimateur des moindres carrés de 3 sous cette contrainte est solution
du systeme d’équations normales suivant :

tXXB=tXY
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8.2.6 Application au modele additif

Il a déja été montré que la matrice du modele additif est :
X = [L|Xu] | Xom]

avec X; (i = 1,...,m) matrice des indicatrices des modalités du facteur i.
Il en résulte immédiatement qu’un tel modele est toujours surparamétré
puisque la somme des colonnes de chacune des matrices d’indicatrices X; est
égale a I,. Donc, quel que soit le plan d’expérience mis en oeuvre, le rang
de la matrice X est toujours inférieur a (p* —m) puisqu’il existe autant de
groupes de colonnes liées par la relation présentée ci-dessus que de matrices
d’indicatrices X;. On supposera toujours par la suite que l'on utilise un plan
d’expérience tel que la matrice du modele X ne présente aucun autre lien
entre ses colonnes, donc :

rg(X)=p*—m.

Déterminons maintenant des contraintes d’identification permettant de rendre
ce modele régulier. Une solution classique consiste a utiliser m contraintes
linéaires telles que C8 = 0 avec C' € M (m, p*) donnée par :

0 t]Ihl t0h2 tOhm
oo O tO.hl tﬂ.hz tO.hm
0 tOhl t0h2 t]Ihm

On vérifie alors sans difficulté que KerC' @ Ker X = R?", d’ou le résultat
suivant :

Proposition 8.1. Une contrainte d’identification pour le vecteur (3 des
parameétres du modéle additif a m facteurs consiste a imposer a chaque sous-
vecteur (3; (i = 1,...,m) des effets du facteur i d’étre un contraste de R":,
c’est-a-dire que :

h;—1 )
Vi=1l,..m, Y =0
=0

Ces contraintes seront dites contraintes d’identification classiques. Il en
résulte que le nombre de paramétres inconnus du modele est alors :

m
p:p*—mzl—i—Z(hi—l).

i=1
On dit parfois, concernant le nombre de parametres & estimer, qu’un facteur
a h; modalités est associé a (h; — 1) degrés de liberté. La somme de tous
les degrés de liberté (avec la constante By associée & un ddl) donne ainsi la
valeur de p. Attention & ne pas confondre le nombre total de parametres p*
du modele utilisé avec le nombre p < p* de parametres du modele régulier
sous la contrainte C3 = 0.
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8.2.7 Plan d’expérience orthogonal

L’étude des plans d’expérience pour facteurs quantitatifs a montré qu’un ob-
jectif naturel est la recherche de configurations les plus simples possibles (au
sens des équations normales) c’est-a-dire telles que la matrice ' X X soit diago-
nale. De tels plans d’expérience ont été qualifiés d’orthogonaux. Le probleme
est exactement le méme ici mais la forme particuliere de la matrice du modele
entraine qu'il est impossible d’atteindre un tel objectif (principalement & cause
du fait que X est une matrice d’indicatrices donc tous ses éléments sont posi-
tifs ou nuls). Afin d’obtenir cependant la matrice * X X la plus simple possible
il est possible de s’orienter vers la notion d’orthogonalité définie de la maniere
suivante.

Définition 8.2. Deux facteurs qualitatifs utilisés dans un plan d’expérience
sont orthogonaux si et seulement si tous les couples de modalités de ces fac-
teurs apparaissent un méme nombre de fois dans le plan d’expérience. Un
plan d’expérience a m facteurs qualitatifs est dit orthogonal si et seulement
st tous les facteurs sont orthogonauz deuz-a-deus.

D’apres les résultats du paragraphe 8.2.3 relatifs a I'interprétation des ma-
trices d’incidence il est posible de donner une définition équivalente de
lorthogonalité :

Corollaire 8.3. Un plan d’expérience a m facteurs qualitatifs est orthogo-
nal si et seulement si chacune des matrices d’incidence vérifie :

N i,j = 1, ..., avec ) #] 5 Nij = tXin = )\ithihj

avec donc X;; € N nombre de fois ou chacune des modalités des facteurs
i et j apparaissent simultanément dans le plan et Jg, 4 = L4, '1,, matrice
constituée par l'unique valeur 1. Le plan d’expérience sera de plus qualifié
d’uniformément orthogonal si et seulement si :

Vi,j=1,..,m avec i # j, Nijj = tXin = AJh;h;-

Ce corollaire montre bien que 'objectif de simplification des équations nor-
males est atteint puisque les diverses matrices d’incidences (intervenant dans
I’écriture de X X)) ont donc ici la forme la plus simple possible.
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8.2.8 Propriétés des plans orthogonaux

Détaillons ici les principales propriétés d'un plan d’expérience orthogonal. En
appliquant directement les résultats énoncés au paragraphe 8.2.3 dans le cas
particulier des plans orthogonaux il vient :

Proposition 8.4. Soit un plan d’expérience orthogonal pour m facteurs
qualitatifs a hq, ..., h,, modalités.

1) La somme de tous les termes de N;; entraine que :
Vi, j=1,...,m avec i # j,n = hihj\;.

1l en découle que lorsque le plan est orthogonal le nombre d’expérience doit
forcément étre un multiple de tous les produits de la forme h;h;. Le nombre
d’expérience d’un plan orthogonal vérifie donc :

n > PPCM (hihj [/ i,j=1,...,m avec i # j).

2) La somme des termes de N;; par ligne (ou par colonne) entraine que les
nombres d’occurences de chacune des modalités du facteur i sont constantes
données par :

. n
Vi= 1,...,m , Ty = h/j)\ij = .

hi

Remarquons que, puisque X; est par définition la matrice des indicatrices
des modalités du facteur 4, la proposition 8.4 entraine aussi les relations ma-
tricielles suivantes (V i,7 = 1,...,m avec i # j) :

tXiXi = TiI}” = hj)\ijlhi et t]InXi = Titﬂhi = hj)\ijt]lhi.

Comme X = []In|X 1|...|Xm] il en découle la forme générale simplifiée donnée
ci-dessous concernant la matrice X X relative a tout plan d’expérience or-
thogonal :

t t t
n r1'Ih, ro'lp, v | rmp,,
il | ey, | A2dhahe | oo [ Aimdhih,
26)()( = T2Hh2 A12<]h2h1 r21h2 e A2’!71‘]]7.2}7,7,1
Tl [ AMmThmhy [A2mIhmhs| <o+ | Tmdho,

On vérifie ensuite que le fait de tenir compte des contraintes d’identification
classiques transforme *X X en une matrice diagonale par blocs facilement in-
versible. Ceci entraine le résultat principal ci-dessous concernant I’estimation
des parametres du modele. La notation classique Y est utilisée pour désigner
la moyenne générale relative a toutes les réponses observées et on pose :
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Yim : somme des réponses ou seule la modalité j du facteur ¢ intervient,

?Ej ]

: moyenne des réponses ou seule la modalité j du facteur ¢ intervient.

Remarquons que lorsque le plan est orthogonal la somme Yi[j] est constituée

par r; éléments.

Proposition 8.5. [<] Soit un plan d’ezpérience orthogonal pour m facteurs
qualitatifs a hy, ..., hy, modalités, analysé a l'aide du modéle additif. Les es-
timateurs des moindres carrés de [l’effet moyen général By ainsi que de
chacun des paramétres ,6’1[]] Mi=1,...metVj=0,.. h —1) sont donnés
par : ]

Bo=Y et BV =7V _7.

Concernant la dispersion de ces estimateurs il vient :
2

~ ey 2
Var 3y = T et Varﬁl[]] = G—(hi— 1).
n n

Lorsque le nombre de facteurs étudiés est faible on utilise parfois les no-
tations simplifiées ci-dessous (ici pour deux facteurs qualitatifs ayant 2 et 3
modalités) :

{ B =V -V, ! le.—Y
B =V -V 5[” Vo -V, 00 =V Y.

Le résultat général de la proposition 8.5 permet maintenant d’obtenir facile-
ment les diverses réponses (moyennes) prédites par le modele puisque la
réponse prédite au point x = (i1, iz, ..., i) € € associé aux codages naturels
1, ..., 1, est donnée par :

Y (z) = o+ B + By + ..+ Blin),
Pour quantifier la qualité des diverses prédictions il vient :
Proposition 8.6. [<] Soit un plan d’expérience orthogonal pour m fac-

teurs qualitatifs a hq, ..., hy, modalités, analysé a l'aide du modéle additif. La
dispersion de la réponse prédite au point x = (i1,i2,...,0m) € € est :

VarY (z) = %2 <1+i(hi—1)) .

8.2.9 Analyse de la variance

Un modele pour facteurs qualitatifs ayant été ajusté, le probleme de la qualité
de l'ajustement réalisé se pose naturellement. Les techniques d’analyse de
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la variance présentées dans le chapitre 2 sont toujours utilisables puisque
I’analyse de la variance est basée sur des décompositions adéquates de réponses
numériques (toujours considérées ici). Il en résulte que toutes les techniques
utilisées précédemment (y compris la décomposition plus fine de la somme des
carrés due & lerreur & Paide d’expériences répétées) restent valables.

8.3 Plans factoriels complets

8.3.1 Définition

Généralisons ici la notion de plan d’expérience factoriel complet déja vue
au chapitre 3 dans le cas de facteurs quantitatifs ramenés a deux niveaux
(codés alors par £1). Dans ce cas un plan factoriel complet était défini comme
I'ensemble de tous les sommets du cube [—1,1]", c’est-a-dire 1’ensemble
obtenu & l'aide des produits cartésiens {—1,1} x ... x {=1,1} = {-1,1}".
Cette définition est généralisable sans la moindre difficulté au cas ou plus de
deux modalités interviennent.

Définition 8.7. Soit un phénoméne aléatoire dépendant de m facteurs quali-
tatifs a hy, ..., hy, modalités. On appelle plan d’expérience factoriel complet
toute configuration D constituée par l’ensemble des codages naturels :

D={0,...h1 — 1} x {0, ....;hg — 1} x ... x {0, ..., hyy, — 1}.

m
Le nombre d’expériences d’un tel plan est donc : n = Hhk'

k=1
Un plan factoriel complet pour m facteur qualitatifs a hq, ..., hy, modalités sera
désigné plus rapidement dans la suite par la notation suivante généralisant
celle introduite au chapitre 3 (FD venant toujours de Factorial Design) :

FD(hy X ha X ... X hyy) .

Si tous les facteur ont le méme nombre h de modalités on dit que le plan
d’expérience est symétrique (le nombre d’expériences & réaliser est donc
h™).

Lorsque h = 2 on retrouve bien, a un codage pres, les plans factoriels complets
du chapitre 3 mais alors la notion de rajout d’expériences ”centrales” n’a plus
de sens. Concernant maintenant ’écriture de la matrice du plan d’expérience
on généralise ici 'ordre standard proposé par Yates (voir le paragraphe
3.3.1) en procédant de la maniere suivante :

1) la premiere ligne de D n’est constituée que des valeurs 0 (i.e. la premiere
expérience est réalisée en utilisant la modalité 0 pour tous les facteurs),
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2) la premiere colonne de D est obtenue en répétant la séquence 0, 1, ..., hy —1
autant de fois que nécessaire. La seconde colonne est obtenue de maniere
identique mais chacune des modalités est répétée h; fois. La troisieme colonne
est obtenue de maniere identique mais chacune des modalités est répétée hihs
fois, ete...

| Exemple |

Considérons un phénomene aléatoire dépendant de 3 facteurs tels que
deux sont a 2 modalités et un est a 3 modalités. Le plan factoriel
complet adapté a ce phénomene est de type F'D (223). Il est constitué
par les n = 12 expériences décrites ci-dessous dans ’ordre standard
(associées au vecteur Y des réponses écrit parallelement) :

[000] Yoo0o
100 Y100
010 Yo10
110 Yi10
001 Yoo1
101 Yio1

D= 011 et Y = Youu
111 Yii1
002 Yo02
102 Yio2
012 Yo1o
[ 112 | Y112 |

8.3.2 Propriétés

Il a été montré au paragraphe 8.2.8 tout l'intérét qu’il y a a considérer des
structures orthogonales. Soit alors un plan d’expérience factoriel complet sous
la forme la plus générale possible, c’est-a-dire pour m facteurs qualitatifs
a hi, ..., h, modalités. Considérons les facteurs i et j (i # j) de ce plan.
Comme le plan factoriel complet contient toutes les expériences possibles il
est clair que le nombre d’expériences faisant intervenir la modalité [ du facteur
i (0 <1< h;—1) ainsi que la modalité ¢ du facteur j (0 <c<h; —1) est :

" n
Aij (1 ¢) = H . = hih; Hhk - hih;
k= k

-1 =1 J
ki et kj

Le résultat obtenu est indépendant des modalités [ et ¢ choisies et permet
donc de dire que tout plan factoriel complet pour m facteurs qualitatifs a
hi, ..., h;y modalités est un plan d’expérience orthogonal tel que :

m
Vi, j=1,...,maveci#j, \ij= hinhj oflnzkl:[lhk-
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Il découle aussi de la proposition 8.4 que le nombre d’occurences de chacune
des modalités du facteur ¢ est donc égal a :

I

D’apres la proposition 8.5 ce type de plan d’expérience permet d’estimer
les parametres du modele additif ainsi que leurs dispersions de maniére
extrémement simple.

Exemple
|

Reprenons I'exemple du plan factoriel complet FD (223) du para-
graphe 8.3.1. Un tel plan est donc orthogonal tel que (puisque n =
223:12, h1:h2:2€th3:3):

=2

n n
T 2t A= e

Le nombre d’occurences de chacunes des modalités des facteurs est :

Les estimateurs des moindres carrés des parametres du modele sont
alors au nombre de p* = 8. Ils sont donnés par :

Bo=Y,
[0] Y[O] Y, [1] 7[1]_7’
yzyy—y i T T

A:[))O] :7?] Y, 5[1] _ gll Y, 5[2] ]_7_

avec, par exemple, sous forme détaillée :
—=[0] = 1
Y3 =Y = 1 (Yo00 + Y100 + Yo10 + Y110) -

Les dispersions de ces estimateurs sont enfin :

R 2
Var 3y = % , Var,@’lj] = Var []] = E et Varﬂm =5

8.4 Fractions régulieres de plans factoriels

Les résultats de la section précédente conduisent toujours a la méme con-
clusion concernant les plans complets. En I'occurence leur principale qualité
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est liée a la facilité d’analyse puisque les estimateurs des moindres carrés du
modele sont toujours obtenus tres facilement. En contrepartie leur principal
défaut est encore leur taille qui, sauf cas particulier ou peu de facteurs sont
utilisés, est généralement bien supérieure au nombre de parameétres a estimer
dans le modele additif, i.e. :

m m

p=1+Z(hi—1)<<n:Hhk.

=1 k=1

Détaillons les méthodes permettant de garder qu’une partie des expériences
du plan complet tout en conservant d’intéressantes propriétés telles que
lorthogonalité. Un tel sous-ensemble est encore qualifié de fraction réguliere
du plan complet et généralise la théorie présentée a la section 3.4. Les pre-
miers travaux relatifs aux fractions régulieres a plus de deux niveaux sont dus
a Bose [6]. De multiples auteurs ont ensuite continué dans cette voie. Citons
les chercheurs francophones Kobilinsky [59], Kobilinsky et Monod [60] ou bien
encore El Mossadeq et al. [38].

Les résultats les plus généraux présentés dans cette section sont relatifs
a m facteurs qualitatifs tels que chacun d’eux a toujours le méme nombre
de modalités (noté h). Le cas ou les nombres de modalités sont différents
(on parle alors de fractions asymétriques) sera brieévement présenté dans la
section suivante. L’introduction ci-dessous fait le lien avec ce qui a déja été
vu dans le cas de deux niveaux.

8.4.1 Cas particulier des facteurs a deux modalités

Revenons ici a la théorie des fractions régulieres de plans factoriels dans le
cadre de facteurs quantitatifs ol seulement les deux niveaux extrémes sont
considérés. Il est alors possible de réutiliser tous les résultats obtenus et de
les adapter a des facteurs qualitatifs & h = 2 modalités via la correspondance
des codages donnée par 'application ¢ telle que :

o

Facteurs quantitatifs : _T_i Facteurs qualitatifs : o (_T_B - (1) .

La transformation des codages doit obligatoirement étre effectuée comme pro-
posé ici afin d’obtenir un isomorphisme entre les groupes ({—1,1}, %) et
(Z/2Z,+). Contrairement au cas des facteurs quantitatifs, le rajout d’une ou
plusieurs expériences centrales n’a aucun sens maintenant puisque seulement
deux modalités sont, par hypothese, disponibles. Transposons sur un exemple
simple, avec seulement m = 3 facteurs, la notion de fraction réguliere. Le plan
factoriel complet a ici pour matrice (avec & gauche les codages {—1,1} et &
droite les codages {0, 1}).
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[—1 -1 —-1] [000]

1-1-1 100

-1 1-1 010

1 1-1 110

Dy = |11 1] Por=1g01
1-1 1 101

-1 1 1 011

| 1 1 1] [ 111]

Il a été montré que pour des facteurs quantitatifs il est nécessaire que la
fraction réguliere soit de résolution au moins égale a I1I afin de pouvoir ajuster
un modele polynomial d’ordre un. Soit alors la fraction réguliere de type 2?1_1 !
définie par la relation I =123. La matrice du plan est donnée ci-dessous (avec
les mémes conventions pour les codages) :

11 1 000
“1-1 1 110
Dy =141 11| Pon =119
1-1-1 011

Le plan d’expérience pour facteurs qualitatifs obtenu est bien orthogonal
puisque :

11
Ni2 = N1z = Naz = [11]-

Avec les codages {0,1} la sélection des expériences de la fraction réguliere a
été réalisée en ne gardant que les lignes de la matrice du plan complet dont
la somme des codages des modalités est multiple de 2. En d’autres termes,
en désignant respectivement par zi, xo et x3 les codages des modalités des
facteurs 1, 2 et 3 on a conservé ici uniquement les expériences telles que la
somme de ces trois quantités donne toujours un reste nul lors de la division
euclidienne par 2 :
$1+I2+I3 50[2]

Considérons maintenant la fraction réguliere de résolution I définie (pour des
facteurs quantitatifs) par la relation I =1. Elle est donc associée & la matrice
suivante pour facteurs qualitatifs :

000
010
Doy = 1901

011

Il en découle immédiatement qu’un tel plan n’est pas orthogonal car la
proposition 8.4 n’est pas vérifiée dans la mesure ou le nombre d’occurences
des modalités de chacun des facteurs n’est pas constante (en effet r (0) = 4
mais r; (1) = 0).
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Considérons ensuite la fraction réguliere de résolution II définie (pour des
facteurs quantitatifs) par la relation I =12. Elle est donc associée & la matrice
suivante pour facteurs qualitatifs :

000
001
Py =1119

111

Une nouvelle fois un tel plan n’est pas orthogonal car N15 = 215 # A12J2. On
constate donc sur cet exemple que, tout comme pour des facteurs quantitatifs,
il semble nécessaire d’utiliser encore une fraction réguliere de résolution III
afin de conserver la propriété d’orthogonalité.

8.4.2 Cas général

Considérons ici de maniere générale m facteurs qualitatifs ayant chacun h
modalités. Généralisons I'addition présentée au paragraphe 8.4.1 (toujours
notée simplement +) en considérant que la somme de deux entiers s’entend
maintenant modulo h (i.e. on ne conserve donc que le reste de la division
euclidienne par 'entier h). L’exemple ci-dessous présente la matrice du plan D
associée a la fraction réguliere obtenue pour m = 3 facteurs qualitatifs a h = 3
modalités en ne conservant que les expériences du plan factoriel vérifiant la
relation z1 + o + 23 = 03] :

[000]
012
021
120

D=|102
111
210
201

[222]

Le plan d’expérience ainsi défini est bien orthogonal puisque :

111
Nig=Nig=Nyz= 111
111

Il est dans certains cas plus facile d’écrire le plan d’expérience sous forme
complexe. Il s’agit alors d’utiliser non pas la matrice du plan D en codage
naturel mais de maniere équivalente la matrice complexe D¢ selon la regle
suivante : la modalité ¢ de D est représentée dans D¢ par w? oll w est un
nombre complexe tel que w” = 1. On a donc ici :
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[WO WO WO
WO wt w?
WO w? w!
wl w? Wl
De = |wh w® w?
wh wl w!
w? wh Wl
w? w0 w!
w? w? w?

En d’autres termes on désigne alors par w toute racine h-ieme de l'unité
(par exemple w = exp (i27/h)). Le lecteur pourra se référer a Pannexe A
pour plus d’informations concernant ces matrices. L’utilisation de la forme
complexe du plan d’expérience rend alors plus aisée la définition de la fraction
réguliere utilisée car en désignant les colonnes de la matrice complexe du
plan factoriel complet par 1, 2 et 3 la matrice D¢ de la fraction réguliere
présentée ci-dessus correspond a la sélection des expériences telles que I =123
(en désignant toujours multiplicativement le produit d’Hadamard de deux
vecteurs). On a donc la correspondance suivante :

21+ x93+ 23 =0[3] dans D < 1=123 dans Dc¢.

Que la matrice de la fraction réguliere soit écrite sous forme de codage na-
turel ou bien sous forme complexe on la décrira toujours dans la suite par
une relation mutliplicative de la forme I =123 et on dit encore que 123 est
un générateur de la fraction. L’intérét d’utiliser ce type d’écriture est lié a
sa simplicité mais aussi au fait qu’elle généralise naturellement les notations
introduites a la section 3.4 pour des facteurs quantitatifs. Deux autres exem-
ples de fractions régulieres sont présentés ci-dessous toujours dans le cas de
m = 3 facteurs a h = 3 modalités.

| Exemple |
La fraction réguliere définie par :  La fraction réguliere définie par :
[=1223 wl =12223
(i.e. 21 + 229+ 23 =0[3]) a (i.e. 2m1 +2z2 + 23 =1[3]) a
pour matrice : pour matrice :
(0007 [001]
011 012
022 020
102 102
D=|110 D=1]110
121 121
201 200
212 211
1220 ] 1222

On obtient encore dans ces deux cas des plans orthogonaux.
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8.4.3 Générateurs d’une fraction réguliere

Formalisons le type de constructions présentées précédemment a 'aide de la
notion de générateur. Dans le cas de m facteurs qualitatifs & h modalités
on considere toutes les quantités de la forme suivante (avec 1, 2,..., m les
colonnes de la matrice du plan factoriel complet et le produit d’Hadamard
noté multiplicativement) :

M =1%12%23% _ (m—1)*" " 'm™"

avec ajq, ..., Qu;, entiers naturels tels que (V¢ = 1,...,m) 0 < a; < h puisque,
par hypothese, i” = I. On dit toujours que M est un mot de longueur
k ou l'entier k désigne le nombre des entiers «; non-nuls. Etant donné un
ensemble de mots on définit alors la notion de famille indépendante a ’aide
de la définition suivante :

Définition 8.8. Soit l’ensemble {My,Ma,...,M,} de q mots relatifs ¢ m
facteurs qualitatifs a h modalités. Cette famille est liée si et seulement si :

Jie{l,qt / Mi= © M)
jeJ

avec J C{1l,...,q} —{i} et Vj € J,0<p; <h. Une famille qui n’est pas liée
est une famille indépendante.

Illustrons ceci a ’aide d’un exemple :

| Exemple

Dans le cas ou h = 5 modalités sont considérées la famille
{12232, 122433, 132} est une famille liée car :

(1228%) (122'8%) = 1%2°3° = 1%2 puisque 3° =T et 2° =2 (2°).
A partir de ceci une fraction réguliére est une nouvelle fois définie par :

Définition 8.9. Une fraction réguliére de plan factoriel complet est
déterminée par la donnée d’une famille de q mots indépendants
{My, My, ..., My} appelés générateurs. On note alors :

I=M, =M,=..=M,.

On désigne de méme dans la suite par G le groupe engendré par les q
générateurs de la fraction réguliére.

Remargue. La définition 8.9 introduit une fraction réguliere en ne conservant
que les expériences telles que le produit d’Hadamard des diverses colonnes
considérées du plan complet soit toujours égal au vecteur I. Seulement ce type
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de fraction, parfois qualifiée de fraction principale, sera considéré dans la
suite. Il ne faut cependant pas oublier que lorsque h modalités interviennent
on peut utiliser la fraction réguliere principale définie par I =123 mais aussi
les fractions régulieres telles que (avec toujours w = exp (i27/h)) :

wl =123 , w?’1 =123, ..., "I =123.

A partir d’'un méme générateur on peut donc utiliser h fractions régulieres
différentes.

Connaissant les générateurs d’une fraction réguliere le probleme de la
détermination complete du groupe G se pose ensuite. On a alors le résultat
suivant :

Proposition 8.10. [<] Soit m facteurs qualitatifs tels que chacun d’euz a un
nombre premier h de modalités. Le groupe G engendré par les q générateurs

d’une fraction réguliére est un groupe fini constitué par h? éléments.

Illustrons ceci a ’aide d’un exemple :

| Exemple |

Considérons la fraction réguliere du plan factoriel complet pour m = 4
facteurs a h = 3 modalités définie par :

I =123 = 2324,

D’apres la démonstration de la proposition 8.10 on obtient les 32 = 9
éléments du groupe G en considérant I’élément neutre I, toutes les
puissances successives de chacun des générateurs (i.e. 123 et 122232
puis 2324 et 22342) et enfin tous les produits possibles deux a deux
(i.e. (123)(23%4) = 1224, (1%223?) (23%4) = 1234, (123) (2?34?) =
13242 et (1%223?) (2234%) = 1%24?). Le groupe G est donc :

G ={I,123,23%4,1%2%3% 2347 12°4,1%34,13%4% 1%24°} .

Le probleme se pose ensuite de savoir sous quelles conditions une frac-
tion réguliere va générer un plan d’expérience orthogonal. On généralise alors
naturellement la notion de résolution d’une fraction réguliere a plus de deux
modalités (avec la définition de longueur d’un mot proposée au début de cette
section) :

Définition 8.11. On appelle résolution d’une fraction réguliére l’entier R
égal a la plus petite longueur des éléments de G.

Il est prouvé dans la section suivante que ’on a tout intérét en pratique a
utiliser des fractions régulieres associées a la résolution la plus élevée possible.
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| Exemple |

Reprenons 'exemple précédent pour m = 4 facteurs a h = 3 modalités
et la fraction réguliere définie par :

I =123 = 2324,

La structure du groupe G des générateurs de la fraction a été déterminé
et ce groupe n’est constitué que par des éléments de longueur égale a
3 (I'élément neutre I étant exclu). Il en résulte donc que la fraction
réguliere considérée ici est de résolution III.

Tout comme dans le cas ou seulement deux niveaux étaient considérés le
nombre d’expériences d’une fraction réguliére est lié au nombre de générateurs
par :

Proposition 8.12. [< (Annexe A) | Soit m facteurs qualitatifs & h modalités
avec h nombre premier. Le nombre d’expériences de toute fraction réquliere
obtenue a l'aide de q générateurs est donné par :

n=h""9,

Ceci conduit dans la suite a noter Ijm--¢ au lieu de I dans la définition
des générateurs afin de préciser le nombre d’expériences a réaliser. De méme
on notera h'y ¢ pour désigner une fraction réguliere de résolution R pour m
facteurs a h modalités obtenue a l'aide de g générateurs.

8.4.4 Fractions réguliéres de résolution III

Il a été montré au chapitre 3 (pour un modele d’ordre un) qu’il faut obliga-
toirement des fractions régulieres de résolution III afin d’obtenir la propriété
d’orthogonalité. On a maintenant le résultat similaire suivant :

Proposition 8.13. [< (Annexe A) | Soit m facteurs qualitatifs & h modalités
avec h nombre premier. Toute fraction réguliére de plan factoriel complet de

résolution égale & III (ou plus) est un plan d’expérience orthogonal.

Illustrons ceci a ’aide d’un exemple.

Exemple
|

Reprenons l'exemple de la fraction réguliere définie dans la section
précédente (pour m = 4 facteurs & h = 3 modalités) avec :

I =123 = 23%4.

Il a été montré qu’il s’agit d’une fraction réguliere de type 3}11}2. Elle
est donnée en codage naturel par :
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[0000]
0121
0212
1022

D={1201
1110
2011
2102

(2220

On obtient donc bien ici un plan d’expérience orthogonal. Ce plan est
de plus uniformément orthogonal puisque :

Vi,j=1,..,4aveci#j, Njj=Js (donc A =1).

Remarquons de plus que ce plan d’expérience est saturé puisqu’il est
constitué par n = 9 expériences et le modele additif considéré a aussi
p = 9 parametres inconnus a estimer.

8.5 Autres types de plans fractionnaires

Abordons dans cette section le vaste probleme de la recherche d’'un plan
d’expérience, de préférence orthogonal, dans le cas général ou les nombres
de modalités de chacun des facteurs ne sont plus tous égaux a un nombre
premier comme dans la théorie développée pour les fractions régulieres.

8.5.1 Existence de plans orthogonaux de petite taille

Dans le cas général le probleme de I'existence éventuelle d’un plan d’expérience
orthogonal de petite taille se pose immédiatement. En effet, il a déja été
montré (voir le paragraphe 8.3.2) qu’il est toujours possible d’obtenir un
plan d’expérience orthogonal par le biais du plan factoriel complet. Le nom-
bre d’expériences de celui-ci étant souvent prohibitif une condition nécessaire
d’existence d’un plan orthogonal de plus petite taille peut étre utile. Une telle
condition nécessaire (mais pas suffisante) a déja été donnée a la proposition 8.4
puisque si un plan d’expérience est orthogonal alors le nombre d’expériences
vérifie (avec hy, ..., h,, nombre de modalités de chacun des facteurs) :

n > PPCM (hih; [/ i,j=1,..,m avec i # j).

Cette relation permet de déterminer la taille minimale théorique d’un plan
orthogonal. Elle est particulierement utile dans tous les cas ou il est impossible
de réduire la taille du plan factoriel complet. Ceci est illustré dans 'exemple
suivant.



8.5 Autres types de plans fractionnaires 325

| Exemple

Considérons un phénomene aléatoire dépendant de m = 3 facteurs a
h1 =2, ho = 3 et hy = 4 modalités. Le nombre d’expérience de tout
plan orthogonal vérifie alors :

n > PPCM (6,8,12) = 24.

On en déduit qu’il est ici impossible d’obtenir un plan d’expérience
orthogonal plus petit que le plan d’expérience factoriel complet a n =
2 x 3 x 4 = 24 expériences.

De maniere plus générale la table 8.1 détaille toutes les situations pouvant
se présenter lorsque 2, 3 ou 4 modalités interviennent (cas trés courant en
pratique).

Table 8.1. Tailles minimales des plans orthogonaux.

Rep. Fact.| Taille PC. | Taille PO. || Reduc. Impossible
(ms,0,0) 2m2 4 si mg =2
(0,ms,0) 3ms 9 simg =2
(0,0, my) 4ma 16 simy =2
(m2,1,0)| 2723 12 Si g = 2
(m2,0,1) | 2724 8 -
(1,m3,0) | 2.37 18 Ep—
(0,ms3,1) 3m34 36 simg =2
(1,0,my) | 2.4™ 16 -
(0,1,m4) 3.4™4 48 simg =2
(mg,ms,0) | 27M23Ms 36 si (ma, m3) = (2,2)
(ma,0,mg) | 27247 16 -
(0,m3z,myq) | 37M34™4 144 si (m3, mq) = (2,2)
(m,L,1) | 122 12 -
(Lma, 1) | 837 72 Sy = 2
(1, L,ms) | 6.4 18 -
(mz,ma, 1) | 2723734 72 5
(a2, 1,ma) | 2723471 18 -
(1,m3, mq) | 2.3747m 144 5
| (m2,m3,my) | 2m23ma4m4 | 144 |- |

La colonne "Rep. Fact.” permet de repérer la répartition des différents fac-
teurs de la maniére suivante : le triplet (ms, ms, my) signifie que ms facteurs &
2 modalités, ms facteurs a 3 modalités et enfin m4 facteurs & 4 modalités sont
utilisés. Remarquons que les lettres ms, m3 et my4 sont utilisées dans le tableau
uniquement pour désigner des nombres de facteurs strictement supérieurs a un
(i.e. m; > 2). La colonne ” Taille PC.” donne la taille du plan factoriel complet
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alors que la colonne "PO.” donne la taille du plus petit plan orthogonal pos-
sible (mais son existence n’est pas assurée !). Une derniére colonne intitulée
"Réduc. Impossible” résume les résultats précédents en précisant dans quelles
conditions il apparait impossible de réduire la taille du plan factoriel com-
plet tout en conservant la propriété d’orthogonalité. On constate alors qu’il
est impossible de réduire la taille des plans factoriels complets principalement
lorsque peu de facteurs sont utilisés.

8.5.2 Fractions pour nombre de modalités non premier

La plupart des résultats de la section 8.4 relatifs aux fractions régulieres ont
été énoncés et démontrés uniquement dans le cas ou tous les facteurs quali-
tatifs considérés ont un méme nombre de modalités h avec obligatoirement h
nombre premier. Une telle hypothese peut bien entendu s’avérer tres con-
traignante lors d’une étude pratique ou, par exemple, tous les facteurs étudiés
ont 4 ou bien 6 modalités.

Rappelons que dans la section 8.4 I’hypothese ”h est un nombre premier”
a été principalement utilisée afin de démontrer la proposition 8.10 disant que
le groupe G engendré par les ¢ générateurs d’une fraction réguliere est de
cardinal h9. Ce résultat est basé en effet, entre autre (voir la démonstration de
cette proposition), sur le fait que puisque h est premier alors tout générateur
engendre un groupe de cardinal h (i.e. par analogie lorsque h est premier
alors tout élément de Z/hZ est bien un générateur du groupe). Lorsque le
nombre de modalités h n’est plus premier il faut prendre garde au fait que
cette propriété n’est plus vraie (i.e. par analogie lorsque h est quelconque
alors un élement z de Z/hZ est bien un générateur du groupe si et seulement
si z et h sont premiers entre eux). Deux situations peuvent alors se présenter.

1) Soit le groupe G engendré par les g générateurs est bien un groupe de
cardinal égal a h?. La proposition 8.10 est alors bien vérifiée dans ce cas.

2) Soit le groupe G engendré par les g générateurs est un groupe de cardinal
strictement inférieur & h?. La proposition 8.10 n’est alors pas vérifiée dans ce
cas et on ne peut plus affirmer que la fraction réguliére obtenue est constituée
par n = h™ ™7 expériences.

L’exemple présenté ci-dessous illustre ces deux cas de figure.

| Exemple |

Considérons ici m = 3 facteurs qualitatifs & h = 4 modalités. La
matrice Dy est celle de la fraction réguliere définie par I =123, la
matrice Do est celle de la fraction réguliere définie par T =122232.

La fraction réguliere de matrice D; ne pose pas de probleme par-
ticulier, elle est bien constituée par n = 437! expériences. Ceci est
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di au fait que le groupe G ={I,123,1?2%32,132%3%} comporte 4
éléments et permet donc bien de réduire la taille du plan factoriel
complet par 4. La fraction réguliere de matrice Do comporte par con-
tre n = 43/2 = 32 expériences. Ceci est dit au fait qu’elle est définie
par la relation I =122232 mais 122232 engendre un groupe de cardi-
nal seulement égal & 2 (i.e. G = {I,1%223?}). 1l en résulte donc que
cette fraction réguliere ne permet de diviser que par 2 le nombre total

d’expériences du plan factoriel complet.

[000]
013
022
031
103
112
121
130
202
211
220
233
301
310
323

Dy

1332]

et DQZ

(0007
002
011
013
020
022
031
013
101
103
110
112
121
123
130
132
200
202
211
213
220
222
231
233
301
303
310
312
321
323
330

1332

327

Un certain nombre de théories mathématiques (initiées par Bose [6]) perme-
ttent d’obtenir des résultats sur les fractions régulieres non pas lorsque le
nombre de modalités h est premier mais, de maniere plus générale, lorsque le
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nombre de modalités est une puissance de nombre premier (donc de la forme
h¥ avec h premier). Ceci permet, par exemple, d’obtenir des résultats pour le
cas, courant en pratique, ou h = 4 modalités sont considérées.

8.5.3 Fractions asymétriques

Intéressons-nous maintenant au cas le plus général possible ou 'on cherche
a réduire la taille d'un plan factoriel complet a m facteurs qualitatifs pour
h1, ho, ..., hy, modalités, ces nombres de modalités n’étant plus identiques
(on dit alors que 'on a un plan asymétrique). Afin de réduire la taille du plan
factoriel complet il est encore possible de ne sélectionner qu'un sous-ensemble
d’expériences a ’aide de la technique utilisée tout au long de ce chapitre, c¢’est-
a-dire a partir de la somme x1 + ... + x,, ou z; est la valeur du codage naturel
du facteur ¢ pour chacune des expériences. Lorsque tous les facteurs sont a h
modalités on a naturellement considéré cette somme modulo h. La difficulté
provient ici du fait qu’il n’existe pas une quantité i unique. Ceci ameéne donc
a définir une fraction asymétrique a ’aide d'un des h; (i = 1,...,m) en ne
gardant que l'ensemble des expériences vérifiant la relation suivante :

1+ . + @y = 0[hy].

Par analogie avec les notations multiplicatives utilisées dans les sections
précédentes on désigne dorénavant une telle fraction en notant :

I=123..m [R].

Les théories présentées précédemment pour des fractions régulieres symétri-
ques ne s’appliquent plus a ce type de constructions. C’est pourquoi il n’est
pas possible d’énoncer ici des résultats généraux concernant 1’orthogonalité
ou bien encore le nombre d’expériences obtenues. L’exemple suivant illustre
ces diverses situations.

| Exemple |

Considérons le cas ot m = 3 facteurs qualitatifs & hy = 3, hy = 4
et hg = 5 modalités interviennent. Le plan factoriel complet de type
FD (3 x4 x5) comporte un total de n = 60 expériences. Réduisons
alors ce nombre d’expériences en construisant toutes les fractions pos-
sibles obtenues a l'aide du générateur 123. Elles sont données ci-
dessous (en codage naturel) par les matrices Dy, Do et D3 obtenues
respectivement a ’aide des relations :

T=123[3] ,1=123 [4] et =123 [5].

Remarquons au préalable que toute réduction de la taille du plan fac-
toriel complet conduit ici forcément a une structure qui n’est pas or-
thogonale puisque, d’apres la proposition 8.4, le nombre d’expériences
d’un plan orthogonal doit vérifier :
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n > PPCM (12,15, 20) = 60.

On a alors les résultats suivants.

1) Concernant la fraction définie par I =123 [5] (matrice D3) le fait
d’utiliser une égalité modulo 5 entraine bien ici que la fraction est
constituée par 5 fois moins d’expériences que le plan complet (n = 12).
Le plan obtenu n’est pas orthogonal car, par exemple, les nombres
d’occurences de chacunes des modalités du facteur 3 ne sont pas égales
puisque :

7"3(0) :T’g(l) :T3(4) =2et T3(2) :T3(3) = 3.
On peut aussi remarquer que :

10111
Nis=[01111] # Jss.
11110

2) Concernant la fraction définie par I =123 [4] (matrice D2) les con-
statations sont identiques sauf que cette fois la taille du plan factoriel
complet a été divisée par 4 pour donner un total de n = 15 expériences.

3) Concernant la fraction définie par I =123 [3] (matrice D) les con-
statations sont identiques sauf que cette fois la taille du plan factoriel
complet a été divisée par 3 pour donner un total de n = 20 expériences.

[000]
003
012 (0007
021 004 - .
024 013 000
030 099 014
033 031 023
102 103 032
111 119 104
Dy = };3 Dy=|121],Ds= };g
123 122 131
132 909 203
201 511 212
204 590 221
210 230
2924 L .
213 533
2922 L .
231
1233 ]
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8.6 Plans en carrés latins

8.6.1 Utilisation de carrés latins

Le concept de carré latin (ou carré magique dans certaines applications
ludiques) remonte & la nuit des temps. Certains documents de I’époque mon-
gole (XITeme siecle) représentent des carrés latins de petite taille. Au XVIIeme
siecle les carrés latins apparaissent dans des documents en Europe, principale-
ment liés a des jeux ou ”énigmes mathématiques”. Ils étaient alors définis de
la manieére suivante. A partir d’'un ensemble F & h éléments distincts on ap-
pelle carré latin d’ordre h une grille de h? cases dans laquelle ” toute ligne et
toute colonne contient une fois et une fois seulement chaque élément de E”.
Pour lensemble F = {4, A, %, v’} la grille suivante (& gauche) est un carré
latin d’ordre quatre :

A x|V 0(1)2|3
A [ K |V | 11230
* |V || A 21301
V|| A | K 310(1]2

D’un point de vue algébrique maintenant il est clair que 'on peut toujours
identifier I’ensemble E a celui des h premiers entiers et on appelle alors carré
latin d’ordre h toute matrice carrée d’ordre h telle que ses lignes et ses
colonnes sont des permutations différentes de I’ensemble {0,1,...,h — 1}. On
construit classiquement une telle matrice par permutations circulaires de sa
premiere ligne. L’exemple ci-dessus (& droite) en donne un exemple toujours
pour h =4 (et évidemment les deux carrés latins présentés sont équivalents).
Nous garderons par la suite cette présentation standard des carrés latins qui
peut étre identifiée algébriquement & la table d’addition (table de Cayley)
du groupe additif Z/hZ. 1l en découle qu’il est toujours possible de construire
un carré latin quelle que soit la valeur de h. Remarquons enfin que pour tout
carré latin les sommes par ligne et par colonne sont donc égales, c’est cette
propriété qui est généralement recherchée dans les problémes faisant intervenir
des ”carrés magiques”.

Ce type de structure a été utilisée initialement dans un cadre statistique
par Fisher. L’objectif était alors de résoudre des probléemes agronomiques a
laide d’un petit nombre d’expériences lorsque trois facteurs (& h modalités)
interviennent. Le protocole expérimental se déduit d’un carré latin de la
maniere suivante : le numéro de la ligne donne la modalité du facteur 1, le
numéro de la colonne donne la modalité du facteur 2 et enfin la valeur figurant
dans le carré a l'intersection de la ligne et de la colonne donne la modalité
du facteur 3 (toujours avec la convention habituelle pour des numérotations
allant de 0 & h — 1). En d’autres termes pour trois facteurs qualitatifs & h
modalités et un carré latin C' d’ordre h on propose d’ajuster le modele additif
3 l'aide d’un plan d’expérience D en h? expériences tel que :
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oll i et j repérent respectivement (en codage naturel) les lignes et les colonnes
du carré latin de terme général C;;. Pour 'exemple précédant la matrice du
plan D est donc donnée par :

[000]
011
022
033
101
112
123

D= ;gg pour le carré latin
213
220
231
303
310
321

1332

= Ol Ww| N
|| OfW

W=D
O| W[ N =

Il découle immédiatement de la définition d’un carré latin que pour tout choix
de deux facteur (parmi les trois utilisés) tout couple de modalités va apparaitre
une fois et une seule. Il en résulte que tout carré latin est un plan d’expérience
orthogonal (et méme uniformément orthogonal).

Remarquons aussi qu’un carré latin peut toujours étre identifié a une frac-
tion réguliere d’un plan factoriel complet. En effet, si le carré latin est construit
selon une table de Cayley on peut donc dire que son terme général (dans le
cas général ou les trois facteurs sont & h modalités) est C;; = (i +j) [h]. Il
en résulte donc que l'on ne conserve que les expériences (x1, 22, x3) du plan
factoriel complet telles que :

1 =1,x3=7jet zg=C;y donc (h—1)z1+ (h—1)x2+ 23 =01h].

En d’autres termes un tel carré latin n’est autre que la fraction réguliere du
plan factoriel complet définie par la relation :

I,» = 1712l =13,

Pour I'exemple présenté ci-dessus seules les expériences vérifiant la relation
3x1 + 3z + x3 = 0 [4] ont été sélectionnées.
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| Exemple

Considérons une application en agronomie ou 'objectif est de max-
imiser le rendement a I’hectare d’une variété de blé. On veut tout
particulierement tester ici lefficacité de trois engrais. On sait aussi
que le rendement est directement influencé par ’ensoleillement du
champ ainsi que par sa pente. Supposons alors que ces trois facteurs
prennent les i = 3 modalités distinctes suivantes :

Modalité 0

Modalitée 1

Modalité 2

Ensoleil. Fort Moyen Faible
Pente Nulle Légere Forte
Engrais Type 1 Type II Type III

Il est alors possible de réaliser seulement n = 9 expériences selon le
carré latin donné ci-desous (qui n’est autre que la fraction réguliere
définie par la relation Iy = 12223). Les réponses mesurées (c’est-a-
dire les diverses masses récoltées par unité de surface) sont données
parallelement.

112 162 | 110 | 89
112 |0 Réponses : | 108 | 91 | 134
210 |1 65 | 102 | 50

D’apres la proposition 8.5 les estimateurs des effets des modalités des
engrais vérifient alors :

Eval

A Yy 314,50 = VL 3

Y ~ 119,87 =V -V ~ ~19.6
Il apparait donc clairement que I’engrais de type I semble nettement

préférable aux deux autres.

8.6.2 Utilisation de carrés gréco-latins

Le

ner

concept de carré gréco-latin est plus complexe que celui de carré
latin présenté précédemment. Il trouve aussi son origine dans des problemes
ludiques du XVIIIeme siecle. Des 1725 le probleme suivant est posé : comment
placer dans une grille 4 x 4 des cartes a jouer telles que chaque colonne et
chaque ligne contienne & la fois toutes les hauteurs supérieures (valet, dame,
roi et as) ainsi que toutes les couleurs (coeur, carreau, pique et trefle) ? Ce
type de structure a été étudiée et formalisée plus tard par Euler (les carré
gréco-latins sont aussi parfois appelés carrés eulériens) qui avait présenté de
son coté le célebre probleme des 736 officiers” identique au probleme présenté
ci-dessus mais avec cette fois une grille 6 x 6 sur laquelle on cherche & position-
36 officiers de 6 grades distincts appartenant & 6 corps d’armes différents.

Voici une solution pour le premier probleme des cartes a jouer :
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AM | RO | DO |V
D& | VO | AD | Ré
VO | D& | Ré | A
RO | A& | VA | DO

Dans ce tableau les 16 cartes sont bien toutes utilisées une fois et une seule (i.e.

chaque couple de modalités "hauteur / couleur” apparait un méme nombre
de fois).

La construction mathématique de ce type de structure n’est plus aussi
aisée que dans le cas des carrés latins. On pourrait en effet penser qu’il suf-
fit de "superposer” deux carrés latins de méme taille afin d’obtenir un carré
gréco-latin mais ceci n’est pas systématiquement vrai (car alors rien ne nous
assure que dans chaque cellule tous les couples de modalités seront représentés
une fois et une seule). Lorsque le fait de superposer deux carrés latins con-
duit bien & un carré gréco-latin alors les carrés latins initiaux sont qualifiés
d’orthogonaux. Les techniques de construction de carrés latins orthogonaux
dépassent le cadre de cet ouvrage, précisons seulement qu’il a été montré qu’il
existe toujours au moins un carré gréco-latin d’ordre h > 3 sauf pour h = 6
(i.e. le probléme des 36 officiers d’Euler n’a pas de solution). Présentons une
technique simple de construction utilisable lorsque h est un nombre premier
(voir Dugue [37]). Utilisons encore l’ensemble {0,1, ..., A — 1} afin de noter de
maniere standard les éléments distincts du carré. Cet ensemble peut une nou-
velle fois étre identifié & Z/hZ et lorsque h est un nombre premier (Z/hZ, +, x)
a cette fois une structure de corps (les deux opérations étant toujours définies
modulo h). Un tel corps est fini, il est aussi parfois qualifié de corps de Ga-
lois. Une méthode afin d’obtenir des carrés latins orthogonaux deux-a-deux
consiste alors & construire les carrés latins C[®! (pour 1 < o < h—1) de terme
général donné par :

o) = (i + ) [1].

En d’autres termes ce type de construction généralise la méthode d’obtention
d’un carré latin par la table de Cayley qui n’est autre que CI! ici. Superposer
deux carrés latins ainsi construits amene a un carré gréco-latin. Considérons
a titre d’exemple le cas ot h = 5 et les deux carrés latins suivants :

chl . et OB

W N = O
O | W[ N =
= O W N
DO —| O | W
WM —| O] =~
N | =W O
W O DN = —
N R K=l RN
O N | =W
=W O N

Le carré gréco-latin suivant est obtenu en superposant C!! et O3
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0011]22|33 |44
13124 |30|41]02
2132430410
3440|0112 |23
42 03|14 |20 |31

Dans un cadre statistique les carrés gréco-latins sont adaptés a des situa-
tions olt quatre facteurs (& h modalités) interviennent. Ils induisent alors la
réalisation de h? expériences. Le protocole expérimental se déduit d’un carré
gréco-latin de la maniere suivante : le numéro de la ligne donne la modalité
du facteur 1, le numéro de la colonne donne la modalité du facteur 2 et en-
fin les deux valeurs figurant dans le carré a l'intersection de la ligne et de
la colonne donnent les modalités des facteurs 3 et 4 (toujours avec la con-
vention habituelle pour des numérotations allant de 0 & h — 1). Il découle
immédiatement de la définition d’un carré gréco-latin que pour tout choix
de deux facteur (parmi les quatre utilisés) tout couple de modalités va ap-
paraitre une fois et une seule. Il en résulte que tout carré gréco-latin est un
plan d’expérience orthogonal (et méme uniformément orthogonal).

Remarquons enfin que si le carré gréco-latin est obtenu par superposition
de deux carrés latins orthogonaux C* et Cl*2l (a; # ay) obtenus par la
méthode présentée ci-dessus alors il correspond en fait a la réalisation des
expériences (21, x2, x3,x4) du plan factoriel complet telles que :

21 =1,x9 =7 et x3 = (a1i + j) [h] d’apres le premier carré latin,
x1 =14, 22 =7 et x4 = (a2t + j) [h] d’apres le second carré latin.

Il en découle donc que :
(h—ay)zy+(h—1)as+a3=0[h] et (h—az)z1+(h—1)aza+24 =0]h].

En d’autres termes un tel carré gréco-latin n’est autre que la fraction réguliere
du plan factoriel complet définie par les deux relations suivantes :

I,2 = 1h—o1gh=13 — qh—azgh—lyg

| Exemple |

Reprenons 'exemple de culture du blé du paragraphe 8.6.1 mais sup-
posons maintenant qu'un quatrieme facteur (toujours & 3 modalités)
intervienne maintenant : la type d’arrosage effectué. Il est nécessaire
ici de construire tout d’abord deux carrés latins orthogonaux. A par-
tir de l’ensemble Z/3Z et de la méthode présentée ci-dessus on peut
proposer les structures suivantes :

0l1]2 01
cl.[172]0] et P
2101 1]2

()
)
—_
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n combinan ux carré ins or naux on ient ainsi
En combinant ces deux carrés latins orthogonaux on obtient ainsi le
plan d’expérience suivant :

[0000]
0111
0222
1012 00| 11122
D=11120 pour le carré gréco-latin | 12 | 20 | 01
1201 2110210
2021
2102
12210

Remarquons que ce plan d’expérience est aussi la fraction réguliere
du plan factoriel complet définie par la relation Iy = 12223 = 1224 (il
s’agit bien d’une fraction réguliere de résolution égale & III). Ce plan
d’expérience étant orthogonal I’estimation des parametres du modele
peut étre réalisée de maniere tres simple a l'aide la proposition 8.5.

8.6.3 Utilisation de carrés hyper-gréco-latins

Le passage des carrés latins aux carrés gréco-latins s’est traduit par le fait
que chaque cellule du carré contenait non plus un unique élément mais deux.
La généralisation de ceci conduit naturellement aux carrés hyper-gréco-
latins qui vont donc contenir cette fois trois éléments par cellule en imposant
toujours que chaque couple de modalités apparaisse une fois et une seule.
Nous allons nous limiter ici & la présentation d’un exemple (classique) d’un
carré hyper-gréco-latin d’ordre h = 4 donné ci-dessous (en utilisant encore
Pensemble {0,1,...,h — 1} afin de désigner ses éléments) :

000 | 111 | 222 | 333
231|320 | 013 | 102
312 | 203 | 130 | 021
123 1 032 | 301 | 210

On remarquera que ce carré hyper-gréco-latin n’est autre que la superposition
de trois carrés latins orthogonaux.

D’un point de vue statistique les carrés hyper-gréco-latins sont adaptés a
des situations ol cinq facteurs (& h modalités) interviennent. Ils induisent
alors la réalisation de h? expériences. Le protocole expérimental se déduit d’un
carré hyper-gréco-latin de la maniere suivante : le numéro de la ligne donne la
modalité du facteur 1, le numéro de la colonne donne la modalité du facteur
2 et enfin les trois valeurs figurant dans le carré a 'intersection de la ligne et
de la colonne donnent les modalités des facteurs 3, 4 et 5 (toujours avec la
convention habituelle pour des numérotations allant de 0 & h — 1). Il découle
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immédiatement de la définition d’un carré hyper-gréco-latin que pour tout
choix de deux facteurs (parmi les cing utilisés) tout couple de modalités va
apparaitre une fois et une seule. Il en résulte que tout carré hyper-gréco-latin
est un plan d’expérience orthogonal (et méme uniformément orthogonal).
L’exemple présenté ci-dessus correspond alors au plan d’expérience suivant :

[00000]
01111
02222
03333
10231
11320
12013 000 [ 111 [ 2227 333
13102 o earré hvoeraréeoatin |23L| 320 [ 013102
20312 pour le carre hyper-greco-latin 312 1203 1130 [ 021
21203 123 ] 032 [ 301 | 210
22130
23021
30123
31032
32301
133210

8.7 Autres types de plans d’expérience

La propriété d’orthogonalité a été jusqu’a présent le fil conducteur pour
les constructions de plans d’expérience. Lorsque les expériences sont parti-
culierement cotiteuses et qu’un plan orthogonal de petite taille n’existe pas
il est courant que l'objectif d’orthogonalité soit alors secondaire par rapport
a lobjectif de réduction du nombre des expériences. Un grand nombre de
méthodes ont été développées afin de construire de tels plans d’expérience,
nous présentons brievement ci-dessous certaines d’entre elles. Le lecteur
désireux d’approfondir ce sujet pourra consulter 'ouvrage de Benoist et al. [3]
qui propose la construction explicite d'un grand nombre de configurations a
I’aide de méthodes variées. Remarquons que lorsque le plan d’expérience utilisé
n’est pas orthogonal il est, bien entendu, impossible d’estimer les parametres
du modele additif a I’aide des formules explicites de la proposition 8.5. Il faut
alors résoudre les équations normales sous forme générale (le plus souvent
de maniere numérique) sans oublier d’utiliser les contraintes classiques de la
proposition 8.1 afin de garantir 'unicité de la solution.

8.7.1 Tables de Taguchi

Lorsque I'expérimentateur recherche un plan d’expérience pour facteurs qual-
itatifs de petite taille il est possible de se référer a des catalogues de plans
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classiques appelés tables de Taguchi. La plupart de ces tables ont été proposées
par le professeur G. Taguchi [96] dont les travaux ont eu pour principal objec-
tif de populariser 'utilisation des plans d’expérience dans le milieu industriel.
La spécificité d’une table de Taguchi est d’étre associée a un graphe perme-
ttant de sélectionner les différents facteurs selon leur facilité ou non a étre
modifiés. Cette problematique n’est pas abordée ici (voir Pouvrage de Pillet
[72] pour plus de détails ou de manieére plus succinte 'ouvrage de Souvay [92]).
Concernant maintenant le choix d’une table, Benoist et al. [3] en proposent un
grand nombre en annexe. Avec les notations de Taguchi elles sont désignées
par L,hi*hg?.. .h%m ol n est le nombre d’expériences & réaliser et «; est le
nombre de facteurs a h; modalités.

| Exemple |

Voici la table de Taguchi L15233' permettant d’étudier trois facteurs &
2 modalités ainsi qu'un facteur a 3 modalités a I’aide de 12 expériences.
Le plan d’expérience proposé ici est orthogonal et de taille minimale
d’apres la proposition 8.4.

[0000]
0011
0100
0111
1000
1011
1101
1110
2001
2010
2101

12110

8.7.2 Transformations conservant I’orthogonalité

Lorsque la situation étudiée ne figure pas de maniere exacte dans les tables
classiques il est alors courant de combiner celles-ci de diverses manieres afin
d’obtenir de nouveaux plans d’expérience conservant I’orthogonalité des plans
initiaux. Deux techniques sont principalement utilisées, elles consistent (con-
sulter 'ouvrage de Benoist et al. [3] pour plus de détails) :

1) soit & remplacer un facteur par un plan,

2) soit, réciproquement, & remplacer un sous-plan par un facteur.

Ces techniques conservent I'orthogonalité lorsqu’elles sont appliquées a des
plans eux-mémes orthogonaux et conservent aussi le nombre d’expériences.
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La méthode 1 conduit & une augmentation du nombre des facteurs con-
sidérés alors que la méthode 2 entraine une réduction du nombre des facteurs.
L’exemple ci-dessous détaille 'utilisation d’une de ces méthodes.

| Exemple |

Considérons ici 3 facteurs qualitatifs & 4 modalités. Ces différents fac-
teurs peuvent étre analysés en 16 expériences a ’aide de la fraction
réguliere définie par I =123 de matrice Dy (on a bien un plan orthog-
onal). Remplagons alors la colonne du facteur trois (en gras) par un
plan. Ce facteur ayant 4 modalités il est nécessaire d’utiliser un plan
en 4 expériences. Utilisons alors le plan factoriel complet (orthogonal)
pour 2 facteurs a 2 modalités de matrice Ds.

[000]
013
022
031
103
112
121 00
130 01
902| tP2=11
211 11
220
233
301
310
323
1332

D,

[0000]
0111
0210
0301
1011
1110
1201
1300
2010
2101
2200
2311
3001
3100
3211
13310]
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A partir de ces deux plans on construit le plan de matrice D de la
maniére suivante : on remplace toute modalité i (en codage naturel)
du facteur 3 sélectionné ici par la (i + 1)-iéme ligne complete de la
matrice Ds. Le plan d’expérience de matrice D est un plan orthogonal
en 16 expériences pour 4 facteurs qualitatifs, deux d’entre eux étant
a 4 modalités et les deux autres & 2 modalités (on a donc un plan de
type L162242).

8.7.3 Plans produit

Afin d’obtenir de nouveaux plans orthogonaux il est aussi possible d’utiliser la
technique suivante, dite des plans produit. Considérons deux plans orthogo-
naux de matrices D; et Dy ayant respectivement m facteurs et ny expériences
pour le premier, mo facteurs et ne expériences pour le second. Le plan pro-
duit construit & partir de ces deux plans est de matrice D telle que chaque

ligne de D1 est répétée nq fois en lui adjoignant toutes les expériences possibles
de Dg.

| Exemple |

Considérons le plan de type L2423 de matrice D ci-dessous :

(000007
00011
00101
00110
01000
01011
01(101
01(110
02000
02011
02101
02110
10000
10011
10101
10110
11000
11011
11101
11110
12000
12011
12101
(12110
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Ce plan d’expérience n’est autre que le plan produit obtenu a partir
du plan factoriel complet de type Lg2'3! (décrit par la matrice Dy
donnée ci-dessous) et de la fraction réguliere de type L42° définie par
I =123 (matrice Dy donnée ci-dessous).

00
01 000
E lo11
Di=110] " P2= 101
11 110

12

Deux traits horizontaux dans la matrice D encadrent les lignes obten-
ues a partir du développement de la deuxieme ligne de la matrice D;.
Ces deux plans étant orthogonaux il en résulte que le plan produit
est lui-méme orthogonal. Remarquons cependant qu’il existe peut-
étre un plan d’expérience orthogonal de plus petite taille car d’apres
la proposition 8.4 le nombre d’expériences d’un tel plan doit vérifier :

n > PPCM (4,6) = 12.

Il en résulte que le plan produit est un plan d’expérience pour my + mo
facteurs en niny expériences (voir ’exemple). Lorsque les deux plans initiaux
sont orthogonaux le plan produit est alors lui-aussi orthogonal (il est méme
orthogonal pour des modeles plus complexes que le modele additif étudié ici,
voir Pouvrage de Benoist et al. [3]).

8.7.4 Tableaux orthogonaux

Une méthode classique afin d’obtenir la matrice d’'un plan d’expérience con-
siste a rechercher celle-ci dans la classe des tableaux orthogonaux. D’un
point de vue théorique un tableau D € M (n,m) & éléments dans un groupe
abélien fini G est qualifié de tableau orthogonal de force ¢ (1 < t < m) sur
G™ si dans tout bloc formé de ¢ colonnes de D les éléments de G* figurent
un méme nombre de fois A. Tout l'intérét de ce type de structure, d’apres la
définition 8.2, est 1ié au fait qu’un plan d’expérience orthogonal pour le modele
additif est donc associé a une matrice qui est forcément un tableau orthog-
onal de force 2. Pour plus d’informations concernant la classe des tableaux
orthogonaux ainsi que le lien existant entre tableau orthogonal de force ¢ et
fraction réguliere de résolution R le lecteur pourra se référer aux ouvrages de
Hedayat et al. [51], Collombier [19] ou bien a la theése de Jourdan [53]. Con-
cernant maintenant la classe particuliere des tableaux orthogonaux de force 2,
une méthode classique de construction est celle dite des différences, proposée
initialement par Bose et Bush [8]. L’ouvrage de Benoist et al. [3] s’intéresse
en détails a ce type de construction et propose en annexe bon nombre de
configurations classiques (voir ’exemple ci-dessous). La plupart des méthodes
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classiques de construction font intervenir des facteurs ayant un méme nom-
bre h de modalités (plans symétriques). Les travaux de Wang et Wu [104]
proposent une extension au cas asymétrique.

| Exemple |

Considérons la matrice D suivante :

[000]
011
100
111
200
211
301
310
401
410
501
510 ]

Il s’agit de la matrice (en codage naturel) d’un plan d’expérience pour
deux facteurs a 2 niveaux et un facteur a 6 niveaux obtenue a partir
d’une table dite a différences orthogonales (voir 'annexe 8 de Benoist
et al. [3]). Un tel plan d’expérience, de type L2226, est orthogonal
et de taille minimale.

8.7.5 Plans obtenus numériquement

Lorsque la plupart des méthodes théoriques de construction ne donnent pas
de bons résultats il est possible de s’orienter alors vers des algorithmes de con-
struction de plans d’expérience. Malgré la puissance de calcul des ordinateurs
modernes il est impossible en général de construire tous les plans possibles
(sauf dans les cas ol treés peu de facteurs interviennent) afin de sélectionner le
ou les plans intéressants selon divers criteres. En effet si, par exemple, m = 4
facteurs a h = 3 modalités interviennent une recherche exhaustive de tous
les plans d’expérience susceptibles d’étre orthogonaux et de taille minimale
(c’est-a-dire n = 9 ici) conduit & un total de 33¢ ~ 107 possibilités différentes
(puisque trois modalités peuvent intervenir dans chacun des 9 x 4 = 36 ter-
mes de la matrice du plan). Voila donc pourquoi il est nécessaire d’utiliser
des algorithmes capables de construire des plans d’expérience vérifiant, de
maniere le plus souvent approchée, certaines conditions dites d’optimalité
(voir le chapitre 10 consacré & ces notions). Le lecteur souhaitant en savoir
plus pourra consulter, une nouvelle fois, 'ouvrage de Benoist et al. [3]. Citons
ici brievement quelques techniques algorithmiques classiques :

1) les algorithmes basés sur le principe de propagation des contraintes
ont pour but de réduire au maximum la classe des plans a étudier. Pour la
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recherche, par exemple, d’un plan orthogonal il est inutile de considérer des
configurations ne vérifiant pas au préalable la contrainte selon laquelle chacune
des modalités des facteurs apparait un méme nombre de fois, etc...

2) algorithme d’échange counsiste, partant d’un plan d’expérience initial
donné ou bien déterminé au hasard, a rajouter itérativement (on supprimer
dans certains cas) des expériences de maniére & optimiser au mieux un critere
d’optimalité choisi au préalable. Les principales versions en sont la méthode
DetMax proposée par Mitchell [65] ou bien la méthode de Federov [40].

| Exemple |

Reprenons l'exemple du paragraphe 8.7.3 avec 4 facteurs a deux
modalités et 1 facteur a trois modalités. Un plan orthogonal de type
L4243 a alors été proposé a l'aide de la technique des plans pro-
duits. Il existe cependant un plan d’expérience orthogonal plus petit,
de type L12243', obtenu de facon algorithmique. Sa matrice est donnée

par (voir 'ouvrage de Benoist et al. [3]) :

[00000]
00011
01100
01111
10001
10110
11010
11101
20100
20111
21001

121010

8.8 Introduction d’effets d’interaction

Si le modele additif étudié tout au long de ce chapitre s’avere peu perfor-
mant afin de modéliser correctement un phénomene aléatoire il est alors na-
turel d’utiliser un modele plus riche. Ceci est réalisé le plus souvent a l'aide
de modeles & effets d’interactions (appelés encore modeles croisés). Une
présentation sommaire de ce type de modele est faite ici (le lecteur souhaitant
aller plus loin pourra consulter les ouvrages de Cottrell et Coursol [23] ou
Collombier [19]). La plupart des techniques développées afin d’analyser un tel
modele et construire des plans d’expérience adaptés sont similaires a celles
déja présentées pour le modele additif.

D’une maniere générale considérons m facteurs qualitatifs ayant respec-
tivement hq, hs, ..., by, modalités. Considérons toujours le modele statistique
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Y (z) = f () +e(x) avec x = (i1, i2, ..., im) € € vecteur associé aux différents
codages naturels de 'expérience réalisée (voir le paragraphe 8.2.2). On utilise
alors un modele a effets d’interactions si et seulement si :

Flinyiz, ceyim) = Bo + B + 85 4 B+ 8157 4 81 4+
ﬂ[im—lim]
(m—1)m *
On dit (pour ¢,j =1,...,maveci < j, k=1,...,h; et I =1,...,h;) que ,6’1[?”
est 'effet d’interaction entre les modalités k et [ des facteurs ¢ et j. Un tel
modele est qualifié de complet car tous les effets d’interactions possibles entre
couples de facteurs sont considérés. Comme il existe h;h; effets d’interactions

de la forme ﬂl[fl] le nombre total de parametres d’un tel modele est donc donné

par :
P _1+Zh +D > by

1<j

Matriciellement il est donc possible de réécrire le modele a effets d’interactions
sous la forme Y = X[ + ¢ avec :

X=[L| X1 || Xom | X2 | o | X(mo1ym ]

ou X; € M(n,h;) (i =1,...,m) est toujours la matrice des indicatrices des
modalités du facteur ¢ et maintenant X;; € M (n, h;h;) (i,j = 1,...,m avec
i < j) est la matrice des indicatrices des modalités des interactions entre les
facteurs ¢ et j.

| Exemple |

Considérons ici m = 2 facteurs & h; = 2 et hy = 3 modalités. Le
modele a effets d’interactions est donné par (pour i; € {0,1} et iz €
{0,1,2}) :

[ (i1,i2) = Bo + /3111] + 05 - 5£12112]'

Il est donc constitué par un total de p* = 12 parametres qui sont :

Bo, AL 1, 85, 8, 857, By, o, B By By B
Tout comme pour le modele additif il est clair que la matrice X du modele a
effets d’interactions ne peut jamais étre, par construction, de plein rang. On
utilise alors classiquement les contraintes d’identifications données ci-dessous
afin de la rendre réguliere. On considere dans un premier temps les mémes
contraintes que pour le modele additif, c’est-a-dire :

hi—l
Vi=1,..m, Y #=0
=0

puis on rajoute les nouvelles contraintes relatives aux effets d’interactions
(pour tous les i,j = 1,...,m tels que i < j) :
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h;—1

h;—
Vk=0,. h—1letVIi=0,..h— Zﬂ[k” Zﬂ[k”

=0 k=0

| Exemple |

Pour I'exemple présenté précedemment, les effets des modalités de
chacun des facteurs doivent vérifier les contraintes suivantes :

B+ =0 et a1 + gl 4+ =0

Concernant maintenant les interactions on impose que :

00] +5[01 +5[02] 0 tﬂ[lo]—l-,@lll] +5[12
00] +5[1o ~0, 512 +5[11 —0et 5[02 +ﬁ112] _

Il en résulte donc que seulement p = 6 des p* = 12 parametres du
modele sont réellement & estimer (attention les 5 contraintes imposées
aux effets d’interactions ne forment que 4 équations linéairement
indépendantes).

Dans le cas général ces contraintes font qu'un des parametres n’est plus a
estimer pour le facteur 7 et de méme (h; + h; — 1) des parametres sont déduits
immédiatement des contraintes pour l'interaction entre les facteurs i et j. Le
nombre de parametres inconnus du modele a effets d’interactions est donc :

p=p"—m=>_ Y (hi+h;—1) _1+Z (he = D)+ D" (hi = 1) (hy — 1).

i<j 1<j

Le probleme de la détermination de plans d’expérience adaptés a un tel
modele se pose maintenant. On vérifie dans un premier temps que tout
plan d’expérience factoriel complet permet d’analyser le modele a effets
d’interactions de maniére treés simple (voir Cottrell et Coursol [23] pour plus
de détails). On obtient en effet (pour ¢,j =1,....,maveci < j, k=0,..,h; —1
et 1 =0,...,h; — 1) les estimateurs des moindres carrés donnés explicitement

par les formules suivantes (en notant toujours YE ! la moyenne des réponses

" .. . N v L
ou seule la modalité k£ du facteur ¢ intervient et de méme ng] la moyenne
des réponses ou seules les modalités k et [ des facteurs respectifs i et j inter-

viennent) :
~ —[k] =
L M =7 -7,
ﬁo =Y et { ~ (k]

(k1] _ Ikl vl | =
6 =Y, =Y, =Y, +Y.

Les dispersions de ces différents estimateurs vérifient de plus :

N 2 N N 2
varﬁoz%, Var BF = %(h —1), Var 8% = T (hihy — hi — by + 1),

n
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| Exemple

Toujours pour le méme exemple développé durant toute cette section
on peut envisager d’utiliser un plan factoriel complet constitué des n =
6 expériences décrites par la matrice D (en codage naturel) suivante.

00
01
02
10
11
12

TN OO N

Considérons alors le vecteurs Y des réponses donné parallelement a
cette matrice. Ce plan d’expérience est ici saturé (n = p) et les esti-
mateurs des moindres carrés des parametres du modele sont :

Bo = +4.0,

g = —1.0, B =+1.0,
[O] =405, Al =20, 3[2] = +1.5,
P;’] =—25, 89 = 410, 8% = +1.5,
B = 2.5, 511” = —1.0, 51122 = —15.

Remarquons enfin que I'utilisation d’un plan factoriel complet peut rapide-
ment s’avérer étre trop lourde. Il est alors possible de n’utiliser qu’une partie
de la totalité des expériences. On montre qu’'une fraction réguliere adaptée au
modele a effets d’interactions doit étre de résolution égale & 'V (ou plus).
Un catalogue de fractions de ce type est proposé dans 'ouvrage de Benoist
et al. [3].

8.9 Exemple d’application

Considérons ici un fabriquant d’automobiles dont 1'objectif est de choisir un
nouveau train de pneumatiques devant équiper un de ses modeles. L’intérét
principal du constructeur est d’effectuer ce choix de maniere a obtenir une
consommation du véhicule la plus faible possible. Ce choix a été réduit a
m = 3 facteurs principaux a h = 4 modalités résumés dans le tableau suivant
(avec affectation arbitraire des diverses modalités & un codage naturel) :

Modalité 0 | Modalité 1 | Modalité 2 | Modalité 3
Structure | Diagonale Radiale Bidiagonale| Renforcée
Modeéle Classique Sport Economique| Mixte
Gomme Type 1 Type 2 Type 3 Type 4
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Pour chaque type de pneumatique testé la réponse est la consommation
moyenne (exprimée en litres pour 100 km) mesurée suite & la réalisation de
plusieurs parcours types effectués sur des pistes privées dans des conditions
facilement reproductibles. Supposons que pour des raisons de cout de fabri-
cation et de temps d’expérimentation le constructeur ne souhaite pas tester
tous les pneus possibles (ce qui représenterait ici n = 43 = 64 expériences &
réaliser). D’apres les résultats obtenus dans ce chapitre il est possible d’utiliser
une fraction réguliere du plan factoriel complet. Considérons, par exemple, la
fraction réguliere définie par la relation suivante :

I =123.

Le plan d’expérience ainsi obtenu (déja présenté au paragraphe 8.5.2) est bien
orthogonal, constitué par seulement n = 43~! = 16 expériences différentes.
La fraction réguliere obtenue est de plus de résolution égale & III (car
g= {]L 123,122232 132333}). La matrice de ce plan est donnée ci-dessous en
codage naturel :

[000]
013
022
031
103
112
121
130
202
211
220
233
301
310
323

1332

Ceci correspond au protocole expérimental suivant (le vecteur des réponse
mesurées Y, en litres par 100 km, est donné parallelement) :
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Structure Modeéle Gomme Y
Exp 1 Diagonale Classique | Type 1 7.34
Exp 2 Diagonale Sport Type 4 7.79
Exp 3 Diagonale | Economique | Type 3 7.48
Ezxp 4 Diagonale Mixte Type 2 7.25
Exp 5 Radiale Classique | Type 4 7.16
Ezp 6 Radiale Sport Type 3 7.74
Exp 7 Radiale Economique | Type 2 7.08
Exp 8 Radiale Mixte Type 1 7.48
Ezp 9 | Bidiagonale Classique | Type 3 7.36
Exp 10 | Bidiagonale Sport Type 2 7.64
Ezxp 11 | Bidiagonale | Economique | Type 1 7.60
Ezxp 12 | Bidiagonale Mixte Type 4 7.78
Ezxzp 13| Renforcée Classique | Type 2 7.21
Ezxp 14 | Renforcée Sport Type 1 8.06
Exp 15| Renforcée | Economique | Type 4 7.66
Ezxp 16 | Renforcée Mixte Type 3 7.72

Le programme SAS suivant permet d’entrer ces données. La table ”donnees”
contient ici la matrice du plan en codage naturel, il est tout a fait possible
d’entrer aussi le protocole expérimental (noter str$, mod$ et gom$ pour entrer
les modalités sous forme non-numérique).

3 2 3
3 3 2
Run;

7.
7

Data Donnees;
Input str mod gom y;

Cards;
0O 0 0 7.34
0O 1 3 7.79

expérience ¢ et réponse ¢

66
.72

On obtient alors le tableau d’analyse de la variance donné ci-dessous :

Source ddl | S. carrés | M. Carrés | St. Test Proba.
Régression | 9 1.099 0.122 46.68 | 0.0002 °°°
Erreur 6 0.016 0.003
Total 15 1.114

La procédure SAS suivante peut étre utilisée pour obtenir ces résultats (la
commande ”class” indique au logiciel d’utiliser les trois facteurs déclarés en
tant que variables qualitatives).
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Proc Glm data=Donnees;
Class str mod gom;
Model y = str mod gom;

Run;

Ces résultats montrent que le modele est valide puisque 'hypothese ”tous
les parametres du modele (sauf §y) sont nuls” peut étre trés clairement rejetée.
Ce modele est de plus globalement bien ajusté puisque (valeur ”R-Square” de

la sortie SAS) :

RZ=1- g‘% ~ (.986.

Un estimateur sans biais de la variance des résidus o2 est donné par (valeur
"Root MSE” de la sortie SAS) :

62 = MSE = 0.003 (donc & ~ 0.051).

Voici maintenant les valeurs des différents estimateurs des moindres carrés
des parametres du modele. Le plan d’expérience utilisé étant orthogonal ces
estimateurs (ainsi que leurs dispersions) peuvent étre obtenus explicitement
a l’aide des formules de la proposition 8.5.

Param.| Estimat. | Ec. type | St. Test Proba.
e 7522 0.013] 588.4]0.0001 ***
OF | —0.057 |  0.0220] —2.57|0.0416 *°
Ml —0157|  0.022| —7.09 | 0.0006 ***
2 0.073 |  0.022 3.30 | 0.0164 ***
{5 0.141 |  0.022 6.35 | 0.0009 ***
O | 0254 |  0.022| —11.49 | 0.0001 **°
[ 0.286 | 0.022| 12.90 | 0.0001 ***
211 _0.067| 0.022] —3.02]0.0232%°
13] 0.036 |  0.022 1.61 | 0.1570 °°°
0] 0.098 |  0.022 4.43 | 0.0047 **°
U | 0227 |  0.022| —10.25| 0.0001 ***
2 0.053 |  0.022 2.40 | 0.0533 °°°
131 0.076 |  0.022 3.42 | 0.0143 *°°

Attention au fait que la méthode d’estimation des parametres du modele
utilisée par SAS differe de celle présentée dans ce chapitre. En effet, au lieu
d’utiliser les contraintes d’identification de la proposition 8.1 ce logiciel utilise
la contrainte suivante : I’estimateur de la derniere modalité de chaque facteur
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est égal a zéro. Pour les modalité du facteur ”structure” SAS propose, par
exemple, les résultats suivants (ces estimateurs sont notés 8 pour les distinguer
des estimateurs [ construits dans ce chapitre) :

g% = —0.1975, BY = —0.2075 , B = —0.0675 et B = 0.

Afin de retrouver un résultat compatible avec les contraintes de la propo-
sition 8.1 on vérifie facilement que (pour la premiere modalité du facteur
"structure”) :
5[0 I\ 20 Txy 1z 133
0= (1-3) A0 - 380 - 1 - B

De maniere générale il suffit donc de centrer chacun des vecteurs 3;. Cette
manipulation peut étre introduite dans la procédure de la maniere suivante :

Proc Glm data=Donnees;
Class str mod gom;
Model y = str mod gom;
Estimate 'Betal [0]’ Str 0.75 -0.25 -0.25 -0.25;
Estimate 'Betal [1]’ Str -0.25 0.75 -0.25 -0.25;

Run;

Ces résultats sont parfois résumés a l'aide du graphique suivant (source :
logiciel Nemrod) donnant une représentation directe des diverses valeurs des
estimateurs (les trois facteurs étant ici désignés par les lettres A, B et C).

A1l -0.057
A2 -0.157
A3
A4 0.141
B1-0.254
B2
B3 -0.067
B4
C1
C2-0.227
C3
C4

0.286

0.036
0.098

0.053
0.076

Fig. 8.1. Graphe des effets des modalités.
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Considérons enfin le tableau suivant comparant les réponses observées (Y
obs.) aux réponses moyennes prédites par le modele (}A/ pred.). La différence
entre ces deux valeurs donne les résidus estimés mesurant l’erreur commise.
La derniere colonne donne enfin 1’écart-type associé a chacune des prédictions
(d’apres la proposition 8.6 cette valeur est commune & toutes les expériences).

De maniere générale on constate que la plupart des valeurs théoriques
prédites sont tres proches des valeurs observées. Ceci est bien en accord avec la
valeur élevée du coefficient R? obtenue précédemment. Ces résultats peuvent
une nouvelle fois étre obtenus directement avec le logiciel SAS en rajoutant
I’option ”clm” apres ’écriture du modele utilisé.

Y obs. | Y pred. | Y — Y | Ee. type
Exp 1 7.34 7.31 0.03 0.043
Exp 2 7.79 7.83 | —0.04 0.043
Ezp 3 7.48 7.45 0.03 0.043
Exp 4 7.25 7.27 | —0.02 0.043
Exp 5 7.16 7.19 | —0.03 0.043
Exp 6 7.74 7.70 0.04 0.043
Exp 7 7.08 7.07 0.01 0.043
Exp 8 7.48 7.50 | —0.02 0.043
Exp 9 7.36 7.39 | —0.03 0.043
Exp 10 7.64 7.65 | —0.01 0.043
Ezp 11 7.60 7.63 | —0.03 0.043
Exp 12 7.78 7.71 0.07 0.043
Ezp 13 7.21 7.18 0.03 0.043
Exp 14 8.06 8.05 0.01 0.043
Ezp 15 7.66 7.67 | —0.01 0.043
Ezp 16 7.72 7.75 | —0.03 0.043

| Conclusion

Tous les résultats obtenus précédemment entrainent que :

1) Le modele additif mis en oeuvre sur une fraction réguliére de résolution 111
semble capable de décrire le phénomene étudié de fagon tout a fait satisfaisante
ici.

2) Concernant les différentes structures de pneumatiques étudiées il apparait
clairement que la structure radiale permet de diminuer significativement la
consommation du véhicule. A l'opposé les structures bidiagonale et surtout
renforcée augmentent significativement cette méme consommation.

3) Concernant les différents modeles de pneumatiques il apparait finalement
que le modele classique est celui qui présente les meilleurs résultats vis-a-
vis de la consommation. A l'opposé le modele sport a un effet clairement
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défavorable sur la consommation du véhicule. Le modele économique sem-
ble avoir un effet positif sur la consommation (mais moindre que le modele
classique) alors que le modele mixte ne présente aucun effet significatif sur la
consommation du véhicule.

4) Concernant le type de gomme utilisé pour la fabrication des pneumatiques
le résultat est ici tres clair puisque seule la gomme de type 2 a un effet
intéressant (et tres significatif) au niveau de la diminution de la consommation
du véhicule.

En regroupant maintenant toutes ces constatations on en déduit d’apres
la modélisation effectuée que le type de pneumatiques permettant de réduire
au maximum la consommation du véhicule a les caractéristiques suivantes :

Facteur Modalité
Structure | Radiale
Modele Classique
Gomme | Type 2

Pour un tel type de pneumatiques le modele théorique ajusté prédit une con-
sommation moyenne de :

6.88 litres par 100 km.

Ce résultat est toujours donné avec une précision de 0.043 pour son écart-
type. Le minimum détecté ici ne fait pas partie des expériences réalisées. Il
convient donc maintenant de fabriquer ce type de pneumatique afin de vérifier
si la réalité est conforme aux prévisions du modele mathématique.

8.10 Résumé

Diverses configurations adaptées a ’analyse d’'un modele additif pour m fac-
teurs qualitatifs ont été présentées durant ce chapitre. On retiendra donc :

1) les plans factoriels complets,

2) les fractions régulieres de résolution III (ou plus),
3) les plans en carrés latins,

4) les tables de Taguchi,

5) les plans obtenus par diverses transformations sur d’autres plans (conser-
vation de l'orthogonalité, plans produits),

6) les tableaux orthogonaux,



352 8 Plans d’expérience pour facteurs qualitatifs

7) les plans obtenus numériquement.

Un résumé exhaustif (sous forme de tableau par exemple) de ces config-
urations n’est évidemment plus possible ici a cause du trop grand nombre
de modalités pouvant intervenir de maniére différente (h; modalités pour le
facteur 1, ..., h,, modalités pour le facteur m).
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8.11 (Compléments) Démonstrations

Durant tout ce chapitre la matrice X du modele est une matrice d’indicatrices
des modalités, elle n’est donc jamais de plein rang. D’apres la proposition 8.1
une contrainte d’identification classique consiste a imposer a chaque sous-
vecteur (3; (i = 1,...,m) des effets relatifs au facteur ¢ d’étre un contraste de
R". Ceci conduit alors & une nouvelle matrice du modele, de plein rang cette
fois, tenant compte de cette contrainte. Cette matrice sera qualifiée dans la
suite de matrice du modele centrée et notée X*. Le lemme ci-dessous précise
le lien existant entre X et X™* ainsi que certaines propriétés de cette nouvelle
matrice.

Lemme 8.A. (matrice du modele centrée). Soit un modéle additif & m facteur
représenté par la matrice X € M (n,p) sur un plan d’ezpérience donné. La
prise en compte des contraintes d’identification classiques transforme X en la
matrice du modele centrée X* € M (n,p*) donnée explicitement par :

X* = []In | X144 | | XmAm} avec A; =

Chacune des matrices A; (i =1,...,m) vérifie de plus :
tﬂhiAi =0et tAiAi =1Ip,—1+ JIp,—1.

Démonstration. La forme de la matrice X* proposée ici est une simple
réécriture matricielle des contraintes d’identification classiques. Détaillons ceci
sur un exemple simple. Considérons la matrice X; des indicatrices du facteur
1 & h; = 3 modalités. Les contraintes classiques d’identification imposent alors
que :

2
Z@U] =0e 8 =gl _ gl
=0

Ceci montre donc qu’il est possible a ’aide de cette relation de supprimer
la derniere modalité du facteur ¢ (i.e. la derniére colonne de X;) puisqu’on
peut Uexprimer & 1’aide des deux premieres modalités (i.e. des deux premieres
colonnes de X;). On obtient donc par exemple (pour n = 6 expériences) :

100 1 0

100 1o 10
Xl': 010 :>Xi: 0 1 :XzAz avecAi: _(1)_1

001 —-1-1

001 -1 -1

Ce résultat est généralisable sans la moindre difficulté au cas ou h; modalités
interviennent. Les propriétés énoncées pour la matrice A; sont immédiates. La
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relation T, A; découle simplement du fait que, par construction, les colonnes
de X; sont des contrastes de R™. Pour la deuxieme relation, il vient :

PAA; = [In, 1| =Tn -1 ] l—] =In,—1+1h1'Tp,— A

Proposition 8.5. Soit un plan d’expérience orthogonal pour m facteurs
qualitatifs a hy, ..., hy, modalités, analysé a l'aide du modéle additif. Les es-
timateurs des moindres carrés de [l’effet moyen général By ainsi que de
chacun des parameétres ﬁl[j] (Vi=1,..,metVj=0,..h;—1) sont donnés
par :

~

Bo=Y et g9 =YY _¥.
Concernant la dispersion de ces estimateurs il vient :

7

5 _ o’ ol
Var fp = — et Var 3’ = h; —1).
n n

Démonstration. Le modele statistique sous contraintes est :
Y =X*"3"+¢
ou (d’apres le lemme 8.4) la matrice du modele centrée est donnée par :
X* = (Lo X1 A1 | [ XA ]
Le vecteur #* € RP" des parametres inconnus du modele sous contrainte est :
Y =" (Bl 5|18 )

ot f € RM™1 (i = 1,...,m) regroupe les effets ,81[0],...,61[}”_2} relatifs au
facteur 4 (i.e. le dernier effet a été supprimé). Il en découle immédiatement
que :

n tHnXlAl . tHnXmAm
tAltXl]In tAltXleAl . tAltXleAm
XX = : : .
AL X L [P A X X1 Ar| o P4 X X Ay

Or, le plan d’expérience utilisé ayant été supposé orthogonal il vient donc
pour i,j = 1,...,m avec i # j (voir la proposition 8.4 pour les propriétés des
plans orthogonaux ainsi que le lemme 8.4 pour les propriétés de la matrice
Al) :

tHnXlAl = (tHnXl) Al = T’it]IhiAi = 0,

PATXi X Ay = it Ay Ay = it A A = vy (Tng 1 + 1)

PAX X A; =P AN A = Nigt Ay Ay = Nij (PAT,) (T, Aj) = 0.
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Ceci prouve donc que lorsque le plan d’expérience est orthogonal la matrice
tX*X* est diagonale par blocs, donnée explicitement par :

EX* X = diag (TL, 1 (I}”,l + Jhlfl) sy Tm (Ihm,1 + Jhmfl)) .

Chaque bloc est donc completement symétrique et d’apres le lemme 5.4 :

_ 1
Un, 1+ Jn,1) " =1n, 1 — EJhFL

La matrice des covariances de V ([3*) =02 (tX*X*)_1 est donc donnée par :

s 11 1 1 1
*x\ _ 2 7 - = = - o
V(ﬂ ) = o” diag (n7T1 (Ih1—1 hth1_1>7...,rm (Ihm—l hthm_1>>.

On en déduit immédiatement les diverses dispersions des composantes de 3*
par lecture des termes diagonaux de cette matrice :

2 2
~ ~qa o (h;—1
Vi=1,...metVj=0,..,h; —2, Varfy = — et Varﬁl[j] = — <1—>
n T hi
Remarquons aussi que les covariances non-nulles ne concernent que les couples
de composantes de chacun des vecteurs 3] relatif au facteur ¢ et sont données
par :

0.2

Tihi '

Vi=1,..metVj,j =0,.. . h —2avecj<j, Cov <Bl[j]a/§i[j]> -

Ce dernier résultat montre que la dispersion des parameétres estimés de la
forme ﬂl[hi_l] (i.e. les parametres supprimés dans la matrice centrée X*) est
bien identique aux dispersion déja obtenues puisqu’il vient :

h;—2
ﬂ[hi_l] - _ Z/B[]]
=0

hi—2 .
= Var 3" =37 Var 5 437" Cov <6£”,,8f ]>
§=0

i<i’
- 0'2 hz -1
- T hl '

_ o1 207

- Tihi Tihi
Il est enfin possible de simplifier toutes ces expressions puisque le plan
d’expérience étant orthogonal on peut toujours remplacer r; par n/h; d’apres
la proposition 8.4. Revenons maintenant aux équations normales afin de
déterminer la forme explicite des divers estimateurs. Ces équations sous la
contrainte utilisée sont :
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B* — (tX*X*)_l tX*Y.

Il a été prouvé précédemment que lorsque le plan est orthogonal la matrice
tX*X* est diagonale par blocs. On en déduit alors, dans un premier temps,
que l'estimateur des moindres carrés de 'effet moyen général est donné par :

~

1 —
60 = _t]InY =
n

Le fait que *X*X* soit diagonale par blocs implique aussi que les vecteurs
B € RM=1 sont estimés indépendemment les uns des autres & l'aide des
relations suivantes :

1
Vi= 1 ,m ﬁ* = ( hi—1 — h—Jh _1> tAitXiY. (1)

Comme X; est la matrice des indicatrices des modalités du facteur 7 il vient
alors :

Y[O] Y[O] _ Y[hifl]
XY = : et donc ‘4, XY = :
Yi[hifl] Yi[hi*2] _ Yi[hﬁl]

d’apres la forme générale de la matrice A; (voir le lemme 8.4). Etudions
maintenant 1'effet de 'opérateur (I;,_; — (1/h) J,_1) sur un vecteur v € R*~1.
On a alors :

1 1 h—1
(Ih—l — EJh_1> V=0V — E]Ih_l (t]lh_lv) =v — (T) ollp_1.

Ce dernier résultat permet donc d’affirmer que, d’apres la relation (1) :

h;—2
A _ Lyl yhe-n (hi— L 1 (k] yolhi1]
B =y eyt (M) (e vy,
k=0
Lo 1 omen 1= pm (hi= 1Y mey
vyl = [hi—1 = k] _ i [hi—1
k=0
ol 1 ’“z_:ly[k]zym ihz_:ly[k]_y[_ﬂ_y
¢ rih; P ’ v h; — v

Concernant maintenant 'effet de la modalité h; — 1 du facteur ¢ sur la réponse
on vérifie sans peine que :

hifl
S A g0 g

Jj=0

-Y.
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La proposition énoncée est donc bien démontrée B

Proposition 8.6. Soit un plan d’expérience orthogonal pour m facteurs
qualitatifs a hq, ..., hy, modalités, analysé a l'aide du modéle additif. La dis-
persion de la réponse prédite au point x = (i1,12, ...,1m) € € est :

VarY (z) <1+Zh—1)

Démonstration. La réponse prédite au point « = (i1, i2, ..., im,) est donnée
par :

Y (2) = Bo+ B + B L+ Bl

La démonstration de la proposition 8.5 a montré que tous les estimateurs
présents dans ’expression de Y (z) sont deux-a-deux non-corrélés. Donc :

Var Y (z) = Var By + Var 8l + ... + Var lim].

Les résultats de la proposition 8.5 permettent d’en déduire le résultat B

Proposition 8.10. Soit m facteurs qualitatifs tels que chacun d’eux a un
nombre premier h de modalités. Le groupe G engendré par les q générateurs
d’une fraction réguliére est un groupe fini constitué par h? éléments.

Démonstration. Considérons une fraction réguliere définie par la famille des
g générateurs F = { M, M, ..., My} . On sait alors (voir par exemple 'ouvrage
de Calais [17]) que le groupe G engendré par les éléments de F est :

G={MM,..M, ,neN*, M; € FouM;"'eF}.

Remarquons que, par définition, on a : V M; € F , M]* = I. 1l en résulte qu’il
est inutile de répéter les éléments de F plus de (h — 1) fois et :

G ={MP MM 0< B <h, M€ Fou M € F.
Détaillons maintenant la condition Mi—1 € F. On a alors :

'leFeIMeFtlque M ' =M
& Mih*1 = M puisque Mlh =1
o= M(h_1)2 — thl
& M; = M" ! puisque M(h b? MiMih(hd) = M.

Cette condition n’apporte donc aucune contrainte supplémentaire et :
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G ={MP MM 0< B <, M€ F)

Déterminons maintenant le nombre maximal d’éléments distincts que peut
avoir ’ensemble G. Dénombrons ses éléments de la maniere suivante (en les
supposant provisoirement tous distincts dans le raisonnement ci-dessous) :

0) L’ensemble G contient un seul élément n’utilisant aucun des éléments
de F. 1l s’agit de I’élément neutre I.

1) L’ensemble G contient g (h — 1) éléments (différents de I’élément neutre)
obtenus a partir d’un seul élément de F. En effet, a tout élément M; de F
correspondent les (h — 1) éléments M;, M2,..., Mih_1 de G. Cette construction
peut étre faite avec g éléments de F distincts pour un total de ¢ (h —1)
constructions possibles.

2) L’ensemble G contient C7 (h — 1)? éléments (différents de 1’élément neu-

tre) de la forme MFM]B] obtenus a partir de deux éléments M; et M; de F.

q) L’ensemble G contient C¢ (h —1)* = (h —1)? éléments (différents de
I’élément neutre) obtenus avec la totalité des éléments de I’ensemble F.

En regroupant ces résultats et en utilisant la formule du binéme de Newton
il vient donc :

q
card (G) <> Ci(h—1)" = h.
1=0

Le cardinal de G est maintenant exactement égal a h? si et seulement si tous
les éléments obtenus ci-dessus sont distincts. Remarquons dans un premier
temps qu’il est nécessaire que le résultat énoncé en 1 soit vrai c’est-a-dire
que chacun des générateurs M; doit engendrer les h éléments distincts T,
M;, M2, .., Mih_l. On sait cependant que tout générateur M; engendre a
I’aide de ses puissances successives un groupe monogene qui est dans le cas
général isomorphe au groupe Z/qZ avec q diviseur de h (voir Calais [17]).
Lorsque h est premier tout générateur M; engendre bien un groupe constitué
par h éléments distincts. Justifions enfin que tous les couples d’éléments de
G sont alors distincts. Supposons donc qu’il existe deux vecteurs distincts

(B, Bg) € {0, h = 1} et (Y1, .007g) € {0, ..., h — 1} tels que :
M My? . MPs = M M? . Mo

En supposant maintenant (sans perte de généralité) que B, # 0 il vient en

multipliant les deux membres de 1’'égalité par M. lh AR

Mo (Mf?...Mqﬂq) — Mg M
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En effectuant de méme une multiplication par Mzh -# 2...M,§l P on peut af-
firmer qu'il existe des coefficients Ay, ..., A, € {0, ..., h — 1} tels que :

A _ Az A
Mt = M, ...qu.

Comme h est un nombre premier on en déduit que A; est toujours un
générateur du groupe Z/hZ donc il existe un entier a tel que aA; = 1[h]. En
élevant les deux membres de 1'égalité a la puissance a on aboutit a la forme
équivalente suivante :

’ A,
My = M2 My°
avec Aq,..., Ay € {0,...,h —1}. Une telle égalité est cependant impossible a

obtenir puisque par hypothese F est une famille indépendante. On en déduit
alors que les h? éléments de G sont bien deux a deux distincts
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Plans d’expérience en blocs pour facteurs
qualitatifs

9.1 Introduction

La problématique des plans d’expérience en blocs a déja été introduite au
chapitre 6 pour des facteurs quantitatifs. Elle s’impose de la méme maniére
pour des facteurs qualitatifs lorsque les expériences réalisées semblent étre
hétérogenes. Les expériences homogenes sont alors regroupées en sous-
ensembles appelés blocs (issus d’'un méme arrivage de matiere premiere, du
travail d'un méme ouvrier, etc...) et le modele est enrichi en introduisant
divers effets de bloc.

Ce chapitre introduit tout d’abord des généralités concernant 1'utilisation
d’un modele a effets de blocs pour facteurs qualitatifs. Le probleme de
I’écriture du modele, des diverses matrices remarquables et enfin des tech-
niques permettant de décomposer les équations normales en équations nor-
males réduites est abordé. Tous ces résultats sont ensuite appliqués aux trois
grandes classes de plans en blocs que sont les plans en blocs complets, les
plans en blocs incomplets équilibrés et enfin les plans en blocs partiellement
équilibrés. L’analyse statistique de tous ces plans d’expérience peut, une nou-
velle fois, étre menée de maniere explicite et tres simple.

La plupart de ces configurations permettent facilement d’estimer les effets
des traitements. Ceci constitue la finalité de I’étude lorsque les effets des blocs
sont considérés comme des effets de nuisance dont I’estimation importe peu. Il
est cependant prouvé qu’il est facile d’estimer aussi les effets des blocs lorsque
cette information peut s’avérer utile.

Une extension est ensuite proposée en fin de chapitre concernant la classe
des plans d’expérience en blocs cycliques. Les techniques d’analyse de telles
configurations sont rapidement exposées. Un exemple d’application pratique,
mis en ceuvre a l'aide du logiciel SAS, termine ce chapitre.

W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 363
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_9,
(© Springer-Verlag Berlin Heidelberg 2010



364 9 Plans d’expérience en blocs pour facteurs qualitatifs

9.2 Généralités

9.2.1 Modele pour plans en blocs

Considérons ici le modele classique pour plan en blocs ot un facteur qualitatif
a h modalités est analysé a ’aide d’un plan d’expérience en b blocs constitués
respectivement par ki, ..., k, expériences (le nombre total d’expériences est
donc n =Y k;). De maniere usuelle il est courant dans ce contexte de qualifier
de traitements les diverses modalités considérées. Afin de les associer & une
quantité numérique on utilise souvent dans la suite le codage naturel (voir
le paragraphe 8.2.1) et on note de manieére abrégée le premier traitement
par T0, le second par T'1, ... , le dernier par T (h — 1) (ou bien seulement par
0,1,...,h—1¢8"ln’y a pas d’ambiguité). De méme chacun des blocs est désigné
parfois de maniere plus rapide par B1, B2, ..., Bb. Notons classiquement Y; (4)
la réponse observée lorsque le traitement i (0 < i < h — 1) est mis en oeuvre
dans le bloc I (1 <1 <b). Le modele (classique) & effets de blocs est alors le
modele statistique tel que les réponses associées au bloc [ vérifient la relation
Y, (i) = f1 (i) + e (i) avec :

J1(8) = Bo +41 + 8.

On peut encore écrire ce modele sous la forme compléte donnée ci-dessous :

b h—1
A0y =B+ Y _AMay, + > a¥sy,

j1:1 j2:0
ol d;; est le symbole de Kronecker (i.e. d;; = 1si ¢ = j, d;; = 0 sinon). Pour
ce modele on dit que (avec I =1,....,.beti=0,...,h—1):
Bo (i.e. la constante) est I'effet moyen général,
41 est 1'effet du bloc 1,

,6’% est 'effet du traitement i.
Le nombre total de parametres d’un tel modele est donc :
p*=1+0b+h.

Matriciellement ce modeéle peut étre mis sous la forme classique Y = X3 + ¢
avec :

X=[1L|Xs|Xr]

ou Xp € M (n,b) est la matrice des indicatrices des blocs (notée aussi sim-
plement B comme dans les chapitres précédents) et X € M (n,h) est la
matrice des indicatrices des traitements. Le vecteur § € RP* peut alors étre
partitionné en :

"B="(|"v|"6r)
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ot le sous-vecteur v € R regroupe tous les effets des blocs et le sous-vecteur
Br € R" regroupe tous les effets des traitements.

Remarque. Le modeéle pour plans en blocs n’est donc qu’un cas particulier
du modele additif étudié en détails lors du chapitre 8 car il peut étre iden-
tifié naturellement a un modele additif ou seulement deux facteurs qualitatifs
interviennent : celui quantifiant les effets des traitements et celui quantifiant
les effets des blocs.

9.2.2 Matrices et valeurs remarquables

Voici quelques valeurs numériques et matricielles spécifiques a ’analyse des
plans d’expérience en blocs pour facteurs qualitatifs. Un plan d’expérience en
blocs est qualifié de complet lorsque tous les h traitements sont présents dans
chacun des blocs. Si ce n’est pas le cas le plan d’expérience est dit incomplet.
Lorsque le nombre de traitements ou le nombre de blocs est grand il est,
bien entendu, primordial de rechercher des configurations incompletes afin de
diminuer le nombre d’expériences a réaliser. Concernant la structure des blocs
on pose :
K ="'BB = diag (k1, ..., kp) .

Lorsque le plan est en blocs de méme taille k£ il vient donc simplement
K = kI,. Concernant cette fois les traitements on pose :

R = tXTXT = diag (7’1, veey ’I”h)

ou r; désigne le nombre d’occurences du traitement 7 dans le plan d’expérience.
Lorsque tous les traitements apparaissent un méme nombre r de fois le plan
est qualifié d’équirépliqué et il vient R = rI;,. Tout comme pour les plans
d’expérience présentés dans le chapitre précédent la matrice d’incidence
N € M (h,b) est définie par :

N ='X,B.

Son terme général a I'intersection de la ligne 7 et la colonne j indique donc le
nombre de fois ou le traitement ¢ est appliqué au bloc j. Par sommation par
ligne ou par colonne cette matrice vérifie toujours les relations suivantes :

N]Ib =t (Tl,...,Th) et 2Sj\v]]lh = t(kla-"akb) .

On limite par la suite 'étude (afin de réduire le nombre d’expériences) aux
plans d’expérience binaires c’est-a-dire pour lesquels la matrice N est unique-
ment constituée par les valeurs 0 ou 1 (en d’autres termes chacun des traite-
ments ne peut étre appliqué plus d’une fois par bloc). On considere enfin la
matrice suivante, qualifiée de matrice de concordance et définie pour tout
plan d’expérience binaire par :
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T1 )\12 )\lh

o NtN )\12 T2 ...)\Qh

/\lh )\gh o Th

La matrice C est carrée d’ordre h et lorsque le plan est binaire ses éléments
sont (puisqu’elle est obtenue, par définition, par produits scalaires des lignes
de N) :

1) les r; (i =1,...,h) sur la diagonale donnant le nombre d’occurences du

traitement ¢ dans le plan d’expérience,

2) les \i; (4,5 =1,...,h avec i # j) hors de la diagonale donnant le nombre
d’apparitions simultanées des traitements i et j dans le plan d’expérience.

On peut dire aussi, de maniére équivalente (dans le cas d’'un plan binaire),
que 7; est le nombre de blocs contenant le traitement ¢ alors que A;; est le
nombre de blocs contenant simultanément les traitements ¢ et j.

| Exemple |

Considérons un phénomene aléatoire pour h = 3 traitements, analysé
a 'aide du plan d’expérience en b = 2 blocs suivant :

0 1 Bloc 1
1 2 Bloc 2

Cette notation classique traduit le fait que le bloc 1 est constitué
par les traitements 0 et 1 (en codage naturel) alors que le bloc 2
fait intervenir les traitements 1 et 2. Les expériences réalisées ici sont
associées au modele linéaire de matrice X = [ I, | B | X7 | ou (en
commencant par les expériences du bloc 1 et en terminant par celles
du bloc 2) :

10 100
10 010
B=lg1| tXr=1010
01 001

Il en découle immédiatement que :

100
K:[gg} et R=,020
001

Ces deux matrices traduisent bien le fait que le plan d’expérience
utilisé ici est en blocs de méme taille (puisque k& = 2) mais par contre
le plan n’est pas équirépliqué (puisque 1 = r3 = 1 mais ry = 2).
Concernant maintenant les matrices d’incidence et de concordance il
vient :
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10 110
N=!X;B=|11| eteC=NN=|121
01 011

Le plan d’expérience considéré ici est donc bien binaire. On retrouve
les diverses valeurs r; (i = 1,2,3) sur la diagonale de C. Les valeurs
sur l'extra-diagonale indiquent que les traitements 1 et 2 ainsi que 2
et 3 apparaissent simultanément dans un bloc. Par contre aucun des
blocs ne contient a la fois les traitements 1 et 3.

9.2.3 Contraintes d’identification

Le modele a effets de blocs est toujours surparamétré pour les mémes raison
qu’avec le modele pour facteurs qualitatifs (voir le paragraphe 8.2.6). Plus
précisemment la matrice du modele X = [ L, | B | Xr ] a toujours un rang
inférieur & (p* — 2) puisque la somme des colonnes de chacune des matrices
B et X est toujours égale a I,,. On supposera dans la suite que ’on utilise
un plan d’expérience tel que la matrice X ne présente aucun autre lien entre
ses colonnes, c’est-a-dire que :

rg(X)=p*—2.

D’apres les résultats généraux obtenus pour le modele additif on peut rendre
le modele étudié régulier a l’aide des contraintes d’identification classiques
suivantes :

Proposition 9.1. Des contraintes d’identification pour le modéle a effets
de blocs consistent a utiliser pour vecteur des effets des blocs ~y (resp. des
traitements Br) un contraste de R® (resp. de R"). En d’autres termes :

b h=1
Zv[l] =0et Zﬁg] =0
=1 i=0

Ces contraintes seront dites contraintes d’identification classiques. Il en
résulte que le nombre de paramétres inconnus du modeéle est alors :

p=p"—2=b+h—1.

9.2.4 Equations normales

Les équations normales du modele a effets de blocs peuvent facilement
étre décomposées en équations normales réduites permettant de déterminer
séparément les estimateurs des effets des blocs et des traitements. La résolution
explicite de ces diverses équations sera menée dans les sections suivantes
en fonction des plans d’expérience utilisés. Partant de la forme matricielle
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Y = X3+ € du modele avec ici X = [ I, | B | X7 } les équations normales
sont données par (*XX)3 ='XY avec donc :

n tI,B 'I,Xr n  I,Bt'L,Xr
tXX=|1'Bl, ‘BB 'BXr |=|1t'Bl,, K !N
XL, X7 B X7 X tX;I, N R

On en déduit que les équations normales sont toujours obtenues explicitement
par le syteme d’équations suivant :
TLBO + (tHnB)a + (tHnXT) BT = t]InY
(‘BL,) G+  Ki+  'NBr= 'BY (E)
(XrL,) Go + N7+ Rpr = 'XrY

Recherche de BT

Partant du systeme d’équations (FE) il est possible d’obtenir I'estimateur
des effets des traitements a 'aide du résultat ci-dessous :

Proposition 9.2. [<] L’estimateur des moindres carrés des effets des
traitements est solution des équations :

Crfbr = Qr
Cr € M (h,h) définie par t Or = "X Py gy X1
avee Qr contraste de R défini par : Qr = tXTP(Im B)LY

ot Pim )+ désigne le projecteur orthogonal sur (Im B)J‘ c’est-a-dire que

Py gyt =1In — Pimp =1, — B('BB)”"'B.

Les équations présentées a la proposition 9.2 sont d’'un grand intérét, elles
sont souvent qualifiées d’équations normales réduites ou encore d’équations
intrablocs. De méme la matrice Cr = tXTP(ImB)J_ X7 est parfois qualifiée
de matrice intrablocs réduite. Lorsque le plan d’expérience considéré est a
la fois équirépliqué et en blocs de méme taille (ce qui sera souvent le cas par
la suite) il vient alors simplement :

1 1 1
Cr=R-— EtXTBtBXT =R- ENtN =rl, — EC'

La structure de la matrice C'r est donc dans ce cas tres proche de celle de
la matrice de concordance C. Concernant le vecteur @1 remarquons que sa
détermination pratique est simple. En effet :

Qr ="'XrPyypyrY ="' X7Y —"Xr Py gY.
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En supposant les observations du vecteur Y rangées dans 'ordre des blocs
alors Py, p est une matrice diagonale par blocs donnée par la relation Py, p =
diag (1/k1Jgy, ., 1/kpJr,) et en désignant par Y Bi la moyenne des réponses
observées dans le bloc ¢ il vient :

PwmpY =" (Yp1,...YB1,.-. Y Bbs ey Y B3)

avec chacune des quantités Y p; apparaissant k; fois dans ce vecteur. On en
déduit que les composantes du vecteur Qr € R" sont données par (avec
i=0,..,h—1et Y] (i) la réponse obervée lorque le traitement 7 est appliqué
au bloc [) :

(Qr); = Z (Y (1) — Y1)

1/ TieBI

ol la somme est réalisée sur tous les I (1 < [ < b) tels que le traitement ¢
appartient au bloc [ (voir exemple ci-dessous). Ce résultat permet de qualifier
dans la suite le vecteur Qr de vecteur des sommes par traitements ajustées
par bloc.

| Exemple |

Reprenons 'exemple du paragraphe 9.2.2 et supposons que les n = 4
réponses sont données par :

Y ="(¥1(0),Y1(1),Y2(1),Y2(2)) ="(10,4,6,2).

Les moyennes par bloc vérifient Yp1=T7etYps =4 donc:

(10—7) 3
Qr=|A-7+06-4)|=|-1
(2—4) —2

Remarque. On ne détaille pas dans cet ouvrage les techniques d’analyse si-
multanée intrablocs et interblocs mais notons que parallelement aux équations
intrablocs de la proposition 9.2 les équations dites interblocs sont :

("X1PimBXr) B = X7 P Y.

Recherche de ¥ |

Déterminons ici les équations normales réduites conduisant a I’estimation
des moindres carrés des effets des blocs. On montre alors, de maniere similaire
a lestimation des effets des traitements, que :

Proposition 9.3. [<(] L’estimateur des moindres carrés des effets des blocs
est solution des équations :

CpY=@QnB
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Cp € M (b,b) définie par : Cp ="BPq,, x, )+ B
avee Qp contraste de R® défini par : Qp = tBP(Im XT)LY
ot P(ImXT)J. désigne le projecteur orthogonal sur (Im XT)J' c’est-a-dire que
P xpyt =In = Pinxy = In — Xp (‘X0 Xr) " ' X7

Les équations normales réduites obtenues ici sont (logiquement) identiques en
tout point a celles de la proposition 9.2 modulo une permutation des matrices
Xr et B (et donc aussi des vecteurs O et 7). Lorsque le plan d’expérience
est a la fois équirépliqué et en blocs de méme taille alors la matrice C'g prend
la forme simplifiée donnée ci-dessous :

1 1
Cp=K—~'"BXr'XrB=kl,— -'NN.
r r

Concernant maintenant le vecteur Qp € R® on montre (en suivant la méme
démarche que pour le vecteur Q1) que ses composantes sont données par (avec
i=1,..b):
@)= > (()-Vm)
j | TjEBi
ou la somme est réalisée sur tous les j (0 < j < h —1) tels que le traitement j
appartient au bloc i (voir ’exemple ci-dessous). Ce résultat permet de qualifier

dans la suite le vecteur Qp de vecteur des sommes par blocs ajustées par
traitement.

| Exemple |

Reprenons 'exemple du paragraphe 9.2.2 et supposons toujours que
les n = 4 réponses sont données par :

Y ="(Y1(0),Y1(1),Y2(1),Y2(2)) =" (10,4,6,2).

Cogme les moyennes par traitement vérifient ici Y7o =10, Y1 =5
et Yo = 2 on en déduit alors que :

or- [028)-[)

Recherche de 30

Terminons par l'estimateur des moindres carrés de l'effet moyen général
Bo. Une fois les estimateurs Sr et ¥ déterminés il est obtenu aisément.

Proposition 9.4. [<] L’estimateur des moindres carrés de l’effet moyen
général est :

Bo =

S|

(1Y = (1.B)7 ~ (1.X7) Br |
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ol v et BT sont respectivement les estimateurs des moindres carrés des ef-
fets des blocs et des effets des traitements. Lorsque le plan d’expérience est
équirépliqué en blocs de méme taille il vient simplement (avec les contraintes
d’identifications classiques) :

o2

~ 1 _ R
Bo ==Y =Y et Varfy =
n n

9.3 Plans en blocs complets
9.3.1 Définition et propriétés

Considérons ici la classe des plans en blocs pour facteurs qualitatifs la plus
simple & mettre en oeuvre, définie de la maniere suivante :

Définition 9.5. Soit un phénomene aléatoire analysé a l'aide de h traite-
ments répartis en b blocs. On appelle plan d’expérience en blocs complets
toute configuration telle que chacun des b blocs contient l’ensemble des h
traitements.

Seuls les plans d’expérience binaires sont étudiés donc lorsque les quantités
h et b sont données il existe un unique plan en blocs complets (ou chaque
traitement apparait une fois et une seule dans chacun des blocs). Un tel plan
sera désigné dans la suite par la notation CBD (h,b) issue de la terminologie
Complete Block Design. Les propriétés suivantes sont immédiates.

1) Chacun des blocs contient tous les traitements donc tout CBD (h,b) est
un plan d’expérience en blocs de méme taille (avec k = h) et équirépliqué
(avec 7 = b). Le nombre total d’expériences réalisées est n = bk = rh.

2) Chacun des blocs contient tous les traitements donc la matrice
d’incidence d’'un CBD (h,b) est donnée par :

N =Jy = Hhtﬂb.
3) La matrice de concordance d'un CBD (h,b) est alors :

C=N'N = JppJon = (In'T) (1,'T) = by

Exemple
|

Considérons h = 3 traitements & analyser en b = 2 blocs. On peut
alors proposer le plan d’expérience CBD (3,2) donné par :

Bloc 1
Bloc 2

01 2
01 2
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Ce plan d’expérience est bien équirépliqué puisque chacun des traite-
ments figure dans r = 2 blocs, chacun des blocs étant de taille k = 3.
Le nombre total d’expériences a réaliser est n = bk = rh = 6. Les
matrices d’incidence et de concordance sont données ici par :

11 222
N=|11]| etC= 222
11 222

9.3.2 Estimation des divers effets

Déterminons tout d’abord les formules explicites donnant les estimateurs des
effets des traitements ainsi que leur dispersion. D’apres le paragraphe 9.2.4
lestimateur des effets des traitements est solution des équations normales
réduites suivantes :

Crbr = Qr.

Dans le cas d’un plan en blocs complets la matrice C est tres simple, donnée
par :

1 b
Cr=rl _EC:bIh_EJh puisque b=k et r = b.

La matrice Cr est donc toujours ici une matrice completement symétrique
singuliére car b—(b/h) h = 0 (voir le lemme 5.A4). Il en découle une infinité de
solutions pour le systeme des équations normales réduites. On montre cepen-
dant qu’il existe une unique solution vérifiant les contraintes d’identification
classiques :

Proposition 9.6. [<] Soit un plan d’expérience en blocs complets de type
CBD (h,b). L’estimateur des moindres carrés des effets des traitements
vérifiant les contraintes d’identification classiques est donné par :

1 o h—1
Br=3Qr etVi=0,..h—1, Var 3L :02%.

En d’autres termes chacune des composantes de O1 est obtenue ici de maniére
tres simple puisque :

Vi:(),...,hfl,,@y] =a(Qr); avec a =

S| =

D’aprés le paragraphe 9.2.4, (Qr); = 32; ) riem (Vi (i) = Y ) et donc :
. a1 N T
Vi=0,..h—1, 0= Z (Yi (i)~ Y1)
I / TieBl

Lorsque le plan d’expérience est complet chaque traitement 7 est présent dans
la totalité des b blocs, on a donc aussi I’expression suivante :
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Vi=0,.,h—1,080 =V, -V

avec Y 7; moyenne des observations associées au traitement 1.

| Exemple |

Reprenons 'exemple du paragraphe 9.3.1 et montrons que dans le cas
d’une réponse déterministe la proposition 9.6 permet bien de retrouver
de maniere exacte les divers effets des traitements du modele utilisé.
Considérons le modele a effets de blocs tel que :

[ Bo=20 | =—5 |M=—4
b — A2 = 4
o =4

Le plan d’expérience utilisé, de type CBD (3,2), ainsi que les n = 6
réponses sont alors données ci-dessous :

Bloc 1 R 11 17 20
Bloc 2 CPOmSEs -9 o5 98

01 2
0 1 2

Par application de la proposition 9.6 il faut déterminer le vecteur Qr
des sommes par traitements ajustées par bloc afin de retrouver les
divers effets des traitements. Les moyennes par blocs valent :

?Bl =16 et 732 = 24.

On en déduit ensuite que :

(11 =Yp1) + (19 = Vo) -10
Qr=|(17T=Yp)+ (25— Yp) | = 2
(20— Y1) + (28— Yp2) 8

Vu que b = 2 blocs sont utilisés on retrouve bien les différentes valeurs
des effets des traitements avec l'estimateur 8y = (1/2) Q.

Si lestimation des effets des blocs est recherchée on démontre alors (de
maniére tout a fait similaire ici au cas des traitements) que pour tout plan
d’expérience en blocs complets de type CBD (h,b) I'estimateur des moin-
dres carrés des effets des blocs vérifiant les contraintes d’identification clas-
siques est donné par :

(b-1)

n

1
a:EQB et VIi=1,..,b, Varqll = o2

La aussi cette formule peut étre réécrite sous la forme suivante :

Vi=1,.,b, 30 =Yg -V
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avec Y gy moyenne des observations du bloc [. Concernant enfin I’estimation
de l'effet moyen général, la proposition 9.4 permet d’affirmer que pour tout
plan d’expérience en blocs complets de type CBD (h,b) lestimateur des
moindres carrés de l'effet moyen général est donné par :

Bo=Y et Var Gy = —.
n

| Exemple |

Reprenons encore ’exemple utilisé dans les deux paragraphes précédents.
Concernant ’effet moyen général on retrouve bien que :

Bo =Y = 20.

Afin d’estimer maintenant les divers effets des blocs il faut au préalable
déterminer les moyennes par traitements :

?TO =15 5 ?Tl =2l et ?TQ = 24.
On en déduit que :

(11 =Yro) + (17— Y71) + (20—?T2)} _ {—12} .

@s = (19—Y70) + (25— Y71) + (28 = Y70) 12

Vu que h = 3 traitements interviennent ici on retrouve donc bien les
différentes valeurs des effets des blocs a ’aide de 7 = (1/3) @ B.

9.4 Plans en blocs incomplets équilibrés
9.4.1 Définition et propriétés

Lorsque les expériences sont cotuteuses ou longues a réaliser I'utilisation d’'un
plan en blocs complets peut s’avérer tres contraignante puisqu’il est nécessaire
de réaliser toutes les expériences possibles. C’est pourquoi il est naturel de
rechercher une classe de plans d’expérience en blocs de plus petite taille
présentant cependant la méme facilité d’analyse que les plans complets. Ceci
conduit a la classe des plans en blocs incomplets équilibrés définie de la
maniere suivante :

Définition 9.7. Soit un phénomeéne aléatoire analysé a l’aide de h traitements
répartis en b blocs. On appelle plan en blocs incomplets équilibré tout plan
binaire vérifiant les conditions suivantes :

1) chague bloc est constitué par k expériences (avec k < h),
2) chaque traitement apparait dans r blocs,

3) chaque paire de traitements apparait dans A blocs.
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Un plan d’expérience en blocs vérifiant ces trois conditions sera désormais
désigné par la notation BIBD (h,b, k,r, \) issue de la terminologie Balanced
Incomplete Bloc Design. Les propriétés suivantes sont alors immédiates pour
tout BIBD

1) Tout BIBD est (par hypothese) un plan d’expérience en blocs de méme
taille et équirépliqué. Le nombre total d’expériences a réaliser est donc
n = bk = rh.

2) La matrice d’incidence d’'un BIBD ne peut pas étre déterminée facilement
de maniere générale mais, par contre, les hypotheses 2 et 3 de la définition 9.7
entrainent que la matrice de concordance de tout BIBD (h,b, k,r, \) est :

C=N'N=(r—\ I+ .
Remarquons qu'il existe le lien suivant entre les parametres h, b, k, r et A :
Proposition 9.8. [<| Pour tout BIBD (h,b,k,r,\) on a la relation :
r(k—1)=A(h—-1).

Illustrons tout ceci a ’aide de I'exemple ci-dessous.

| Exemple |

Considérons h = 3 traitements a analyser en b = 3 blocs. Un plan
d’expérience classique est donné par la configuration suivante :

0

Bloc 1
2 Bloc 2
0 2 Bloc 3

1
1

De maniere équivalente ce plan d’expérience peut aussi étre décrit par
le tableau suivant (déja présenté & la section 5.4 afin de construire
des plans de Box et Behnken) ou I’appartenance d’un traitement a un
bloc est signifiée par une croix.

Trait. 0 | Trait. 1 | Trait. 2
Bloc 1 X X
Bloc 2 X X
Bloc 3 X X

On constate sans difficulté que ce plan d’expérience est bien en blocs
incomplets équilibré de type BIBD (3,3,2,2,1) (i.e. h = 3, b = 3,
k=2,r=2et A=1). Sa matrice de concordance est :

211
C=1|121] =1+ J5.
112

Onabienr(k—1)=A(h—1)=2.



376 9 Plans d’expérience en blocs pour facteurs qualitatifs
9.4.2 Estimation des divers effets

L’objectif principal d’une étude menée a 'aide d’'un BIBD est I’estimation des
divers effets des traitements. On a alors le résultat suivant :

Proposition 9.9. [<] Soit un plan d’expérience en blocs incomplets
équilibré de type BIBD (h,b,k,r,\). L’estimateur des moindres carrés des
effets des traitements vérifiant les contraintes d’identification classiques est :

~

k i k(h—1
BTZEQT et Vi=0,..,h—1, Varﬁgp] 202¥

Ah?

On constate donc qu’une nouvelle fois chacune des composantes du vecteur
B est obtenue de manieére tres simple puisque :

Vi=0,..,.h—1, Bgﬁ] =a(Qr); avec a = ﬁ
Ah

Dans le ”cas limite” du plan en blocs complets il vient A = b et kK = h et on

retrouve bien la valeur a = 1/b de la proposition 9.6. D’apres le paragraphe

9.2.4 on sait aussi que (Qr); = >2; / picp (Y (i) — Y z) donc, de maniere

équivalente :

~a k =
Vizamﬁfl,@szﬁ S (i) -Ym).

! / Ti€BI

| Exemple |

Reprenons 'exemple du paragraphe 9.4.1 et montrons que dans le cas
d’une réponse déterministe la proposition 9.9 permet bien de retrouver
les valeurs exactes des divers effets des traitements du modele étudié.
Considérons le modele a effets de blocs tel que :

[ Bo=20 |0 =—5 |ll=-4
gl=1 |4 =4
P=1 4B =0
Le plan d’expérience complet impose ici la réalisation d’un total de 9

expériences. L’utilisation du BIBD (3,3,2,2, 1) présenté dans le para-
graphe précédent réduit ce nombre a n =6 :

0 1 Bloc 1 11 17
1 2 Bloc 2 Réponses : 25 28
0 2 Bloc 3 15 24

Le vecteur Q7 des sommes par traitements ajustées par bloc est donné
par (puisque Yp1 =14, Yo = 26.5 et Y g3 =19.5) :
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(11 — ZBI) + (15 — 233) 7.5
Qr=|(17T-Yp)+(25-Ypa) | =| 15
(28 — YBQ) + (24 - YBg) 6.0

On retrouve bien les différentesA valeurs des effets des traitements
utilisées & laide de estimateur S = (2/3) Q7.

Si ’estimation des effets des blocs est recherchée alors tout BIBD permet aussi
d’atteindre facilement cet objectif. On vérifie en effet que pour tout plan
d’expérience en blocs incomplets équilibré de type BIBD (h,b k,r,\)
Iestimateur des moindres carrés des effets des blocs vérifiant les contraintes
d’identification classiques est :

1 1
A=—|(I,+ —'NN .
Y k<b+)\h >QB

Concernant les différentes dispersions il vient :

~ 1 1 (h—k)
=1,.. Varqll = o2 [ = — = .
Vi , .0, Vary o (k: rh+ N )

Pour un calcul plus direct, les divers éléments de la matrice N N sont obtenus
par produits scalaires des colonnes de N. Il en résulte que le terme général de
NN est 6;; (Vi,j =1,...,b), entier naturel égal au nombre de traitements
communs aux blocs ¢ et j (en particulier d;; = k puisque le plan est en blocs
de méme taille k et d;; = 0 lorsque les blocs i et j sont d’intersection vide).
Chacun des estimateurs des effets des blocs est donc obtenu par la relation
suivante (V1 =1,...,b) :

b
=" (Qs);
=1

ou :
1 e 11 by ,
A SV A VA S VAR

Tout plan en blocs incomplets équilibré est a la fois équirépliqué et en blocs
de méme taille. La proposition 9.4 permet donc d’affirmer que pour tout plan
d’expérience en blocs incomplets équilibré de type BIBD (h,b k,r,\)
I’estimateur des moindres carrés de 'effet moyen général est donné par :

~ — ~ 0'2
Bo=Y et Var Gy = —.
n

| Exemple

Reprenons 'exemple utilisé dans les paragraphes précédents. Concer-
nant leffet moyen général on retrouve bien que :

Bo =Y = 20.
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Les moyennes par traitement sont ?TO = 13, Yo =21let Yo =26
donc le vecteur @ p des sommes par blocs ajustées par traitement est

donné par :
(11=Y7o) + (17— Y1) -6
Qp=| (25— ZTl) + (28 — ZT2) =| 6
(16— Yr0) + (24— Y12) 0

On retrouve bien (par exemple) 'estimateur de 1’effet du premier bloc
a l'aide de la formule suivante :

A = a1, (QB), +a12 (QB)y + a13 (@B)

avec 012 = 013 = 1 (nombre de traitements communs aux blocs 1 et 2
ainsi que 1 et 3) ce qui entraine que :

I S B I
R A VA I e A VAR
En conclusion il vient donc :
5 1
AW = 2 (—6)+ = (6) = —4
3 =2 (=6) + = (6)

9.4.3 Construction des BIBD

Il vient d’étre montré que ’analyse statistique d’'un BIBD est tres simple a
mener. Le probleme de l'utilisation de cette classe de plans d’expérience se
situe cependant en amont car il peut s’avérer complexe pour une situation
donnée, voire impossible, de construire une configuration en blocs incomplets
équilibrés. En effet le BIBD (4, 3,2,1, 1), par exemple, n’existe pas car la rela-
tion A (h — 1) =7 (k — 1) n’est pas vérifiée. Le probléme de la construction de
ce type de plans a été historiquement abordé par un grand nombre d’auteurs.
Les tous premiers résultats sont dus & Bose [7] sous forme d’un ”catalogue”
de BIBD pour des tailles de blocs et des nombre de réplications relativement
faibles. La méthode classique dite des différences est présentée ici, d’autres
méthodes algébriques de construction des BIBD sont exposées, par exemple,
dans 'ouvrage de John [52].

Considérons h traitements codés usuellement par ’ensemble {0, 1, ..., h — 1}
identifié au groupe Z/hZ muni de I’'addition modulo h. Soit un sous-ensemble
@ de {0,1,....,h— 1} & h* éléments. On s’intéresse dans la suite & toutes
les différences de couples d’éléments de &, il en existe donc un total de
A2, = h* (h* — 1) & évaluer (non forcément distinctes).

| Exemple |

Pour h = 7 traitements considérons ¢ = {0,1,2}. Les différences de
tous les couples d’éléments de @ sont données ici par :
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0-1=6,0-2=5,1-0=1,
1-2=6,2-0=2,2-1=1.

On définit alors la notion d’ensemble aux différences de la maniére suivante :

Définition 9.10. Soit & un sous-ensemble a h* élements de l’ensemble des
traitements {0,1,...,h — 1}. On dit que ¢ est un ensemble aux différences
si et seulement si les h* (h* — 1) différences obtenues dans @ font apparaitre
tous les élements non-nuls de {0,1,...,h — 1} un méme nombre de fois (noté
A par la suite).

Illustrons ceci a ’aide des exemples suivants.

Exemple
|

L’exemple traité précédemment pour h = 7 et & = {0,1,2} n’est
pas un ensemble aux différences puisque les différences ne font jamais
apparaitre le traitement 3. Toujours pour h = 7 traitements on peut
par contre remarquer que ¢ = {0,1,3} est bien un ensemble aux
différences puisqu’alors toutes les différences sont données par :

0-1=6,0-3=4,1-0=1,
1-3=5,3-0=3,3—-1=2.

Tous les éléments non nuls de ’ensemble des traitements {0,1,2,3,4,5,6}
apparaissent donc bien A = 1 fois.

Ceci étant posé le résultat principal suivant est di & Bose [7] (dans I’énoncé
on appelle plan cyclique tout plan d’expérience en blocs dont les blocs sont
obtenus par permutations circulaires de I’ensemble @, voir la section 9.6 pour
plus de détails) :

Proposition 9.11. Soit un phénomene aléatoire ot h traitements sont étudiés
et @ un ensemble auz différences a h* éléments (tel que chaque différence non-
nulle apparait exactement X\ fois). Le plan d’expérience cyclique engendré
par le bloc @ est alors toujours un plan en blocs incomplets équilibré de type

BIBD (h,b,k,r,\) avec :
b=hetr=k=hn"

Un BIBD (h,b,k,r,\) tel que b = h et r = k est souvent qualifié de
symétrique. Illustrons une nouvelle fois ceci a I'aide d’un exemple.

| Exemple |

On vérifie que pour h = 4 traitements l'ensemble & = {0,1,2}
est bien un ensemble aux différences. On en déduit que le plan
d’expérience suivant, engendré par le bloc @, est bien un BIBD de
type BIBD (4,4,3,3,2) :
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01 2 Bloc 1

1 2 3 Bloc 2
0 2 3 Bloc 3
0 1 3 Bloc 4

9.5 Plans en blocs partiellement équilibrés
9.5.1 Définition et propriétés

D’apres les résultats précédents 1'utilisation des plans en blocs incomplets
équilibré est tres simple mais leur construction peut s’avérer complexe. Ceci
est di principalement aux hypothéses trés contraignantes (voir la définition
9.7) que doivent vérifier de tels plans. En particulier d’apres la proposition
9.8 il est nécessaire que l'on ait (puisque bk = rh) :

r(k—1)  bk(k—1)

A= Ty T h(h—1)

eN.

L’idée a la base de la classe des plans en blocs partiellement équilibrés est de
s’affranchir de cette contrainte. En d’autres termes on n’impose plus ici que
chaque paire de traitements apparaisse dans exactement A blocs. De maniere
équivalente, mais exprimé cette fois en terme de matrice de concordance, il
existe une seule valeur \ extradiagonale dans le cas des plans en blocs in-
complets équilibrés alors que pour les plans partiellement équilibrés plusieurs
valeurs différentes pourront étre prises. On se limite ici au cas ou la matrice
de concordance ne peut avoir que deux valeurs extradiagonales \; et Aq, les
plans d’expérience vérifiant une telle propriété sont dits & deux schémas
d’association.

Définition 9.12. Soit un phénoméne aléatoire ou h traitements sont étudiés
et codés par Uensemble {0,1,...,h — 1}. Supposons cet ensemble partitionné
en ng sous-ensembles A, ...,A,, chacun étant constitué de ny éléments
(donc h = ning). Deux traitements différents sont alors qualifiés d’associés
d’ordre 1 s’ils appartiennent a un méme ensemble A; (i = 1,...,n2),
d’associés d’ordre 2 sinon.

Illustrons ceci a ’aide d’un exemple élémentaire.

| Exemple |

Considérons h = 4 traitements codés a 1’aide de ’ensemble {0, 1,2, 3}.
On peut alors, par exemple, effectuer la décomposition suivante :

{O, 1,2,3} = A UA, avec Ay = {0, 1} et Ay = {273}

L’ensemble des traitements est ainsi partitionné en ny = 2 ensembles
constitués chacun par n; = 2 éléments. Les traitements 0 et 1 sont
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associés d’ordre 1, les traitements 0 et 2 sont associés d’ordre 2, etc

Ceci permet de définir ci-dessous le type de plans d’expérience étudiés ici :

Définition 9.13. Soit un phénoméne aléatoire analysé a l'aide de h traite-
ments répartis en b blocs. Suppposons l’ensemble des traitements partitionné
en ng sous-ensembles a ny €éléments. On appelle alors plan partiellement
équilibré a deux schémas d’association tout plan binaire vérifiant les
conditions sutvantes :

1) chaque bloc est constitué par k expériences (avec k < h),
2) chaque traitement apparait dans r blocs,
3) chaque paire de traitements associés d’ordre 1 apparait dans A blocs,

4) chaque paire de traitements associés d’ordre 2 apparait dans Ao blocs.

Un plan d’expérience en blocs vérifiant les quatre conditions imposées a la
définition 9.13 sera désormais désigné par la notation GDD (h,b, k,r, A1, A2)
issue de la terminologie Group Divisible Design. Les propriétés suivantes sont
immédiates :

1) Tout GDD est (par hypotheése) un plan en blocs de méme taille et
équirépliqué, le nombre total d’expériences a réaliser est donc n = bk = rh.

2) La classe des GDD généralise celle des BIBD dans le sens ol un BIBD
n’est autre qu'un GDD ou ’ensemble des traitements n’est pas partitionné
(i.e. toutes les paires de traitements sont associés d’ordre 1).

3) La matrice d’incidence d’un GDD ne peut pas étre déterminée facilement de
maniere générale mais, par contre, les hypothese 2, 3 et 4 de la définition 9.13
entrainent que la matrice de concordance de tout GDD (h,b, k,r, A1, A2)
peut toujours étre ramenée (en recodant éventuellement de maniere différente
les diverses modalités) & une matrice en blocs de la forme suivante :

C=N!N=
(T’ — )\1) Inl + /\1Jn1 )\2Jn1 S /\QJnl
/\QJnl (T — /\1) Inl + )\1Jn1 L. /\QJnl
/\an1 )\QJnl R (7“ — )\1) In1 + )\1Jn1

Il existe encore un lien entre les parametres h, b, k, r, A1 et Ao donné par :

Proposition 9.14. [<] Pour tout GDD (h,b,k,r, A1, \2) tel que ’ensemble
des traitements est partitionné en no sous-ensembles a ny éléments on a :

T(k—l):)\1(711—1)—"-)\2%1(712—1).

Illustrons tout ceci.
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| Exemple |

Considérons toujours h = 4 traitements a analyser en b = 4 blocs.
A partir de la partition de 'ensemble des traitements {0,1,2,3} =
{0,1} U {2,3} en ny = 2 sous-ensembles & ny = 2 éléments on peut
proposer la configuration donnée ci-dessous :

0 2 Bloc 1
0 3 Bloc 2
1 2 Bloc 3
1 3 Bloc 4

Tous les couples associés a 'ordre 1 n’apparaissent jamais ensemble
dans un bloc alors que tous les couples associés a ’ordre 2 apparaissent
tous une fois (A; = 0 et Ao = 1). Il en résulte que le plan d’expérience
présenté est de type GDD (4,4,2,2,0,1). Sa matrice de concordance

est :
2011

0211
1120
1102

C:

Un tel plan ne nécessite que n = 8 expériences soit la moitié du nombre
requis par le plan complet correspondant (il n’existe pas de plus de
BIBD constitué par des blocs de taille 2).

9.5.2 Estimation des divers effets

Une nouvelle fois I'objectif principal lors de la mise en oeuvre d’'un plan
d’expérience partiellement équilibré est I’estimation des divers effets des traite-
ments. On a alors le résultat suivant :

Proposition 9.15. [<| Soit un plan d’expérience partiellement équilibré
a deux schémas d’association de type GDD (h,b,k,r, A\, ) tel que
l’ensemble des traitements est partitionné en ng sous-ensembles a ny éléments.
L’estimateur des moindres carrés des effets des traitements vérifiant les con-
traintes d’identification classiques est donné par (avec U matrice d’ordre h
diagonale par blocs telle que U = diag (Jny, ey Iny)):

s k (e )
ﬁT_r(k—lH—/\l In hAs U}QT‘

Concernant les différentes dispersions il vient :

Vi=0,..,h—1, Var B =

0'2,16 )\in (ng — 1) ()\2 — /\1) (/\2 — )\1)
(r(k—1)+ ) k=1 h <”1 ha _2>]'
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Remarque. Contrairement a la situation pour les plans complets ou les plans
en blocs incomplets équilibrés, un plan partiellement équilibré a deux schémas
d’associations n’est pas toujours régulier (i.e. 'estimateur des effets des
traitements d’'un GDD peut ne pas exister). En effet, la formule obtenue &
la proposition 9.15 montre qu’il est impossible de déterminer I'estimateur BT
lorsque :

r(k—1)4+ X =0ou g =0.

La premiére condition est facile & éviter en pratique (car généralement k > 2)
mais il conviendra dans la suite d’éviter toute configuration telle que Ao = 0
(i.e. toute configuration telle que les traitements associés a lordre deux
n’apparaissent jamais simultanément dans un bloc). Le lecteur pourra consul-
ter Pouvrage de John [52] (chapitre 5) pour plus d’informations concernant la
nature d’'un GDD.

Chaque composante du vecteur Or peut aussi étre écrite sous la forme
suivante :

Vi=0,..h—1,80 =a|(Qr),—b| (@), + Y. (Qr)

i/ {igtecl
ova=k/(r(k—1)+ A1), b= (A2 — A1) /hAs et la notation (¢, j) o 1 traduit
le fait que le couple de traitements i et j sont associés & lordre 1 (par hy-
pothese la somme Ej / {i,j}c1POTtE toujours sur ny — 1 éléments).

| Exemple |

Considérons une nouvelle fois exemple du GDD (4,4,2,2,0,1) du
paragraphe 9.5.1 et supposons que les réponses observées sont détermini-
stes, obtenues a partir du modele a effets de blocs tel que :

| Bo=20 | A% =—5 [~0=_¢
Bl=2 |4¥=-2
gl =2 A8l =0
55?1 -1 A8l =8

L’utilisation du plan partiellement équilibré & deux schémas d’association
conduit donc a I'observation des réponses suivantes.

0 2 Bloc 1 9 16

0 3 Bloc 2 Réponses : 13 19
1 2 Bloc 3 ’ 22 22
1 3 Bloc 4 30 29

Le vecteur Q7 des sommes par traitements ajustées par bloc est alors
donné par (car Yp; =125, Y pa =16, Y3 =22 et Y gg = 29.5) :



384 9 Plans d’expérience en blocs pour facteurs qualitatifs

(9 —12.5) + (13 — 16) —6.5

1 (22-22)+(30-295)| | 05

Qr = (16 —12.5) 4+ (22 —-22) | — | 3.5
(19 — 16) + (29 — 29.5) 2.5

Pour appliquer les formules établies suite a la proposition 9.15 il faut
déterminer les constantes suivantes :

k A2 — A 1
a= et pepp= P2 M) L

r (k — 1) + M h)sy 4
L’estimateur BFE,?] de Deffet du traitement 0 est alors (puisque le traite-
ment 0 n’est associé a 'ordre 1 qu’avec le traitement 1) :

W= @ X (@n,] =05 - 105 =

i/ {05} 1
Il en va de méme pour la détermination de tous les autres estimateurs.

Une formulation explicite pour 'estimateur des effets des blocs s’avere étre
ici complexe. C’est pourquoi nous conseillons a I’expérimentateur intéressé par
la connaissance d’une telle quantité de s’orienter vers la résolution numérique
du systeme des équations normales réduites obtenues a la proposition 9.3.
Remarquons cependant que tout plan partiellement équilibré a deux schémas
d’association est a la fois équirépliqué et en blocs de méme taille. Il en résulte
que (voir la proposition 9.4) pour tout un plan d’expérience partiellement
équilibré a deux schémas d’association de type GDD (h,b, k,r, A1, A2)
Iestimateur des moindres carrés de l'effet moyen général est donné par :

,\_ R 2
Bo=Y et Var Gy = —

Illustrons ces résultats a partir de ’exemple suivant.

| Exemple |
Toujours pour I'exemple du GDD (4,4,2,2,0,1) du paragraphe 9.5.1
on retrouve bien que l’effet moyen général est donné ici par :

Bo =Y = 20.

Concernant maintenant les divers estimateurs des effets des blocs ils
sont solutions de 1’équation normale réduite Cgy = Qp ou :

1-1/2-1/2 0 -5
w -2 1 012 -3
O ="Blumxp: B=\ 1) o 1-12| 9=
0-1/2-1/2 1 9

Ce systeme d’équations admet alors une infinité de solutions, il con-
vient de ne garder que celle vérifiant les contraintes d’identification
classiques (i.e. AU + 72 7B - F14 = 0).
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9.5.3 Construction des GDD

Une nouvelle fois le probleme principal de la classe des plans partiellement
équilibrés réside dans leur construction qui peut s’avérer difficile, voire im-
possible dans certains cas (pour un nombre de traitements impairs il est par
exemple impossible d’avoir h = ning avec n; € N et ng € N). Une méhode
algébrique de construction est présentée ici, elle est dérivée de celle de Bose
[6] exposée au paragraphe 9.4.3 dans le cadre des BIBD (voir 'ouvrage de
John [52] pour plus de détails).

Proposition 9.16. Soit un phénomeéne aléatoire ou h traitements sont étudiés
avec h = niny (n1 € N et ny € N). Supposons ces traitements classiquement
codés par 0,1,....h — 1 et cet ensemble muni de l’addition modulo h. Sup-
posons enfin l’ensemble des traitements partitionné en ng sous-ensembles a
ny éléments tels que le i-éme de ces sous-ensembles (i = 0,...,na — 1) est
donné par {i,i+na, i+ 2ng,...,i+ (n1 — 1)na}. Soit & un ensemble a h*
éléments vérifiant la propriété suivante pour les h* (h* — 1) différences de ses
couples d’éléments :

tous les associés d’ordre un de O apparaissent A1 fois,
tous les autres traitements non-nuls apparaissent Ao fois.

On peut alors affirmer que le plan d’expérience cyclique engendré par le bloc
@ est un plan partiellement équilibré a deuxr schémas d’association de type

GDD (h,b,k,r, A1, \2) avec ici :
b=hetr=k=hn"

D’apres la décomposition de ’ensemble des traitements effectuée dans cette
proposition on a pour i = 0 le sous-ensemble {0, ng, 2na, ..., (n1 — 1) n2} donc
les associés d’ordre un de 0 sont tout simplement les traitements repérés par
des multiples de ny. Cette méthode de construction conduit encore & des plans
d’expérience symétriques puisque b = h et r = k.

| Exemple |

Considérons un phénomene aléatoire dépendant de h = 6 traitements
et posons h = ning avec ny = 2 et no = 3. Ce choix est donc lié d’apres
la proposition 9.16 a la partition de ’ensemble des traitements en 3
sous-ensembles & deux éléments donnés explicitement par :

{0,1,2,3,4,5} = {0,3} U {1,4} U {2,5}.

Afin de construire une configuration en blocs de taille 3 considérons
Pensemble @ = {0, 1,4} . Les différences de tous les couples d’éléments
de @ sont alors données par :

0-1=50-4=21-0=1,
1-4=38,4-0=4,4—1=3.
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On constate bien que le seul associé d’ordre un de 0 (c’est-a-dire 3) ap-
parait A\; = 2 fois dans ces différences alors que tous les autres traite-
ments non-nuls (c’est-a-dire 1, 2, 4 et 5) apparaissent tous Ay = 1 fois.
La proposition 9.16 permet donc d’affirmer que le plan d’expérience
cyclique engendré par le bloc @ = {0, 1,4} (donné ci-dessous) est bien
un plan en blocs partiellement équilibré a deux schémas d’association
de type GDD (6,6,3,3,2,1).

01 4 Bloc 1
1 2 5 Bloc 2

0 2 3 Bloc 3
1 3 4 Bloc 4

2 4 5 Bloc 5

0 3 5 Bloc 6

Remarquons qu'un BIBD avec les mémes parametres est impossible
a construire car :

Cbk(k—1) 6

9.5.4 Généralisations

La classe des plans partiellement équilibrés a deux schémas d’association
de type GDD vient d’étre présentée. Il est alors naturellement possible de
généraliser ce type de structure suivant 'une ou 'autre des voies présentées
ci-dessous (voir par exemple ouvrage de John [52] pour plus de détails).

1) La structure des GDD peut s’avérer contraignante dans le sens ou il est
nécessaire de partitionner ’ensemble des traitements en sous-ensembles tels
que tous les couples de traitements d’un méme sous-ensemble sont forcément
associés d’ordre un. Une technique plus souple consiste a utiliser des plans
pour lesquels un certain nombre de couples de traitements sont associés
d’ordre un (et apparaissent donc dans A; blocs) alors que tous les autres
sont associés d’ordre deux (et apparaissent donc dans A2 blocs). De tels plans
d’expérience sont qualifiés de plans en blocs partiellement équilibrés de
type PBIBD (pour Partially Balanced Incomplet Bloc Design). Un exemple
de tel plan d’expérience pour h = 6 traitements en b = 6 blocs de taille kK = 3
est donné ci-dessous :

0 1 3 Bloc 1
1 2 4 Bloc 2

2 3 5 Bloc 3

0 3 4 Bloc 4
1 4 5 Bloc 5

0 2 5 Bloc 6
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Remarquons que ce plan d’expérience a une structure tres proche de 'exemple
du paragraphe 9.5.3 puisqu’il s’agit ici d’un plan cyclique engendré par le bloc
@ ={0,1,3} (au lieu du bloc & = {0,1,4}). Ce plan d’expérience n’est cepen-
dant pas de type GDD. Il s’agit bien par contre d’un plan partiellement
équilibré de type PBIBD tel que les couples de traitements {0, 3}, {1,4} et
{2,5} sont associés d’ordre 1 avec A\; = 2. Tous les autres couples de traite-
ments sont associés d’ordre 2 avec cette fois Ay = 1. La difficulté principale
pour 'analyse de ce type de plans d’expérience par rapport aux GDD réside
dans le fait que la matrice de concordance n’a plus la structure en blocs
présentée au paragraphe 9.5.1.

2) La deuxieéme voie naturelle pour la généralisation des GDD consiste &
ne plus se limiter & deux schémas d’associations mais & un nombre quel-
conque (i.e. pour s schémas s’association alors la matrice de concordance
présente p valeurs extradiagonales A1,..., Ap). Ce type de structure devient
bien évidemment rapidement complexe a manier, le cas ot s = 3 est le plus
courant en pratique. Un exemple classique est le plan d’expérience suivant
proposé par Vartak [102] :

4 5 7 8 10 11 Bloc 1

1 2 7 8 10 11 Bloc 2

1 2 4 5 10 11 Bloc 3

1 2 4 5 7 8 Bloc 4

3 5 6 8 9 11 Bloc 5

0 2 6 8 9 11 Bloc 6

0 2 3 5 9 11 Bloc 7

0 2 3 5 6 8 Bloc 8

3 4 6 7 9 10 Bloc 9
0 1 6 7 9 10 Bloc 10
0 1 3 4 9 10 Bloc 11
0 1 3 4 6 7 Bloc 12

Il s’agit d’'un plan d’expérience pour h = 12 traitements en b = 12 blocs de
taille £ = 6. Les schémas d’associations sont donnés par le tableau suivant :

0o 1 2
3 4 5
6 7 8
9 10 11

Tout couple de traitements figurant sur une méme ligne de ce tableau sont
associés d’ordre 1 et apparaissent A\; = 3 fois simultanément dans des blocs
(c’est le cas, par exemple, pour le couple {1, 2}). De méme tout couple figurant
dans une méme colonne sont associés d’ordre 2 et apparaissent simultanément
dans A2 = 4 blocs (c’est le cas, par exemple, pour le couple {0,3}). Enfin les
autres couples sont associés a 'ordre 3 et apparaissent simultanément dans
A3 = 2 blocs (c’est le cas, par exemple, pour le couple {0,5}).
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9.6 Plans cycliques

9.6.1 Définition

Les méthodes présentées afin de construire des plans en blocs incomplets
équilibrés ou bien des plans en blocs partiellement équilibrés (voir les para-
graphes 9.4.3 et 9.5.3) utilisent des plans dits cycliques. Cette classe de plans
d’expérience est présentée ici dans le cas général. Considérons h traitements
codés usuellement par ensemble {0,1,...,h — 1} identifié au groupe Z/hZ
muni de ’addition modulo h. La construction de tout plan cyclique est liée
au choix préalable d’'un générateur, c’est-a-dire d'un sous-ensemble @ de
{0,1,...,h — 1} constitué par h* < h éléments. La notion d’ensemble translaté
est primordiale pour la suite :

Définition 9.17. Soit un sous-ensemble @ de {0,1,....h — 1} identifié au
groupe Z/hZ ainsi qu’un entier naturel 6 tel que 0 < 8 < h — 1. On appelle
f-translation de @ l’ensemble :

Py=P+0={d+0,¢cd}.

Cette définition entraine que l'’ensemble initial @ peut aussi étre désigné par
®. Les ensembles translatés @1, ..., Py 1 sont généralement tous distincts mais
cette propriété n’est pas toujours vraie (voir exemple suivant).

| Exemple |

Pour h = 4 traitements le sous ensemble & = {0,1} conduit par
translations successives aux trois ensembles distincts suivants :

@, = {1,2} , &y ={2,3} , &3 = {0,3}.

Pour h = 4 traitements le sous ensemble ¢ = {0,2} ne conduit pas
cette fois par translations successives & trois ensembles distincts car :

&1 =d3={1,3} , P2 ={0,2}.
Un plan d’expérience cyclique est défini de la maniére suivante :

Définition 9.18. Soit un phénomeéne aléatoire analysé a l'aide de h traite-
ments et un sous ensemble @ de 'ensemble des traitements {0,1,...,h — 1}
appelé générateur. On appelle plan cyclique complet engendré par @ le
plan d’expérience constitué par les h blocs :

Po=P,P1,P2, ..., Ppa.

Le plan d’expérience est qualifié de cyclique incomplet lorsque tous les h
blocs ne sont pas utilisés.

Une généralisation possible pour cette définition consiste a utiliser (de maniere
identique) plus d’un générateur.
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| Exemple |

Considérons encore le cas ou h = 4 traitements interviennent ainsi que
le générateur ¢ = {0, 1} déja utilisé précédemment. Le plan cyclique
complet est présenté a gauche ci-dessous. Un plan cyclique incomplet
issu du méme générateur (avec trois blocs) est présenté a droite.

0 1 Bloc 1 01 Bloc 1
1 2 Bloc 2

2 3 Bloc 2

2 3 Bloc 3 0 3 Bloc 3
0 3 Bloc 4

9.6.2 Propriétés

Voici un certain nombre de propriétés et de remarques relatives a la classe
des plans d’expériences cycliques. La plupart d’entre elles sont immédiates a
vérifier.

1) Tout plan d’expérience cyclique est un plan en blocs de méme taille (cette
taille est égale au nombre d’éléments h* du générateur utilisé). Il en résulte
que le nombre d’expériences a réaliser est n = bh* ou b est le nombre de blocs
(donc n = hh* dans le cas d’un plan cyclique complet puisqu’alors h blocs
sont utilisés).

2) Tout plan d’expérience cyclique complet est un plan en blocs équirépliqué.
Le nombre de réplications de chacun des traitements vérifie :

bh*

n = bh* = rh donc r = h*

Il en résulte (voir le paragraphe 9.4.3) qu’un plan cyclique complet est un plan
en blocs symétrique. Cette propriété n’est pas vérifiée généralement par les
plans cycliques incomplets.

3) Tout comme pour le cas des GDD un plan d’expérience cyclique n’est
pas forcément régulier (i.e. Pestimation des parameétres du modele sous con-
trainte d’identification classique n’est pas toujours possible). Une condition
nécessaire (mais non suffisante) de régularité est évidemment que le nombre
d’expériences réalisées soit supérieur ou égal au nombre de parametres incon-
nus du modele, donc :

n=>bh*>b+h—1.

Il n’existe pas de formule explicite permettant de déterminer les différents es-
timateurs d’un modele analysé a I’aide d’un plan cyclique. On montre cepen-
dant en annexe, a I'aide d’un exemple d’application, qu’il est possible d’obtenir
cependant facilement toutes ces quantités en utilisant un simple logiciel in-
cluant les opérations de base du calcul matriciel.



390 9 Plans d’expérience en blocs pour facteurs qualitatifs
9.7 Exemple d’application

Considérons une entreprise agronomique dont l'objectif est d’améliorer la pro-
duction de blé. Pour cela ses laboratoires de recherche ont mis au point des
nouvelles variétés et 7 d’entre elles ont été jugées prometteuses et sont donc
retenues afin d’étre mises en culture (ceci va constituer les h = 7 traite-
ments). L’entreprise souhaite de plus tester ces variétés sur plusieurs parcelles
différentes afin de juger de leur capacité d’adaptation a divers types de sols et
de climats. Afin d’utiliser un plan symétrique on peut proposer ici d’effectuer
les expériences sur 7 parcelles différentes (ceci va constituer les b = 7 blocs).
Si cette solution est jugée réalisable par 'entreprise (i.e. si les spécialistes esti-
ment que tester les diverses variétés sur sept sites différents est suffisant) une
premiere solution consiste a proposer 'utilisation d’un plan en blocs complet.
Cette solution conduit donc ici & la réalisation de n = 7? = 49 expériences.
Supposons que ce nombre d’expériences soit jugé beaucoup trop important
(en effet, une expérience est relativement longue et complexe ici puisqu’elle
va de la préparation de la parcelle jusqu’a la récolte finale en attendant obli-
gatoirement que les diverses pousses soient arrivées & maturité). A partir
des méthodes de construction présentées au paragraphe 9.4.3 il est possible
d’utiliser un BIBD engendré par l’ensemble ¢ = {0,1,3} (qui est bien un
ensemble aux différences). On peut donc proposer la configuration suivante
de type BIBD (7,7,3,3,1) :

0 1 3 Bloc 1
1 2 4 Bloc 2

2 3 5 Bloc 3

3 4 6 Bloc 4
0 4 5 Bloc 5
5 6 Bloc 6

0 2 6 Bloc 7

Cette configuration permet de réduire le nombre total d’expériences a n = 21
(soit une réduction de 57% par rapport au plan complet). Une fois la récolte
effectuée la réponse qui intéresse les chercheurs est naturellement la quantité
de blé produite par unité de surface. Plus précisemment on considere ici le
rendement & I’hectare obtenu c’est-a-dire le rapport Q/Q* ot Q est la quantité
de blé produite a ’hectare alors que @Q* est la valeur minimale recherchée pour
se lancer dans une production a grande échelle. Il en résulte que 'objectif
est ici de maximiser le rendement (ou tout au moins d’obtenir des valeurs
supérieures & 1).

Afin que les techniciens puissent facilement réaliser les expériences le pro-
tocole expérimental est donné ci-dessous. La variété ¢ (0 < i < 6) est désignée
par Vi alors que la parcelle j (1 < j <7) est désignée par Pj. Le vecteur des
réponses mesurées (i.e. les divers rendements observés) est donné a droite du
tableau.
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Variété | Parcelle Y
Exp 1 Vo P1 1.05
Ezxp 2 Vi P1 1.08
Exp 3 V3 P1 1.17
Exp 4 Vi P2 1.15
Exp 5 V2 P2 0.97
Exp 6 V4 P2 1.23
Exp 7 V2 P3 0.88
Ezp 8 V3 P3 1.10
Exp 9 V5 P3 0.82
Ezp 10 V3 P4 1.11
Exp 11 V4 P4 1.22
Exp 12 Vé6 P4 0.61
Exp 13 Vo P5 0.90
FExp 14 V4 P5 1.19
Exp 15 V5 P5 0.77
Ezp 16 Vi P6 1.04
Exp 17 V5 P6 0.83
Ezp 18 Vé6 P6 0.55
Ezxp 19 Vo P7 1.01
FEzxp 20 V2 P7 0.84
Ezxp 21 V6 P7 0.53

Le programme SAS suivant permet d’entrer ces données. La table ”donnees”
contient ici la matrice du plan d’expérience avec les codages naturels. La
derniere colonne est constituée par les différentes réponses.

Data Donnees;
Input var par y;
Cards;

0 1 1.05
1 1 1.08

expérience ¢ et réponse i

2 7 84
6 7 53
Run;

Voici le tableau d’analyse de la variance :
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Source ddl | S. carrés | M. Carrés | St. Test |Proba.
Régression | 12 0.9054 0.0754 66.23 | 0.0001 °°°
Erreur 8 0.0091 0.0011
Total 20 0.9145

La procédure SAS suivante permet d’obtenir ces résultats avec la commande
”class” qui indique, comme dans le chapitre précédent, de traiter les facteurs
déclarés en tant que variables qualitatives :

Proc Glm date=Donnees;
Class var par;
Model y = var par;
Run;

Le modele utilisé est donc valide puisque 'hypothese ”tous les parametres
du modele (sauf 5y) sont nuls” peut étre ici tres clairement rejetée. Ce modele
est de plus globalement treés bien ajusté puisque (valeur ”R-Square de la sortie
SAS) :

9 SSE
R°=1 9T = 0.990.
Un estimateur sans biais de la variance o2 des résidus est donné par (valeur

"Root MSE” de la sortie SAS) :
52 = MSE = 0.00125 (donc & ~ 0.03532).

Déterminons alors les différents estimateurs des moindres carrés des effets
des traitements. Remarquons au préalable que puisque le plan d’expérience
utilisé est a la fois équirépliqué et en blocs de méme taille on a donc (voir la
proposition 9.4) :

~ — ~ 0'2

Bo =Y ~0.9548 et Var By = — 5.952.107°.

Concernant maintenant les effets des traitements, leurs différentes valeurs et
dispersions sont résumées dans le tableau ci-dessous (voir la proposition 9.9
pour les formules explicites).

Param. | Estimat. | Ec. type | St. Test | Proba.
5 0.9548 | 0.0077 |  123.9 | 0.0001 ***
gl 0.0486 | 0.0214 2.27 | 0.0530 °°°
1] 0.1057 | 0.0214 4.94 | 0.0011 **°
21| _0.0657 | 0.0214| —3.07|0.0154 *°°
13] 0.1571 | 0.0214 7.34 | 0.0001 ***
gl 0.2529 | 0.0214| 1181 |0.0001 ***
Bl | —0.1171| 0.0214| —5.47 | 0.0006 ***
gl | —0.3814 | 0.0214 | —17.82 | 0.0001 ***
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Ces divers estimateurs peuvent étres obtenus a l’aide de la procédure :

Proc Glm date=Donnees;

Class var par;

Model y = var par / solution;
Run;

La commande ”solution” force le logiciel a afficher les estimateurs de
tous les parametres du modele (effet moyen général, effets des traitements
et effets des blocs). Attention au fait que, tout comme lors du chapitre
précédent, SAS n’utilise pas les mémes contraintes d’identification que celles
de cet ouvrage puisqu’il leve la singularité des équations normales en annulant
systématiquement la derniére modalité de chacun des facteurs. Il est possible
de retrouver les estimateurs donnés ici en rajoutant dans la procédure ”glm”
des commandes du type suivant (pour la premiere modalité des effets des
traitements) :

Estimate ’VarieteO’ var 6/7 -1/7 -1/7 -1/7 -1/7 -1/7 -1/7;

Ce type d’instruction permet de ”centrer” le vecteur des parametres estimés
et de retrouver ainsi la contrainte imposée ici (somme des composantes nulle).
Voir I'exemple final du chapitre 8 pour plus de détails (attention d’un point de
vue technique a remplacer les fractions par leurs valeurs approchées contenant
assez de décimales sinon le logiciel va refuser d’effectuer le calcul).

Dans l'exemple étudié ici l'estimation des effets des blocs peut étre
intéressante dans le sens ol ceci va apporter des informations concernant 1’effet
de chacune des parcelles sur le rendement final. Les divers effets des blocs sont
alors résumés dans le tableau suivant (voir la fin du paragraphe 9.4.2 pour les
formules explicites). La technique d’obtention & l'aide du logiciel SAS est en
tout point identique a celle utilisée pour les effets des traitements.

Param.| Estimat. | Ec. type | St. Test | Proba.
A1 0.0414 | 0.0214 1.94 | 0.0890 °°°
2] 0.0643 | 0.0214 3.00 | 0.0170 *°°
AB | —0.0120 | 0.0214 | —0.60 | 0.5447 °°°
4] 0.0157 | 0.0214 0.73 | 0.4839 °°°
Bl —0.0629 | 0.0214 | —2.94 | 0.0188 *°°
A6l | —0.0171 | 0.0214 | —0.80 | 0.4464 °°°
A1 —0.0286 | 0.0214 | —1.33 | 0.2187 °°°
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| Conclusion

Voici les conclusions qu’il est possible de tirer suite a tous les résultats
obtenus précédemment.

1) Le modele & effets de blocs utilisé ici semble décrire correctement le
phénomene aléatoire étudié.

2) Le rendement moyen résultant de la totalité des n = 21 expériences réalisées
est de 0.95.

3) Concernant les effets des divers traitements (i.e. des diverses variétés de
blé testées) il apparait que la meilleure variété est, tres significativement, la
4. Viennent ensuite les variétés 3 et 1 qui ont aussi des rendements supérieurs
a la moyenne. La variété 0 n’a pas un effet significatif sur le rendement. Enfin
il apparait que les variétés 2, 5 et 6 sont peu efficaces puisque associées a
des estimateurs des effets des traitements négatifs. Ceci est particulierement
flagrant pour la variété 6 qui manifestement donne de tres mauvais résultats
sur le terrain puisque 'estimateur associé vaut —0.38.

4) Concernant maintenant les effets des blocs (i.e. les effets des diverses par-
celles cultivées) il apparait qu’ils sont globalement peu significatifs. Seules les
parcelles 2 et 5 se distinguent légérement par, respectivement, une différence
a la moyenne de 0.06 pour I'une et de —0.06 pour I'autre. Lors d’une étude
concréte il peut étre intéressant de transmettre ce type d’information aux
spécialistes afin de voir si cela corrobore ou non leurs connaissances pratiques
(i.e. est-il par exemple clair & leurs yeux que la parcelle 2 est constitué d’un
sol ou d’un environnement un peu plus favorable que les autres 7).

5) Afin maintenant de revenir & la problématique initiale (i.e. déterminer une
variété de blé maximisant le rendement) il est ici tres clair que la variété 4
est la meilleure du lot. Ceci se trouve confirmé par le fait que cette variété de
blé a bien été testée sur la parcelle 5 (c’est-a-dire la parcelle la plus difficle &
cultiver) et le rendement observé est quand méme tres satisfaisant puique égal
a 1.19 (si cette expérience n’avait pas été menée il aurait été intéressant de
la réaliser a posteriori afin de vérifier les résultats prédits par le modele). De
maniere théorique le modele prédit un rendement moyen pour cette variété
de blé égal a :

Vi (4) = a4+ 41 + 8l = 1.2077 + 414

9.8 Résumé

Diverses configurations adaptées a I’analyse d’'un modele en blocs pour fac-
teurs qualitatifs ont été présentées tout au long de ce chapitre. On retiendra
donc parmi les plans d’expérience binaires :
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1) les plans en blocs complets,

2) les plans en blocs incomplets équilibrés (BIBD),
3) les plans en blocs partiellement équilibrés (GDD),
4) les plans cycliques.

Les plans en blocs complets présentent ’avantage de toujours exister et
d’étre d’analyse aisée mais l'inconvénient de conduire souvent & un nombre
d’expériences prohibitif.

Les plans en blocs incomplets équilibrés (BIBD) sont souvent constitués
par un nombre d’expériences correct tout en menant a des estimateurs des
parametres du modele simples a déterminer. Ils sont de plus le meilleur choix
possible en terme d’efficité (voir le chapitre 10). Ils présentent cependant le
gros défaut de ne pas toujours exister.

La classe des plans en blocs partiellement équilibrés (GDD) englobe celle
des BIBD. I est donc possible de les utiliser plus fréquemment que les BIBD
mais leur existence n’est cependant pas assurée dans tous les cas. L’analyse
du modele a effets de blocs reste faisable explicitement, bien qu’étant plus
complexe a mener que pour un BIBD.

Enfin, les plans cycliques sont aisés a construire et peuvent s’adapter a
n’importe quelle situation et & n’importe quel nombre d’expériences souhaité
(en jouant sur le ou les générateurs et sur les blocs sélectionnés). En con-
trepartie leur analyse est moins aisée que les plans précédents et nécessite
obligatoirement 'utilisation d’un outil informatique.
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9.9 (Compléments) Résultats théoriques

9.9.1 Analyse d’un plan cyclique

Considérons ici une configuration non standard. Analysons-la & I’aide de tout
logiciel permettant d’effectuer les opérations de base du calcul matriciel. Soit
une situation ou h = 7 traitements interviennent mais seulement b = 3 blocs
sont requis. Il est bien entendu possible de réaliser alors les n = 21 expériences
du plan complet mais supposons qu’une telle démarche s’avere beaucoup trop
cotteuse. On peut donc s’orienter vers un plan cyclique incomplet tel que
celui-ci (obtenu a l'aide du générateur ¢ = {0, 1,2}) :

01 2 Bloc 1
2 3 4 Bloc 2
4 5 6 Bloc 3

Un tel plan permet de réduire le nombre d’expériences a seulement n = 9
(il est donc saturé puisque le nombre de parametres inconnus du modele est
p=>b+h—1=09). Considérons maintenant les réponses suivantes (générées
ici & aide d’un modele déterministe sans aucun résidu aléatoire) :

17 14 17 Bloc 1
22 17 20 Bloc 2
25 29 21 Bloc 3

1) Analyse des effets des traitements

Les effets des différents traitements peuvent étre obtenus via la résolution
des équations normales réduites données sous forme générale & la proposition
9.2 par :

CTB\T = QT ou Cp = tXTP(ImB)J—XT et QT = tXTP(ImB)J‘Y'

Le plan d’expérience étant ici en blocs de méme taille (avec k = 3) la matrice
C7 a la forme suivante :

_ 1
Cr ="Xg (I, — B('BB) " 'B) Xr = 'Xr (In - gBUB) Xr.
Il vient donc simplement (avec R =tXrXr et N =XrB) :
Lot
La matrice R contient sur la diagonale les nombres des diverses réplications

donc R = diag (1,1,2,1,2,1,1). La matrice Cr est alors déterminée a 1’aide
de la matrice de concordance N!N donnée par :
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[1110000]
1110000
1121100
NIN=[0011100
0011211
0000111
0000111 ]

Déterminons maintenant le vecteur Q7. D’apres les remarques faisant suite a
la proposition 9.2 la i-eme composante de Q1 est :

@Qr);= >, (M()-Yag).

1/ TieBI

On en déduit que la matrice Cr et le vecteur Qr sont donnés par (puisque
YBl = 167 YBQ = 19.667 et YBg = 25) :

2-1-1 0 0 0 0] [ 1.0007]

-1 2-1 0 0 0 O —2.000

L ]-1-1 4-1-1 0 0 3.333
Cr==| 0 0-1 2—-1 0 0] et Qpr=|—2.667
31 0 0-1-1 4-1-1 0.333
00 0 0-1 2-1 4.000

| 00 0 0-1-1 2] | —4.000 |

Il est clair que la matrice Cr est singuliere puisque la somme de tous ses
vecteurs colonne est égale au vecteur nul de R7. Utilisons donc les contraintes
d’identification classiques afin de surmonter ce probleme. Il vient :

6

5
S A =0done B = -3 G
=0

=0

Il est possible de supprimer 'effet du traitement 6 afin de rendre ce probleme
régulier. Le systeme linéaire des équations normales devient alors C7 87 = Q7
ou CF et Q7 sont une matrice et un vecteur centrés selon la terminologie du
chapitre 8 (voir aussi le lemme 8.4 de ’annexe A) donnés par :

2-1-1 0 00 1.000
1 2-1 0 00 —2.000
. 1]l-1-1 4-1-10 .| 3333
Cr=31 0 0-1 2-10| 97=| 9467
1100 50 0.333
11 11 03 4.000

La matrice C7 est maintenant réguliere, son inverse est (utiliser ici un logiciel
de calcul scientifique) :
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2 10/7 5/7 3/70
3 10/7 5/7 3/70
1 10/7 5/7 3/70
0 0 3/712/7 3/70
—1-1 —4/7-2/7 3/70
—2 -2 -11/7-9/7 —4/7 1

— N W

Le vecteur des effets des traitements estimés est alors B:*p = (C':’;)f1 Q7 ce qui

conduit aux résultats suivants (sachant que B[TG] est simplement obtenu par
vérification de la contrainte d’identification classique) :

Agg] = 27 B’,[Z}] = _1a B’,[Z?] = 23 AE] = _3a
Al =0, 40 =4, BY =4

|Eﬁets des traitements| {

Les dispersions de ces estimateurs peuvent étre obtenues numériquement de la
maniere suivante. Les vecteurs Q7 et Q7 sont ici liés par la relation Q7. = AQr
o A€ M (h—1,h) est définie par A = [Ih,1|0]. 11 vient donc :

Br=(C1) ' Qr = (C7) ™ AQr = (CF) " A' X7 Py )1 Y-
En d’autres termes on a simplement B:*F = AY ou A est la matrice :
A= (Ce) P A Xy (I, — P ) = (CF) Al Xp (In - %BtB) .
On en déduit que la matrice des covariances du vecteur B:*F est donnée par :
v (B;) = 02 A' A puisque V (V) = 01I,.
Une fois ce calcul effectué on obtient alors (par exemple) :

a0 _ 94 5 2 a2 _ 38 o 2

Var 5" = Eo ~1.920° et VarfB; = 4—90 ~ 0.7760°.
Ce résultat n’est pas étonnant car dans le plan d’expérience utilisé le traite-
ment 0 n’apparait que dans un seul bloc alors que le traitement 2 apparait a
deux reprises et la qualité de son estimation est donc logiquement meilleure.

2) Analyse des effets des blocs.

Supposons maintenant qu’il soit intéressant de connaitre les valeurs des
différents effets des blocs. La démarche a suivre est similaire a celle menée
pour les traitements sauf que cette fois les équations normales réduites a
résoudre sont données par (voir la proposition 9.3) :

CB’/Y\ — QB ol CB = tBP(ImXT)J'B et QB = tBP(ImXT)J‘Y'
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La matrice Cp peut alors étre réécrite sous la forme :
Cp ="B (I~ Xr (‘XrXr) " 'Xr) B

avec toujours R = ' X7 X7 = diag (1,1,2,1,2,1,1). Le détail de la procédure
de résolution de ce systeme linéaire d’équations est en tout point similaire
a ce qui a été fait avec les effets des traitements (i.e. comme la matrice Cp
est singuliere on la rend réguliere en supprimant un des effets des blocs par
utilisation des contraintes d’identification classiques). Il vient alors :

|Effets des blocs| A =5 AR =0 et B = 5.

3) Analyse de ’effet moyen général.

Déterminons pour terminer l'effet moyen général du modele linéaire.
Prenons garde au fait que le plan d’expérience utilisé ici n’est pas équirépliqué
en blocs de méme taille et la relation BO =Y n’est plus forcément vraie. Il
faut donc utiliser la relation générale de la proposition 9.4 :

Bo= L[y - (1) 3 - (Lx0) B

Comme T,Y = 182, (*I,B)7 = 0 et (*I,, X7) ,@\T = 2 on en déduit donc que :

Effet moyen général| Bo = 180/9 = 20.

Le résultat obtenu est donc bien différent de la valeur Y = 182/9.

9.10 (Compléments) Démonstrations

Tout comme dans le chapitre 8 les modele considérés ici sont toujours associés
a une matrice X qui n’est jamais de plein rang (voir le paragraphe 9.2.3) donc
tX X est toujours singuliere. Afin de pouvoir manier facilement les équations
normales malgré ce probleme de singularité on utilise dans ce chapitre la
notion d’inverse généralisée d’une matrice :

Définition 9.A. Soit A une matrice de dimension quelconque (non forcément
carrée). On appelle inverse généralisée de A (ou encore G-inverse de A)
toute matrice, notée A~, telle que :

AATA=A

Il ne sera pas nécessaire ici d’aller bien au dela de cette simple définition.
Le lecteur souhaitant en savoir plus sur le sujet pourra se référer a 'ouvrage
de Rao et Mitra [78]. Lorsque A est une matrice carrée réguliere alors la
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notion d’inverse généralisée coincide (logiquement) avec la notion classique
de matrice inverse. Dans tous les autres cas elle permet de généraliser ce
concept d’inversion matricielle. Remarquons que, mis a part le cas ou A est
carrée réguliére, il n’y a généralement pas unicité de I'inverse généralisée. Dans
I'optique de la résolution du systéme linéaire des équations normales on utilise
dans la suite le résultat suivant (voir par exemple le livre de Searle [88]) relatif
a tout systeme d’équations linéaires compatible (i.e. admettant au moins une
solution) :

Proposition 9.B. Soit un systéme d’équations linéaires compatible de la
forme Ax =y ot A € M (n,p). L'ensemble des solutions de ce systéme est :

S={Ay+(A"A-1)z/z€RP}
ot A~ désigne une inverse généralisée particuliére de la matrice A.

Passons maintenant aux diverses démonstrations.

Proposition 9.2. L’estimateur des moindres carrés des effets des traite-
ments est solution des équations :

CrBr = Qr
e | Cr € M(Bh) définie par 2 Cr = "Xr Py, gy X1
Qr contraste de R" défini par : Qr ="'Xp Py, gy Y

ot Pim )+ désigne le projecteur orthogonal sur (Im B)J‘ c’est-a-dire que
Pyypy: =In— Pmp =1, — B("BB)"''B.

Démonstration. Partons de la forme générale des équations normales (E)
donnée au paragraphe 9.2.4. Remarquons que, par définition, la matrice ‘BB
est toujours inversible. En multipliant alors la deuxiéme ligne du systeme (E)

par —N (‘SBB)71 et en la rajoutant a la troisieme ligne il vient :
[!X1L, = N (}BB)™' ('BL)| Bo + |[R— N (‘BB) "' *N| Br
_ [tXT _N(‘BB)" tB} Y.
Comme par définition N = !X7B et R =!X7 X7 on a donc encore :

X (In —B(*BB) " B) Ifo + ' X1 [In — B(*BB)” tB} X1 Br
— Xz (I, — B(‘BB) " 'B)Y.

En désignant maintenant par Pr, p 'expression matricielle du projecteur or-
thogonal sur Im B on sait que P, g = B (‘EBB)_1 ‘B et donc :
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—1
I,—-B (tBB) ‘B=1I,— Pmp= P(ImB)J_.

On en déduit que B est obtenu wvia la résolution des équations normales
réduites :

X1 Py gy InBo + ' X0 Py gy XrBr = ' X1 Py g2 Y.

Comme de plus (par construction de la matrice B) I,, C Im B on en déduit
que P(Im B)L]In = 0 et il vient finalement:

X1 Py, gy XrBr =" Xr Py, ) Y.
Justifions que le vecteur Q7 = tXTP(Im p)+Y est bien un contraste de R"
T,Qr = t]IhtXTP(ImB)J_Y
mais X7 est une matrice d’indicatrices donc on a toujours Xl =1, et :
Qr = (tﬂnP(ImB)L) Y =0
car I, € Im B d’ou P(ImB)LHn =0n

Proposition 9.3. L’estimateur des moindres carrés des effets des blocs est
solution des équations :

CpY=QnB
ooy | OB EMB/Y) définie par O ='BPy x, )+ B
Qp contraste de R® défini par : Qp = tBP(ImXT)LY

ot P(ImXT)J. désigne le projecteur orthogonal sur (Im XT)J' c’est-a-dire que
P xp)t =In = Pinxy = In — Xp ("X Xr) ™' ' X7

Démonstration. La démonstration de ce résultat est similaire a la
démonstration de la proposition 9.2 & une permutation preés des matrices
X7 et B. Le point de départ est toujours le systeme d’équations normales
(E) . On remarque alors que la matrice R est toujours inversible et 1'addition
de la deuxieme ligne avec la troisieme multipliée au préalable par —'NR™!
conduit a :

‘Bl — N (*XrXr) " (Xrl)| Bo+ [K =N (XrXr) ' N] 7

_ [tB N (X Xp) ! tXT} Y.
La matrice X7 est tout comme B une matrice d’indicatrices la simplification

de ces équations normales réduites s’effectue a ’aide des mémes arguments
que ceux de la proposition 9.2 B
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Proposition 9.4. L’estimateur des moindres carrés de [’effet moyen
général est :

Bo = % [t]InY - ("I,B) 5 — ("I.X7) /B\T}

ou 7 et @\T sont respectivement les estimateurs des moindres carrés des ef-
fets des blocs et des effets des traitements. Lorsque le plan d’erpérience est
équirépliqué en blocs de méme taille il vient simplement (avec les contraintes
d’identifications classiques) :

0_2

~ 1 _ -
Bo=—-'1,Y =Y et Var 3y =
n n

Démonstration. La forme donnée ici pour 'estimateur Bo est évidente
puisqu’il ne s’agit que d’une réécriture de la premiere équation du systeme
(E) des équations normales. Considérons maintenant un plan d’expérience
équirépliqué en blocs de méme taille. On a donc ‘I, B = k'I, et 'I,, X7 = I},
d’ou : 1

Bo == 'Y =k (157) — 7 (Tufr) |

Lorsque les contraintes d’identification classiques sont utilisées les vecteurs 7
et Br sont alors des contrastes ce qui entraine bien que : p =Y. Concernant
enfin la dispersion de [y il vient :

. 1 2 2
Var fy = — Var (',Y) = Z'L,1, =~ ®
n n n

Proposition 9.6. Soit un plan d’expérience en blocs complets de type
CBD (h,b). L’estimateur des moindres carrés des effets des traitements
vérifiant les contraintes d’identification classiques est donné par :

~ 1 o h—1

Br = EQT etVi=0,..h—1, Varﬁg,f] :02Q.

n

Démonstration. Les équations normales réduites permettant d’estimer les
effets des traitements sont :

N . b
CrBr = Qr ou Cr = bl — EJh-

Le déterminant de la matrice Cp est nul (voir le lemme 5.4) donc la matrice
C'r n’est pas inversible. Utilisons alors la proposition 9.B afin de déterminer
I’ensemble des solutions de ce systeme d’équations. Procédons pour cela en
plusieurs étapes.

1) Recherche d’une inverse généralisée de Cr.
Cherchons une telle matrice sous la forme completement symétrique alp+5Jp.
Il faut donc vérifier la relation :
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Cr (Oé[h + ,BJh) Cr = Crp.

Or il vient (puisque J2 = hJy) :

h

2 _ @ 1 — b2 1
—b (a[h th) (Ih th> ab (Ih th>.

On en déduit alors que toute matrice de la forme :

Cr (aly + BJn) Cr = b? (Ih - %Jh> (alp + BJn) (Ih - lJh)

1
Cr = Elh + B8Jh (B € R quelconque)
est bien une inverse généralisée de la matrice Cr (en particulier si une seule
inverse généralisée de C est requise on pourra donc poser simplement 5 = 0).

2) Recherche de ’ensemble des solutions de CT@\T =Qr.
D’apres la proposition 9.8 toute solution de cette équation normale réduite
peut étre écrite sous la forme suivante (en prenant ici C = (1/b) Ip,) :

-~ 1 1 1 1 h
Br = EQT-F (gCT_Ih>Z— ZQT_EJhZ avec z € R".

3) Recherche de la solution sous contrainte.

Parmi ces solutions on ne garde que celle vérifiant les contraintes d’identifi-
cation classiques, c’est-a-dire I 37 = 0. Or d’apres la proposition 9.2 Qr est
toujours un contraste de R" donc cet objectif est atteint si et seulement si
z = 0 dans ’expression ci-dessus, d’ou :

~ 1

Br = EQT-

4) Dispersion du vecteur @\T.

Par définition Qr = 2SXTP(Im )Y donc le vecteur BT peut aussi étre écrit
sous la forme suivante :

~ 1 .
ﬁT = <thTP(Im B)J.) Y. D'ou:

_ 1
% (,BT) = 5 X1 Py 5y V (V) Py gy X

2

O— .

= b_QtXTP(Im B)J_tP(ImB)J_XT puisque V (V) = o021,
2

= Z_QtXTP(Im B)* X7 puisque P(ImB)J_ est un projecteur orthogonal.

On a de plus ici Py, gyt = I — B(*BB)"''B = I, — 1B'B Py =

I, — B(*BB)"'B donc :
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o~ 0'2 1 0'2 1
\Y (ﬁT) = b_2 (tXTXT - EtXTBtBXT> = b_2 (TIh — ENtN> .

Or, on a déja montré (voir le paragraphe 9.3.1) que pour tout plan en blocs
il vient r =b, k=het C = N!N = bJ}, donc :

v (QT) - %2 (Ih _ %Jh> .

On en déduit bien la relation suivante (puisque bh = n ici) :

(h—1)

Vi=0,.,h—1, Var g}l = 52 ]

Proposition 9.8. Pour tout BIBD (h,b,k,r,\) on a la relation suivante :
r(k—1)=X(h-1).

Démonstration. Considérons un plan en blocs de type BIBD (h,b, k,r, \)
et un traitement ¢ (i = 0,...,h — 1) de référence. On sait, par hypothese, que
ce traitement apparait dans exactement r blocs. Chaque bloc étant de taille
k le nombre total des autres traitements apparaissant dans ces blocs est donc
¢ donné par :
p=rk-1).

De méme chaque traitement ' # 7 apparait aussi A fois dans ces blocs. Comme
il existe (h — 1) traitements différents de 7 ceci donne alors comme total des
traitements autres que 4 figurant dans ces r blocs :

d=\h-1).

D’ou le résultat énoncé par identification de ces deux quantités H

Proposition 9.9. Soit un plan d’expérience en blocs incomplets équilibré
de typeBIBD (h,b, k,r,\). L’estimateur des moindres carrés des effets des
traitements vérifiant les contraintes d’identification classiques est :

5 _ K ’ ol _ ok (h—1)
5T:EQT et V’L:O,...,h—17 VarﬁT =0 T
Démonstration. D’apres la proposition 9.2 les équations normales réduites

permettant d’estimer les effets des traitements sont données par (puisque tout
BIBD est & la fois équirépliqué et en blocs de méme taille) :

~ 1
CTﬁT == QT avec CT = TIh — EC

La matrice de concordance est de plus ici C = (r — \) I, + AJ}, donc :
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oA A
C’T—<T—E+E)I}I—EJ;1.

Le plan d’expérience utilisé étant un BIBD on a aussi la relation suivante :

L A_rk=DEA_AB-DEA_ M
TR TR i - i Tk

Il en résulte que la matrice du systeme a résoudre est encore une matrice
completement symétrique non inversible d’apres le lemme 5.A4. Résolvons
alors ce systéme d’équations en procédant en quatre étapes identiques a celles
utilisées dans le cas des plans complets (proposition 9.6).

1) Recherche d’une inverse généralisée de Cr.
En réutilisant les résultats de la démonstration de la proposition 9.6 on peut
dire que toute matrice de la forme :

k
Cr = Elh + BJn (B € R quelconque)

est bien une inverse généralisée de la matrice Cr.

2) Recherche de ’ensemble des solutions de CT@\T =Qr.

La proposition 9.B appliquée avec l'inverse généralisée particuliere obtenue
lorsque B = 0 entraine que toute solution de cette équation normale réduite
peut étre écrite sous la forme suivante :

k A
z= EQT — EJhZ avec z € R".

Pr = )\—k;LQT + <)\—k;LCT - Ih)
3) Recherche de la solution sous contrainte.
Parmi ces solutions on garde alors uniquement celle vérifiant les contraintes
d’identification classiques, c’est-a-dire I, 37 = 0. Or d’apres la proposition
9.2 Qr est toujours un contraste de R" donc cet objectif est atteint si et
seulement si z = 0 dans I'expression ci-dessus, d’ou :

.k

Br = EQT-

4) Dispersion du vecteur BT-
Un raisonnement identique a celui proposé dans la démonstration de la propo-
sition 9.6 (seule la constante k/Ah est différente) conduit & :

v (Br) =

2 (K 2tX;X Ly, BBx, ) =02 (F i I - Lntn
7\ TAT T AT )=o) Ut Tk '
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Or il a déja été montré (voir le paragraphe 9.4.1) que pour tout plan en blocs
incomplets équilibré on a C' = N'N = (r — \) I, + AJj, donc :

(BT) =g <A—kh>2 (<r£+%) Ih—%Jh> 0 A—k;b (Ih— th).

On en déduit que :

. k 1 Jk(h—1)
V’L:O,...,h Var,@T—a)\h(lﬁ>—aTl

Proposition 9.14. Pour tout GDD (h,b, k,r, A1, \2) tel que l’ensemble des
traitements est partitionné en ng sous-ensembles a4 nyi éléments on a :

r(k:—l):/\1(n1—1)+)\2n1(n2—1).

Démonstration. Considérons un plan en blocs de type GDD (h, b, k, 7, A1, A2)
et un traitement i (¢ =0, ...,h — 1) de référence. Par hypothése ce traitement
apparait dans exactement r blocs. Chaque bloc étant de taille k le nombre
total des autres traitements apparaissant dans ces blocs est donc égal a ¢
donné par :

p=rk—-1).

De méme chaque traitement i’ # ¢ apparait aussi dans ces blocs :

A1 fois comme associé d’ordre 1,
Ao fois comme associé d’ordre 2.

Or le traitement ¢ a par hypotheése (n; — 1) traitements associés & l'ordre 1
et donc h—1—(ny —1) = h—ny = ny (n2 — 1) traitements associés a 'ordre
2. Ceci donne comme total des traitements autres que ¢ figurant dans ces r
blocs :

¢:A1(n1—1)+)\2n1(n2—1).

D’ou le résultat énoncé par identification de ces deux quantités B

Proposition 9.15. Soit un plan d’expérience partiellement équilibré
a deux schémas d’association de type GDD (h,b,k,r, A1, \a) tel que
l’ensemble des traitements est partitionné en ng sous-ensembles a nq éléments.
L’estimateur des moindres carrés des effets des traitements vérifiant les con-
traintes d’identification classiques est donné par (avec U matrice d’ordre h
diagonale par blocs telle que U = diag (Jny, ey Iny)):

= k (A2 — A1)

ﬁT:r(k—l)—i-/\l nT T, 0] 9T

Concernant les différentes dispersions il vient :
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Vi=0,..,h—1, Var B =

0'2]{3 )\in (ng — 1) ()\2 — /\1) (/\2 — )\1)
(r(k—=1)+ A1) e hAs <n1 hAs _2>]'

Démonstration. D’apres la proposition 9.2 les équations normales réduites
permettant d’estimer les effets des traitements sont données par (puisque tout
GDD est a la fois équirépliqué et en blocs de méme taille) :

~ 1
CT,GT = QT avec OT = T’Ih — EC

La structure de la matrice de concordance C' est connue pour tout plan de
type GDD (h,b, k,r, A1, A2) (voir le paragraphe 9.5.1) et il vient :

C=(r—X)In+ M —2) U+ XaJp,

ou U est la matrice diagonale par blocs telle que U = diag (Jn,, ..., Jny)-
Remarquons que les regles de calcul vis-a-vis des trois matrices I, et Jp
engendrant C' sont tres simples avec notamment :

J2=hdy, , UJy = JyU =n1Jy, et U2 =nyU.

On peut donc dire que la matrice Cr est donnée ici par :

OT:%[(r(kf1)+/\1)Ih+(>\2—/\1)U—>\2Jh].

Cette matrice est, une nouvelle fois, toujours singuliére. En effet, la somme
de chacune de ses lignes vaut :
T(k*l)*Al(nl—l)—)\in(ng—1)
k

et cette quantité est toujours nulle d’apres la proposition 9.14. Résolvons alors
le systeme d’équations CrfBr = Q1 a l’aide des trois étapes suivantes.

1) Recherche d’une inverse généralisée de Cr.

Cherchons ici une inverse généralisée de la matrice Cr sous la forme alp, +
BU. En notant pour simplifier Cr = a*I, + b*U + ¢*J, (avec donc a* =
(r(k—=1)4+ M) /k, b* = (A2 — A1) /k et ¢* = —=A3/k) on a alors :

Cr(adp +0T) = (a"a) I, + (a* B+ "o+ nib*B) U + ¢* (o + n1f) Jh.
On en déduit que :

CT (Oé[h + 5U) CT =
(a*2a) I, + [(a® + nb*) (a*B + b o + nib*B) + a*b*a] U
+c* [(@* + nid* + he*) (a +n18) + a*a + ny (a*B + b*a + n1b*B)] Jh.
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La matrice alj, 4+ U est bien une inverse généralisée de Cr si et seulement
si Cp (alp, + BU)Cr = Cp. On vérifie alors, par identification des divers
coefficients, que cette égalité est bien vérifiée des lors que :

1 k —b* k(A2 — A1)

P P L W ey pe e K Bl A S| SIS WY S W

2) Recherche de ’ensemble des solutions de C’TBT =Qr.

La proposition 9.B appliquée avec 'inverse généralisée particuliere obtenue
précédemment conduit a la conclusion que toute solution de cette équation
normale réduite est de la forme suivante :

BT =CrQr+ (C’;C’T —Ih) 2 avec z € R™.

Les divers résultats obtenus & la partie 1 permettent maintenant de simplifier
cette expression en affirmant qu’il existe un unique couple de réels (cq,c2)
(dont la détermination explicite est sans intérét pour la suite) tel que :

k (A2 — A1)

5T=m[h— o Ul Qr + (c1U + cady) .

3) Recherche de la solution sous contrainte.
Parmi toutes ces solutions il faut une nouvelle fois garder uniquement celle
vérifiant les contraintes d’identification classiques I, 37 = 0. Or :

{t]IhQT =0 car Q7 est un contraste de R”,
TUQr = ("TWU) Qr = n1 ("I,Q7) = 0.

On en déduit que la solution sous contrainte est obtenue en posant z = 0,

d’ou : ) N
[h_( 2= A1),

I s vjer

4) Dispersion du vecteur @\T.
On vient de prouver ici que :

~ 1 b* 1 b*k
fr=— (Ih - mU> Qr =— (Ih - h)\gU> Qr

avec a* = (r(k—1)+ A1) /k et b* = (A2 — A1) /k. On peut donc dire aussi
(d’apres la définition du vecteur Q1) que :

~ 1 b*k

D’ou (puisque V (V) = 021, et P(ImB)J_ est un projecteur orthogonal) :

N o? ko, bk
v (Br) = — (Ih e U) X1 Py gy X1 (Ih e U> .
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Le plan utilisé étant de plus en blocs de méme taille il vient :

_ 1
Pumpyt =In—B('BB) 'B=1, - BB

Donc :
)2 o B) (o om0
_ ;22 <Ih - ZA’Z U> Cr (Ih - ZA’Z U> ,
= 0722 Cr — Q%UC‘T + (ZZ)QUCTU ]

Simplifions maintenant cette expression sachant que 'on a (par hypothese) la
relation Cr = a*Ij, + b*U + ¢*J}, donc :

i) la matrice UCT est donnée par :
UCr =U ("I, + b*U + c*Jp,) = (a* + n1b*) U + nic* Jy.
ii) la matrice UCTU est donnée par :
UCrU = ((a* +n1b*) U + nic* Jp) U = nqUCr.

On en déduit alors (puisque a* +n1b* = hAa/k) que tous les termes diagonaux
de la matrice UCT sont égaux a :
hAa .

o )\2 (h—nl) - nl)\g (TLQ - 1)
oM ST T k

alors que tous les termes diagonaux de la matrice UCTU sont égaux a :

hA n2xg (ng — 1

Comme tous les termes diagonaux de la matrice Cr sont de plus égaux a
r(k—1)/k ceci permet donc d’affirmer que toutes les dispersions Var ﬂg]
sont, égales pour ¢ =0, ..., h — 1 a la valeur donnée explicitement par :

Var Bg] =

o [r(k—1) _bk [dong(ng—1) b*k\” [ Agny (ng — 1)
9 2 ) m R N
a*? k hAs k hAs k

2 * *
Amia T’(k}—l) bk )\27?,1(712—1) bk_2
Varfir = 15 { o k "
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ceci donne alors & partir des valeurs de a* et b* :

Var Bgﬁ] =

o?k (A2 — A1) (A2 — A1)
m T’(kﬁ*l)ﬁ*/\gnl (TLQ—I) h)\2 (n1 h)\2 —2):| .

D’ou le résultat énoncé B
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Optimalité des plans d’expérience
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Criteres d’optimalité

10.1 Introduction

Divers types de plan d’expérience ont été présentés et construits dans les
chapitres précédents. Il a été montré a plusieurs reprises que face a un méme
probleme plusieurs configurations équivalentes en terme de colt expérimental
(4.e. avec un méme nombre d’expériences) peuvent exister. Dans un tel cas
I’expérimentateur souhaite, bien entendu, mettre en ccuvre le meilleur de
tous ces plans. L’objet de ce chapitre est de proposer des pistes afin de
résoudre un tel probleme. Ceci est généralement complexe car il n’existe pas de
critere naturel et universel permettant d’affirmer qu’un plan est meilleur qu’un
autre. C’est pourquoi divers criteres mathématiques vont étre étudiés, chacun
ayant pour but d’ordonner les plans d’expérience dans un sens particulier.
De maniere générale ces criteres pourront ensuite étre étendus a des classes
entieres de plans d’expérience (éventuellement infinies) afin de déterminer des
configurations optimales. Les bases mathématiques de la théorie des plans
d’expérience optimaux ont été établies principalement par Kiefer (voir, par
exemple, [58]). Le lecteur souhaitant approfondir ce theme pourra se référer
principalement aux ouvrages de Pukelsheim [75], Shah et Sinha [91] ou Col-
lombier [19], aux articles de Wynn [105], [106], Srivastava [94], [95] etc...

Ce chapitre débute par une section dédiée & des rappels et des compléments
principalement axés sur la notion d’ensemble ordonné ainsi que la notion de
matrice d’information associée a un estimateur donné. Les sections suivantes
abordent ensuite trois types classiques d’optimalité pour les plans d’expérience
: Poptimalité uniforme, la ¢4-optimalité et enfin I'optimalité universelle. Tous
ces criteres d’optimalité sont présentés ici de maniére simple en se ramenant
toujours & un ordre sur des vecteurs bien choisis.

Une derniere partie propose enfin d’appliquer toutes ces notions a di-
verses configurations étudiées dans les chapitres précédents. Ceci met alors en

W. Tinsson, Plans d’expérience: constructions et analyses statistiques, 417
Mathématiques et Applications 67, DOI 10.1007/978-3-642-11472-4_10,
(© Springer-Verlag Berlin Heidelberg 2010
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lumiere tout 'intérét d’utiliser des plans d’expérience construits algébriquement
car on obtient ainsi le plus souvent des configurations optimales.

10.2 Rappels et compléments

10.2.1 Ensembles ordonnés

Rappelons ici au préalable les axiomes mathématiques liés a la notion d’ordre.
Considérons de maniére générale un ensemble E et une relation binaire (notée
=) sur les couples d’éléments de E. Cette relation définit une relation
d’ordre sur l'ensemble F si et seulement si (V z,y,z € F) :

1) elle est réflexive xR,
2) elle est antisymétrique : (z <y ety 3x)=>x =y,
3) elle est transitive t(xRyety=<z)=>a =22

Si tous les couples d’éléments de E sont comparables, c’est-a-dire lorsque :
Ve,ye F,x2youy =z

on a alors une relation d’ordre total (i.e. E est un ensemble totalement or-
donné). Dans le cas contraire 'ordre est partiel. Lorsque les trois hypotheses
de la relation d’ordre sont trop contraignantes il est possible de considérer
une relation seulement réflexive et transitive munissant l’ensemble E d’un
préordre.

10.2.2 Ordres sur les vecteurs

Voici maintenant quelques relations d’ordre sur I’ensemble des vecteurs de
R’ . On se limite a cet ensemble car tous les vecteurs considérés par la suite
afin de manier la notion d’optimalité seront & composantes positives ou nulles.
Désignons dans cette section par u et v deux vecteurs de R’} et par (ui)izl,...,n
et (v;) i=1,...n leurs composantes respectives supposées ordonnées de maniere
décroissante (i.e. up > ug > ... > uy, idem pour le vecteur v).

1) Ordre de Loewner. L’ordre de Loewner est un ordre classique défini
sur ensemble des matrices symétriques (voir la section 10.3). On D’étend
naturellement aux vecteurs en disant que (et en le notant <p) :

u =y vsietseulementsivVi=1,...n, u; <uv;.

Cette relation binaire définit bien un ordre sur R’} mais seulement partiel.
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| Exemple

Considérons les vecteurs de Ri suivants :

7 9 8 9
u=({4f etv={5|,w=|T7]| etz= |4
2 4 1 3

Les vecteurs u et v vérifient u <, v. Les vecteurs w et z ne sont pas
comparables puisque aucune des relation w <p z ou z <p w n’est
vérifiée.

2) Q-ordre. Il s’agit ici d’ordonner deux vecteurs de R’ selon la g-norme
classique définie par la relation suivante :

n 1/q
VO0<g<4oo, |lull,= <ZU3> :
1=1

Par passage & la limite en 0 et 400 on pose aussi (attention au fait que ||.||,
est encore une norme sur R’} mais ce n’est plus le cas pour ||.||,) :

llully = Huz et Jlull = max u;.

Pour tout 0 < ¢ < +oo fixé on dit alors que :
u =4 v si et seulement si [jul], <[],

Tous les couples de vecteurs de R”} sont bien comparables mais cette relation
binaire définit cette fois seulement un préordre sur R .

| Exemple |

Considérons les vecteurs de Ri suivants :

8 7 4 5
u= |2 etv=|6|,w=1]2] etz= |1
1 5 0 0

Concernant les vecteurs u et v il vient par exemple u >, v (car
lull o =8 > |lv]l =7) et u =1 v (car |Jul|; =11 < |lv]|; = 18). Pour
les vecteurs w et z il est clair que w <7 z et z <1 w mais ces deux
relations n’impliquent pas que w = z.

3) Ordre de Schur. On définir de méme l'ordre de Schur sur deux vecteurs
de R"} (noté simplement < par la suite) en disant que :



420 10 Criteres d’optimalité

n
D =

i=1 i
k k

Vk=1,...n—-1, Zul < Zvi.
i=1 i=1

Cette relation binaire définit bien une relation d’ordre sur I’ensemble R} mais
I’ordre est partiel puisque deux vecteurs u et v ne sont pas forcément compa-
rables (une condition nécessaire mais non suffisante pour qu’ils le soit est que
|ull, = |lv]l,). Remarquons que si ug) € R est le sous-vecteur de u constitué
par ses k premiéres composantes (toujours ordonnées) il vient :

n

. . 1
u < v si et seulement si

u=vs (fuly =l et VE=1,on=1, Jugl, < lorlly)-

| Exemple |

Considérons les vecteurs de Ri suivants :

5 7 4 5
u= |4 etv= 3|, w=|[3]| et z=]0
2 1 1 3

Concernant les vecteurs u et v on a ici u < v. Les vecteurs w et z, par
contre, ne sont pas comparables puisque :

3

3 2
Zwi = Zzz et wy < z1 mais sz > Z
i=1 i=1

=1 =1

4) Ordre faible de Schur. Lorsque la condition Y . u; = > . v; est
jugée trop contraignante on cherche alors naturellement & introduire un ordre
plus faible que I'ordre de Schur. Afin de définir un tel ordre remarquons au
préalable que :

k k
uv=>Vk=1,...,n, Zui§Zvi.
i=1 i=1
n

A ’ ol n
Comme u < v entraine cependant (par définition) que > ;" u; = >, v;,
on a donc aussi (remplacer dans la premieére inégalité un des u; par > SV~

Ej;éi uj) :
n n
uv=>Vk=1,...,n, Zuiz Zvi.
i=k+1 i=k+1
Cette derniere relation est de méme vraie lorsque &k = 0 (toujours par

définition). On vient donc de montrer que si u < v alors on a forcément les
deux inégalités ci-dessus. Ceci permet de définir deux ordres faibles de Schur
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(notés classiquement =<, et <“ avec la lettre w pour weak) de la maniere
suivante :

k k
U =Xy U @Vk:17...,n72ui§2vi7
i=1 i=1
n n
u=Yv ovVk=1,...,n, u; > V.
i=k i=k

Lorsque u =, v (resp. u =¥ v) on dit que u est faiblement inférieurement
(resp. supérieurement) majoré par v. Une nouvelle fois on obtient ainsi pour
=w ou =¥ un ordre partiel sur R’} (mais il n’est plus nécessaire maintenant
que |lull; = |lv||; pour que les vecteurs u et v puissent étre comparés). Voici
deux propriétés liées a ces ordres faibles (elles figurent, parmi bien d’autres,
dans 'ouvrage de Marshall et Olkin [63]).

1) L’ordre de Schur entraine les deux ordres faibles de Schur. On vérifie que
la réciproque est également vraie donc :

(u =, vetu=x*v)su=<.
2) 1l existe la relation suivante entre les deux ordres faibles :

u =<, Vs —u =Y —o.

| Exemple

Considérons les vecteurs u et v de Ri suivants :

4 8
u= 12| etv=13
1 2

On a u =<, v mais la relation u <% v est ici fausse. Ces deux vecteurs
ne sont donc pas comparables pour l'ordre (classique) de Schur.

10.2.3 Matrice d’information

Il est tres fréquent en pratique de considérer un plan d’expérience D utilisé
avec un modele linéaire de la forme :

Y=XpB+c¢

tel que la matrice du modele Xp soit de plein rang (comme plusieurs plans
différents vont souvent étre comparés on note alors Xp la matrice du modele
obtenue avec le plan D). Lorsque le parametre d’intérét est le vecteur 5 dans
sa totalité la matrice des covariances de ’estimateur des moindres carrés ﬁ
est donnée par (voir la proposition 2.6) :
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V(8) =o* (*XpXp) .

La matrice (tXDXD)_l, appelée matrice de dispersion, est primordiale car
elle mesure, a une constante multiplicative pres, la dispersion du vecteur des
parametres estimés. C’est pourquoi cette matrice sera tres souvent utilisée par
la suite pour construire divers criteres ayant pour but d’évaluer la qualité du
plan d’expérience utilisé. L’inversion matricielle n’étant pas toujours simple
a effectuer on exprimera le plus souvent possible tous ces critéres en fonction
de la seule matrice ! Xp Xp appelée matrice d’information.

L’objectif est ici de généraliser la notion de matrice d’information a des
modeles linéaires plus complexes (modele & effets de blocs, modeles pour fac-
teurs qualitatifs, etc...). Ce sujet & été longuement abordé dans l'ouvrage de
Pukelsheim [75] ainsi que dans celui de Collombier [19]. Considérons & partir
de maintenant un modele linéaire quelconque utilisé avec un plan d’expérience
D permettant d’estimer un certain nombre de parametres d’intérét contenus
dans un vecteur «. On définit alors, de maniere générale, la matrice de
dispersion (notée Vp) obtenue sur le plan D pour l'estimation de « par la
relation :

VD (6&) = O'2VD.

De méme, la matrice d’information obtenue sur ce plan d’expérience pour
réaliser l'estimation de « (notée Cp ou encore Cp («)) est la matrice des co-
efficients de I’équation normale permettant d’obtenir ’estimateur des moin-
dres carrés a.

De maniere générale les matrices d’information et de dispersion sont liées
par la relation suivante (voir Collombier [19]) :

Proposition 10.1. Soit un modéle linéaire et un plan d’expérience D tels que
la matrice d’information Cp pour le vecteur des parametres « soit réguliere.
Les matrices d’information et de dispersion vérifient alors :

Vp = Cpt.

Voici maintenant ci-dessous divers exemples de matrices d’information (per-
mettant de traiter tous les modeles utilisés dans cet ouvrage).

1) Modele classique avec Xp de plein rang et estimation de 5.
Il s’agit du cas déja évoqué au début de ce paragraphe ou le modele ainsi
que le vecteur o des parametres a estimer sont donnés par :

Y=XpB+ceta=20.
Les équations normales sont alors (voir la proposition 2.5) :

("XpXp)a ="'XpY.
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Il en découle que la matrice d’information est donnée par :
CD = tXDXD

La proposition 10.1 est bien vérifiée puisque la matrice Xp est de plein rang
donc ! XpXp est inversible avec (voir la proposition 2.6) :

Vp (B) = 0'2 (tXDXD)_l = Vp = (tXDXD)_l = CBI

2) Modeéle classique avec Xp de plein rang et estimation de K(.

On ne cherche pas a estimer ici le vecteur 4 mais le vecteur transformé K3
avec K € M (w,p). Le modele utilisé et le vecteur des parametres a estimer
sont alors :

Y =XpB+ceceta=Kp.
Supposons, pour simplifier, que la matrice K est carrée et inversible. On a
alors B = Ko et le modele linéaire utilisé peut aussi étre écrit :

Y =XpB+e=(XpK a+e.

Il en découle (proposition 2.5) que les équations normales d’un tel modele sont
données par :
(‘K "XpXpK ') a ="K "XpY.

—1
Comme 'K~ XpXpK~! = (K (‘XpXp) ™" tK) la matrice ’information
est : 3

Cp = (K (‘XpXp) ' 'K)

De maniere plus générale remarquons que :
Vp (4) = Vp (Kﬁ) — KVp (ﬁ) 'K = oK (‘XpXp) ''K.
Donc Vp = K (’5XDXD)_1 'K et la proposition 10.1 est bien vérifiée car :
Cp = (K (‘XpXp) ™' fK)fl — Vgt

Dans le cas général (c’est-a-dire avec K carrée non-inversible ou méme non-
carrée) Pobtention de la matrice d’information pour « est complexe (consulter
par exemple ouvrage de Pukelsheim [75]) mais garde cette forme générale.

3) Modele partitionné.

Considérons ici, de maniere tres générale, un modele linéaire dépendant
de deux groupes de parametres inconnus regroupés dans les vecteurs (3 et
v (c’est le cas, par exemple, pour les effets des traitements et les effets des
blocs). Supposons que seule 'estimation de (8 soir recherchée (i.e. les effets du
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vecteur ~ sont identifiés & des effets de nuisance). Le modele considéré ainsi
que le vecteur d’intérét o sont donc :

Y=XpB+Zpy+ceta=7.

On peut aussi utiliser ’écriture suivante :
Y:)?Dg—l-s avec )?D = [XD ZD} et B: [:} .

Il en résulte que les équations normales sont données par :

"XpXp 'XpZp| [&] _ ['XpY ({XpXp)é+ ({XpZp)4 = tXpY
YZpXp "ZpZp | | A |'ZpY (ZpXp)a+ (tZpZp)iy =tZpY

En supposant la matrice Zp de plein rang (ce qui sera toujours le cas dans les
exemples traités) on peut multiplier & gauche tous les termes de la seconde

égalité par (’5ZDZD)71 . On obtient alors :
-1 . -1
(tZDZD) tZDXDOL +9= (tZDZD) tZDY.
La multiplication & gauche par —*XpZp donne maintenant :

~*XpPimzp Xp& — ("XpZp) 4 = "' XpPimz,Y

avec toujours Pz, = Zp (tZDZD)fltZD le projecteur orthogonal sur
I'image de Zp. Rajouter cette équation a la premieére ligne des équations
normales conduit a :

(*Xp (In — Pmzp) Xp) & = "Xp (In — Pimz,,) Y-

Sachant que I, — Py, z, n'est autre que le projecteur sur 'orthogonal de
I'image de la matrice Zp (noté P(ImZD)J.) on en déduit que la matrice
d’information relative a l’estimation du parametre « est donnée par :

Cp ="Xp (In — Pin 2) Xp = "X Py 7,02 X.

La proposition 10.1 est bien vérifiée puisque si Cp est inversible Vp (&) est
égale a :

—1
VD ((tXDP(ImZ”D)LXD) tXDP(Im ZD)J.Y> =
—1
tXDP(ImZD)LXBHXDP(ImZD)LVD (Y) Py z5)+ XD (tXDP(ImZD)J-XD>
—1 —1
= g2 (tXDP(Im ZD)J.XD> tXDP(Im ZD)J_XD (tXDP(Im Zv)LXD)

car P(Im Zp)t P(Im Zp)t = P(Im Zp)t puisque P(Im Zp)L estun projecteur. Donc
il vient :
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-1
Vp = (tXDP(ImZD)LXD) =t

4) Modeéle a matrice d’information non-inversible.
Considérons maintenant un modele partitionné de la forme :

Y=XpB+Zpy+ceta=p

mais avec cette fois la matrice d’information Cp = tXDP(Im Zp)L XD nON-
inversible. Une telle situation se présente systématiquement dans le cas des
plans en blocs pour facteurs qualitatifs (voir le chapitre 9). Une premiere
technique consiste soit a supprimer des facteurs soit a utiliser des contraintes
d’identification afin de rendre cette matrice réguliere et se ramener ainsi a
la situation déja abordée précédemment (cas numéro trois). Il est cependant
possible de travailler directement avec la matrice tXpP(Im Zp)+ XD initiale.
Attention au fait qu’ici la proposition 10.1 n’est plus applicable mais on vérifie
facilement, en reconduisant le raisonnement du cas des modeles partitionnés,
que le équations normales pour ’estimation du parametre « sont :

("X Pt 20y XD ) & = "X P11 7)1 Y-
Il en découle que la matrice d’information est encore :
Cp = ’5XDP(Im Zp)t XD-

La difficulté réside ici dans le lien entre la matrice d’information Cp et la ma-
trice de dispersion Vp. Le fait que C'p soit singuliere entraine que les équations
normales admettent une infinité de solutions. On sait alors (voir la proposition
9.B) que l'ensemble des solutions est donné par :

$={C5 ("XoPimzp) Y ) + (C5Cp — 1) 2 | 2 € R"}

ou h est le nombre de parametres du vecteur 3 et C désigne une inverse
généralisée quelconque de la matrice Cp (voir la définition 9.4). Soit alors
une solution quelconque des équations normales, i.e. :

6 = Cp ("XDP 1) Y ) + (CpCp — In) 2" avec 2" € R" fixé.
La quantité (CECp — Ih) z* n’étant pas aléatoire il vient :
V1 (8) = Vb (Cp (*X0 P z0)-Y))
= Cp'XDPy 2051 V (V) Py 2y XpCp = 0°CpCpCp.

Ce dernier résultat montre donc que dans le cas général la relation liant les
matrices de dispersion et d’information est donnée par Vp = C,CpCp, ou Cp
désigne une inverse généralisée de la matrice d’information Cp. Remarquons
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enfin que pour retrouver une formule similaire & celle de la proposition 10.1 il
est tres courant de considérer une inverse généralisée particuliere de la matrice
Cp, appelée inverse généralisée de Moore-Penrose (notée C) vérifiant (entre
autre) la propriété supplémentaire Cg CpCH = C’g . On a bien ainsi :

Vp = C3.

Consulter pour plus de détails 'ouvrage de Rao et Mitra [78].

10.2.4 Complément d’analyse spectrale

Les valeurs propres de la matrice de dispersion Vp associée au plan d’expéri-
ence D vont souvent étre utilisées. Il a été montré qu’une telle matrice est
généralement liée & la matrice d’information C'p par la relation Vp = 051_
La seule connaissance des valeurs et vecteurs propres de Cp est alors suffisante
afin de réaliser 'analyse spectrale de Vp. En effet si A est une matrice carrée
inversible admettant un vecteur propre u associé & la valeur propre A (non-
nulle puisque A est inversible) alors :

1
Au=du e A7 (Au) = M u e Ay = 3
Ceci permet donc d’énoncer la proposition suivante :

Proposition 10.2. Si u est un vecteur propre de la matrice inversible A
associ€é a la valeur propre A alors u est aussi un vecteur propre de la
matrice A~1 associé a la valeur propre 1/)\.

On va souvent considérer la suite pleine décroissante des valeurs propres

de la matrice d’information Cp. Il s’agit de la totalité de ses p valeurs pro-

pres ordonnées )\[Dl] > .. > )\[g] (avec donc éventuellement des répétitions si

certaines valeurs propres ont un ordre de multiplicité strictement supérieur a

un). D’apres la proposition 10.1 si la matrice Cp est réguliere et si 'on pose :
; 1

Vi:17...,p7u[1;] = —

)\M

D

alors M[Dl] <. < ,u[g] est cette fois la suite pleine croissante des valeurs propres

de la matrice de dispersion Vp = C’El.

Lorsque la matrice d’information Cp n’est pas inversible (cas numéro
4 présenté au paragraphe 10.2.3) on a alors Vp = Cg avec C’g inverse
généralisée de Moore-Penrose. On vérifie que les résultats énoncés ici restent
vrais mais appliqués cette fois seulement aux valeurs propres non-nulles de
Cp (puisque la singularité de Cp se traduit par lexistence d’au moins une
valeur propre nulle).
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10.3 Optimalité uniforme

10.3.1 Exemple introductif

Considérons ici un phénomene aléatoire dépendant de m facteurs et un modele
linéaire & ajuster supposé contenir un effet moyen général (y. Supposons
que l'expérimentateur dispose de deux plans d’expérience (notés Dy et Ds)
de méme taille et qu’il est tout particulierement intéressé par la qualité de
Iestimation de (3. Désignons par Varp ,@0 la variance de 'estimateur sans
biais 50 obtenue a I’aide d’un plan D et supposons que les plans d’expérience
D1 et Dy vérifient : . .
Varp, By < Varp, Bo.

Il est clair qu’ici le choix de l’expérimentateur va se porter sur le plan
d’expérience Dy afin d’avoir un estimateur de meilleure qualité. On dit dans
ce cas que le plan d’expérience D; est plus efficace que Dy pour I'estimation
de By (D1 sera dit strictement plus efficace si Varp, By < Varp, (o).

Supposons maintenant que le probleme ne se limite pas a la comparaison
de deux plans d’expérience mais a un choix au sein d’une classe entiere
(éventuellement infinie) notée ©. Un plan d’expérience D* est alors qualifié
d’optimal au sein de la classe © (pour l'estimation de §y) si et seulement si :

VDeB, Varp« 50 < Varp BO.

A partir de ceci on appelle efficacité d’un plan d’expérience D (toujours pour
Pestimation de (p) le rapport :

Eff (D) — v fo.

Varp ,80
Cet indicateur numérique (vérifiant 0 < Eff (D) < 1) traduit donc la qualité
d’un plan d’expérience en ramenant la variance de I'estimateur étudié a celle
du plan optimal. Un plan d’expérience est dit aussi efficace que le plan optimal
D* si et seulement si Eff(D) = 1.

| Exemple |

Considérons ici I'exemple des plans d’expérience usuels pour modele
d’ordre un (voir le chapitre 3 paragraphe 3.2.4). Supposons qu’un tel
plan est utilisé pour ajuster un phénomene aléatoire dépendant de
m facteurs quantitatifs, que n expériences sont réalisées et enfin que,
classiquement, les points expérimentaux sont disposés dans la boule
centrée de rayon \/m (en coordonnées codées). Quel plan d’expérience
usuel faut-il choisir alors afin d’estimer au mieux les divers effets
linéaires 7 I a été prouvé a la proposition 3.4 que la dispersion de
tous les effets linéaires est la méme, donnée par :
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2

Vi=1,...m, Varﬁi: U—.
52

Il est alors clair qu'un plan usuel est optimal (pour 'estimation des
B;) si et seulement si la quantité sy est maximisée. Or :

n m n
59 = E 22, donc E E 22, = mss.
u=1

=1 u=1
De méme :
m n n m n
2 2 2
mer =3 Y Fu=2 (DA | =2
i=1 u=1 u=1 \i=1 u=1

ou d, (u =1,..,n) désigne la distance du u-iéme point du plan &
lorigine. Cette somme de carrés est donc maximale des lors que toutes
les distance d,, sont maximisées. On en déduit qu’un plan d’expérience
usuel est optimal (pour U'estimation des effets linéaires) si et seule-
ment si tous ses points sont A la surface de la sphere de rayon /m.
Remarquons que c’est bien le cas pour tout plan factoriel complet ou
toute fraction réguliere de ce type de plan.

10.3.2 Extension au cas vectoriel

On n’utilise généralement pas un plan d’expérience pour se focaliser sur un
seul parametre mais sur la totalité des p parametres inconnus du modele con-
tenus dans le vecteur 3. La qualité de ’estimation globale est alors quantifiée
pour le plan d’expérience D par la matrice des covariances telle que (voir le
paragraphe 10.2.3) :

Vp (3) =o? (tXDXD)_l

ou Xp est la matrice du modele pour le plan D supposée ici (dans un pre-
mier temps) de plein rang. Tout comme les plans d’expérience de 'exemple
précédent ont été ordonnés suivant les différentes variances considérées on
peut généraliser ici ce procédé en ordonnant maintenant les matrices des co-
variances a l'aide de I'ordre de Loewner sur les matrices. Etant données
deux matrices carrées symétriques A et B, de méme dimension, I'ordre de
Loewner est défini par :

A> B < (A— B) est semi-définie positive.

Ceci entraine la notion statistique suivante de plan uniformément optimal
(sous-entendu pour Pestimation de tous les parametres du vecteur f3) :

Définition 10.3. Un plan d’expérience D*€ O est dit uniformément opti-
mal au sein de la classe © si et seulement si :
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VDe®, Vp- (B) <Vp (B)

Ce type d’optimalité est parfois qualifiée dans la littérature de U-optimalité
(pour uniform optimality).

10.3.3 Propriétés

La notion d’optimalité uniforme généralise ce qui a été vu dans l’exemple
introductif puisque si D*€ @ est un plan d’expérience uniformément optimal
il vient alors pour tout D € ©, ou ;) désigne ici de maniere tres générale la

i-eme composante du vecteur (3 :

V- (5) <Vp (ﬁ) SVreRP, taVp. (ﬁ) © < t2Vp (ﬁ) z,
=Vi=1,..,p, Varp B < Varp B

Cette implication est immédiatemment démontrée par utilisation des vecteurs
particuliers de la forme x; = (6;1, d;2, ..., 8;p) avec &;; symbole de Kronecker
(i.e. 0;; = 1sii = j, d;; = 0sinon). Réciproquement on vérifie immédiatement
que :

Proposition 10.4. Soit une classe @ de plans d’expérience telle que pour
tout D € © la matrice du modéle Xp est de plein rang. Un plan d’expérience
D*e O est uniformément optimal au sein de cette classe si et seulement
St

VEkeRP, Varp- (%B) < Varp (tka) .

L’optimalité uniforme peut donc étre vue comme une notion équivalente a
loptimalité de toutes les fonctions paramétriques de la forme ‘kg.

Sachant maintenant que pour 'ordre de Loewner on a toujours la relation

suivante :
A>Be A t<B!

(ceci peut étre démontré, par exemple, & partir du théoréme de représentation
extrémale utilisé pour la démonstration de la proposition 10.6) il vient :

Proposition 10.5. Soit une classe @ de plans d’expérience telle que pour
tout D € O la matrice du modéle Xp est de plein rang. Un plan d’expérience
D*e O est alors uniformément optimal au sein de cette classe si et seule-
ment si :

VDeO , ' XpXp- >'XpXp.

Ce résultat montre donc que pour obtenir 'optimalité uniforme il n’est pas
nécessaire d’inverser la matrice !X X. Ceci peut s’avérer trés utile en pra-
tique dans tous les cas de figure ou cette inversion est complexe a réaliser
explicitement.
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La notion d’optimalité uniforme peut enfin étre aussi facilement traduite
en terme de valeurs propres. On obtient alors le résultat donné ci-dessous
faisant intervenir cette fois 'ordre de Loewner sur les vecteurs (voir le para-
graphe 10.2.2) :

Proposition 10.6. [<] Soit une classe © de plans d’expérience telle que pour
tout D € O la matrice du modeéle Xp est de plein rang. Soit )\%] > ... )\[g] la
suite pleine décroissante des valeurs propres de la matrice *XpXp et Ap € RP
le vecteur contenant ces différentes valeurs dans le méme ordre. L’optimalité
uniforme d’un plan d’expérience D*€ O se traduit par :

VDeO , Ap« = A\p.

Tout l'intérét pratique de cette proposition réside dans le fait que l'on
ramene ici une propriété matricielle (liée a 'ordre de Leewner sur les matrices
d’information) & une propriété vectorielle plus facile & manier en général.

| Exemple |

Considérons ici m = 3 facteurs quantitatifs a deux niveaux. Com-
parons les deux configurations suivantes constituées par 8 expériences
: le plan factoriel complet D; et le plan Ds de type ”un facteur a la fois”
(avec deux expériences centrales afin que n = 8). Pour l'ajustement
d’un modele polynomial d’ordre un il vient :

[1-1-1-1] [1-1 0 0]

1 1-1-1 110 0

1-1 1-1 1 0-1 0

11 1-1 101 0

Xpo=11 01 1| X = {1 ¢ 01
1 1-1 1 100 1

11 1 1 100 0
111 1) 10 0 0]

On en déduit que :

8000 8000

0800 0200

X, Xp, = | gg0| ¢ Xp2X2 = | (9
0008 0002

Il est clair que *Xp, Xp, > *Xp,Xp, donc la proposition 10.5 per-
met d’affirmer que le plan d’expérience factoriel complet D; est uni-
formément plus efficace que le plan de type "un facteur a la fois”
Ds. Pour faire le lien avec les valeurs propres et la proposition 10.6 on
a bien ici :

t)\Dl = (87 8u 87 8) tL t)\DQ = (87 2, 27 2) .
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Remarquons enfin que la principale difficulté d’utilisation de I'optimalité
uniforme est due au fait qu’elle repose sur un ordre partiel (i.e. une ma-
trice n’est pas forcément semi-définie positive ou semi-définie négative). Il en
résulte que 'optimalité uniforme induit un ordre sur les plans d’expérience
ne permettant pas toujours de les comparer entre eux. C’est pourquoi des
criteres d’optimalité plus faibles vont étre présentés par la suite.

10.3.4 Généralisation

La notion d’optimalité uniforme vient d’étre présentée dans le cas particulier
ou la matrice du modele est de plein rang et ou tous les parametres du vecteur
0B sont estimés. Dans un contexte plus général il a déja été montré au para-
graphe 10.2.3 que l'on peut utiliser les notions de matrice de dispersion (Vp)
et de matrice d’information (Cp) en lieu et place des matrices (tXDXD)_l et
tXpXp considérées ici. Ceci conduit & la définition suivante (généralisant &
la fois la définition 10.3 et la proposition 10.5) :

Définition 10.7. Soit une classe @ de plans d’expérience et Vp la matrice
de dispersion associée au vecteur des parametres estimés pour tout D € O.
Un plan d’expérience D*€ O est alors dit uniformément optimal au sein
de la classe O si et seulement si :

VDeEO, Vp- < Vp.

De maniére équivalente si Cp désigne la matrice d’information associée
au vecteur des paramétres estimés, un plan d’expérience D*€ O est uni-
formément optimal au sein de la classe © si et seulement si :

vVDe®, Cp > Chp.

On retrouve bien ici les résultats énoncés précédemment dans le cas par-
ticulier o Cp = ‘XpXp et Vp = (‘EXDXD)_1 (situation 1 du paragraphe
10.2.3). Intéressons-nous maintenant aux cas de figure ol une telle proposi-
tion peut étre utile et justifions les résultats énoncés ici.

1) Optimalité uniforme pour certains parameétres.

On a considéré jusqu’a présent la totalité des composantes du vecteur [3.
L’objectif cherché est parfois différent dans la mesure ou des configurations op-
timales pour certains des parametres du modele (par exemple les effets quadra-
tiques) ou certaines combinaisons linéaires de ceux-cis (par exemple la somme
des effets linéaires) sont préférables. D’un point de vue mathématique on ne
s’intéresse donc plus ici a lestimation du vecteur S € RP mais a l’estimation
du vecteur K3 € R* (w < p) avec K € M (w, p) . Un plan d’expérience D*€ ©
est alors uniformément optimal au sein de la classe © pour l'estimation
de K si et seulement si (en supposant ici Xp toujours de plein rang comme
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a la situation 2 du paragraphe 10.2.3) la matrice de dispersion de K ,5’\ est la
”plus petite possible” avec le plan d’expérience D* c’est-a-dire si (V D €60) :

Vp- = K ("Xp-Xp-) 'K < Vp = K ("XpXp) 'K

ce qui est équivalent & dire (puisque A > B < A~1 < B~1) que :
t 1\t t “1g\ 7t
Cp- = (K (Xp-Xp.) " 'K) > Cp = (K (‘XpXp) ''K) .
On retrouve donc bien ce qui a été énoncé a la proposition 10.7.

2) Optimalité uniforme pour configurations singuliéres.

On a supposé jusqu'a présent que les plans utilisés ont une matrice
d’information C'p réguliere. Cette hypothese n’est pas toujours vraie, elle est
notamment impossible & vérifier pour un plan d’expérience a facteurs quali-
tatifs (voir le chapitre 8). Deux techniques sont alors classiquement utilisées
afin de définir I'optimalité de telles configurations.

La premiere solution consiste & rendre la matrice d’information
réguliere afin de se ramener au cas classique. Ceci peut étre réalisé en sup-
primant certains paramétres du modele (comme pour les modeles a effets
de blocs en supprimant l'effet moyen général) ou bien en imposant des con-
traintes d’identification (comme pour les modeles & facteurs qualitatifs). L'une
ou 'autre de ces méthodes conduisent mathématiquement a réduire le nombre
de colonnes de la matrice du modele ce qui permet dans la plupart des cas de
rendre la matrice d’information réguliere.

La deuxieme solution consiste & ne pas modifier la matrice du modele
et a appliquer directement la seconde relation de la proposition 10.7 disant
que le plan d’expérience D* est uniformément optimal au sein de la classe ©
si et seulement si :

VDE@, Cp« > Chp.

Le fait que la matrice d’information Cp soit singuliere ici n’empeche pas la
vérification d’une telle relation (cette matrice admet juste un certain nombre
de valeurs propres nulles). Justifions qu’une telle généralisation au cas sin-
gulier est mathématiquement licite. Lorsque la matrice d’information C'p est
singuliere alors le systeme des équations normales admet une infinité de solu-
tions. D’apres le paragraphe 10.2.3 il est classique de considérer une inverse
généralisée particuliere de cette matrice qui est 'inverse généralisée au sens de
Moore-Penrose (notée C7)). L'intérét de ce choix est de vérifier les équations
normales tout en ayant la relation Vp = C’g généralisant le lien existant entre
les matrice de dispersion et d’information dans le cas régulier. A partir de ceci
il est naturel de dire qu'un plan d’expérience D* est uniformément optimal
au sein de la classe @ des lors que :
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VDeO ,Vp- <Vp&eVDeO,Ch <CF.

On montre alors (voir par exemple Collombier [19]) que dans le cadre des
inverses généralisées de Moore-Penrose on a encore la relation suivante :

A>B & AT < BT,

Ceci permet donc d’affirmer en conclusion qu’un plan d’expérience D* est
uniformément optimal au sein de la classe © si et seulement si :

V'DEQ7VD*§VD<:>V'D€@,CD*ZCD.

L’extension de la proposition 10.7 au cas des matrices d’information sin-
guliéres est ainsi justifiée.

10.4 Criteres d’efficacité

10.4.1 Généralités et hypotheses

Le critere d’optimalité uniforme est lié (proposition 10.6) & 'ordre de Loewner
sur les vecteurs des valeurs propres de la matrice ! XpXp (ou de la matrice
d’information Cp de maniere plus générale). Ceci peut dans certaines situ-
ations poser probleme car d’une part ces conditions sont parfois trés con-
traignantes et d’autre part l'ordre est seulement partiel. De plus le critere
d’optimalité uniforme ne permet pas d’associer a un plan d’expérience un in-
dicateur numérique rendant compte de la qualité de la matrice d’information.
Afin de corriger tout ceci tout en gardant des critéres dépendant des
valeurs propres de la matrice Cp il est courant de proposer divers critéres
d’efficacité. Les trois principaux sont présentés a la suite.

Supposons tout au long de cette partie que la matrice d’information Cp est
réguliére quel que soit le plan d’expérience D utilisé dans la classe ©. D’apres
les résultats du paragraphe 10.2.3 ceci permet donc d’affirmer que les matrice
d’information Cp et de dispersion Vp sont liées par la relation Cp = V L
Si la matrice d’information n’est pas de plein rang alors les résultats obtenus
par la suite seront toujours vrais en les appliquant uniquement aux valeurs
propres non-nulles de cette matrice.

Tous les criteres étudiés ici sont des applications de ’ensemble des plans
de la classe © dans RT. Désignons maintenant de mani¢re générale par @ une
telle application :

@ : ©—R" telleque D€ O — & (D).

L’objectif est d’utiliser des applications dépendant seulement de la matrice
d’information du plan considéré donc :
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VDe®,d(D)=o(Cp).

Les criteres proposés a la suite sont tous construits de maniere a ce qu'un plan
d’expérience est d’autant plus efficace que la quantité @ (Cp) est faible. On
cherchera donc & minimiser @ (Cp) ou, de maniére équivalente, & maximiser

~1(Cp). Un plan d’expérience D* est qualifi¢ d’optimal au sein de la classe
O si et seulement si :

YDeO,d(Cp)<d(Cp).

Afin de normaliser l'efficacité des plans d’expérience il est courant en pra-
tique de ne pas mesurer directement ’efficacité du plan D mais son efficacité
relative (par rapport & un plan optimal D*) donnée par :

5(@):%.

L’avantage principal de cette notion est de ramener toutes les efficacités a une
valeur de lintervalle [0,1]. Un plan d’expérience est alors d’autant meilleur
qu’il a une efficacité relative proche de 1.

10.4.2 Le critére de A-efficacité

Pour ce critére un plan d’expérience est d’autant meilleur (pour I'estimation
du vecteur ) que la variance moyenne des composantes de ’estimateur
B est faible. Ces diverses variances étant sur la diagonale de la matrice des
covariances le critere de A-efficacité (avec A pour average) est donc naturelle-
ment défini a partir de la trace de la matrice (tXDXD)_l . Ceci entraine la
définition plus générale suivante :

Définition 10.8. Soit un plan d’expérience D et Cp la matrice d’information
associée au vecteur des parametres estimés. La A-efficacité de ce plan
d’expérience est donnée par :

&, (Cp) = %Trace (CpY) .

Remarques et propriétés.

1) L’application @7 peut étre facilement exprimée en fonction des valeurs
propres u%] <. < u[g] de la matrice de dispersion Vp puisque Vp = 051.
D’apres le paragraphe 10.2.4 il est donc possible d’exprimer aussi ¢, en fonc-
tion des valeurs propres )\[Dl] > ... > )\%’] de la matrice d’information Cp
(généralement plus facile & manier) avec :

P

> (8)

i=1

Trace (C ) Trace (Vp) ZMD donc @, (Cp) =
i=1

"SH—‘
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2) D’un point de vue géométrique ce criteére est lié & la minimisation de la
somme des diametres de Pellipsoide associé & la matrice Vp (voir de maniere
plus générale la notion d’ellipsoides de concentration d’un vecteur aléatoire).

10.4.3 Le critére de D-efficacité

Un des reproches qui peut étre fait au critéere de A-efficacité (pour I'estimation
du vecteur ) est qu’il ne tient pas compte de tous les termes de la matrice de
dispersion (tXDXD)_1 puisque seule la diagonale est utilisée (i.e. les diverses
covariances entre couples de composantes de ﬁ sont négligées). Afin de corriger
ce probleme il est courant d’utiliser le déterminant de la matrice de dispersion
(’SXDXD)_1 comme critere d’efficacité. Un tel déterminant est toujours positif
(puisque ! Xp Xp ainsi que son inverse sont des matrices définies positives) et

plus les éléments de (’SXDXDY1 seront ”petits” plus ce déterminant sera
lui méme proche de zéro. Ceci conduit donc au critere de D-efficacité (avec
D pour determinant) présenté ci-dessous de maniére générale a partir de la
notion de matrice d’information (en désignant toujours par |A| le déterminant
de la matrice A) :

Définition 10.9. Soit un plan d’expérience D et Cp la matrice d’information
associée au vecteur des parametres estimés. La D-efficacité de ce plan
d’expérience est donnée par :

@y (Cp) = |07

Remarques et propriétés.

1) Par propriété des déterminant il n’est pas nécessaire de déterminer 'inverse
de la matrice d’information C'p puisque :

_q1 _
By (Cp) = |CD1| /p:|OD| 1/;0_

Ceci entraine que $¢ peut étre exprimé en fonction des valeurs propres )\[Dl] >

> )\[g] de la matrice Cp (généralement plus facile & manier) avec donc :

@0 (Cp) = ( f:ﬁ\[g)il/p-

Remarquons enfin que l'objectif de minimisation de @y (Cp) est équivalent ici
a celui de maximisation de la quantité suivante souvent utilisée en pratique :

In <;) — lzp:ln ALl
b (Cp)) p& T

2) Le critere de D-efficacité est invariant par reparamétrisation affine. En
effet, supposons que 'estimation recherchée soit celle du vecteur 6 = HG + h
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avec H matrice connue et h vecteur connu. La matrice des covariances
de l'estimateur des moindres carrés de 6 est alors donnée pour tout plan
d’expérience D € O par :
o A A\t 2 t —1y¢
V(G) :V(Hﬁ+h) :HV(B) H=02H (‘XpXp) "'H.

Il vient par propriété des déterminants :

| (‘XpXp) ™ H| =

'HH (‘XpXp)'| = |'HH]

(‘XpXp) |

avec |'!HH| valeur constante quel que soit le plan D de la classe © utilisé
(cette valeur ne dépend que du changement de variable effectué). Il en résulte
donc que tout plan d’expérience D-optimal pour 'estimation de [ est encore
D-optimal pour I'estimation de § = H(3 + h. Une application tres intéressante
de ce résultat concerne les plans pour facteurs quantitatifs. En effet, tout plan
d’expérience D-optimal exprimé en coordonnées codées (voir le paragraphe
3.2.1) est encore D-optimal relativement aux coordonnées initiales. Cette ro-
bustesse par rapport au changement de variable affine utilisé classiquement
pour le codage des facteurs rend ce critere de D-efficacité trés populaire en
pratique.

3) D’un point de vue géométrique ce critére est 1ié & la minimisation du
volume de Dellipsoide associé & la matrice Vp (voir de maniére plus générale
la notion d’ellipsoides de concentration d'un vecteur aléatoire).

10.4.4 Le critére de E-efficacité

Un dernier critére d’usage courant consiste a déterminer (pour l'estimation
du vecteur 3) le maximum de la forme quadratique *x (tXDXD)_l x lorsque
décrit 'ensemble des vecteurs de RP de norme 1. Ceci conduit alors au critere
de E-efficacité (avec E pour extremal) présenté ci-dessous dans le cas général
ol la matrice ! XpXp est remplacée par la matrice d’information :

Définition 10.10. Soit un plan d’expérience D et Cp la matrice
d’information associée au vecteur des parameétres estimés. La E-efficacité
de ce plan d’expérience est donnée par :

P (Cp) = max ("2Cp'z) .
llzll=1
Remarques et propriétés.

1) D’apres le théoréme de représentation extrémale on peut exprimer directe-

ment @, en fonction des valeurs propres u%] <. < u[g] de la matrice de
dispersion Vp = 051 puisque :
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1

e (D) = pifl = 7.
>\D

Un plan d’expérience est donc d’autant meilleur pour ce critere de E-efficacité

qu’il maximise la quantité )\[g].

2) D’un point de vue géométrique ce critere est lié & la minimisation du plus
grand des diametres de éllipsoide associé & la matrice Vp (voir de maniére
plus générale la notion d’ellipsoides de concentration d’un vecteur aléatoire).

10.4.5 Le critére général de P4-efficacité

Les trois criteres d’efficacité présentés ici ne sont que des cas particuliers d’une
classe tres générale de criteres dits de Py -efficacité. Ces criteres, directement
liés aux valeurs propres de la matrice d’information C'p, sont définis de la
manieére suivante :

Définition 10.11. Soit un plan d’expérience D et Cp la matrice
d’information associée au vecteur des paramétres estimés. Désignons par
)\[Dl] > > )\[g] la suite pleine décroissante des wvaleurs propres de la ma-
trice Cp. Pour tout 0 < ¢ < 400 la ®4-efficacité de ce plan d’expérience est

donnée par :
1

L~ () 1)
2,(Co)= (=3 (") ")
P
Lorsque ¢ = 1 on retrouve bien le critére de A-efficacité (d’on la notation @4

de la définition 10.8). Remarquons qu’en terme de matrice de dispersion il
vient aussi :

q

P, (Cp) = <1_17 Trace CDq> f o <1_17 Trace Vg)

Par passage & la limite sur ¢ (en 0 et en +00) on obtient naturellement les
deux généralisations suivantes :

Proposition 10.12. [<] Un prolongement par continuité de la fonction &,
en 0 ainsi qu’en +o0o permet d’obtenir les deux critéres supplémentaires :

1

(T )P _ 1
By (Cp) = ( izlAD) et Do (Cp) = il

Ceci permet alors de retrouver respectivement les criteres de D et E-efficacités
(définitions 10.9 et 10.10). De maniére générale un plan d’expérience D* est
qualifié de @,-optimal au sein de la classe © si et seulement si :

VDeO, b, (Cp.) <, (Cp).
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10.4.6 Propriétés

Présentons ici quelques propriétés générales de la @,-efficacité valables quelle
que soit la valeur de ¢ (elles seront donc directement applicables dans les
cas particuliers de A, D et E-efficacité). Ces propriétés sont classiques, une
démonstration ne sera pas proposée systématiquement.

Les résultats du paragraphe 10.4.5 montrent que tout critere de P,-
efficacité dépend de la matrice d’information C'p mais peut toujours étre ra-
mené a un critere vectoriel par le biais du vecteur des valeurs propres de cette
méme matrice. En effet, on a (avec toujours u[g =1/ )\[g les valeurs propres
de la matrice de dispersion Vp) :

®,(Cp) = @i(%})q)q _ @ZP:(M%])C,)

En désignant alors par up € RP le vecteur contenant toutes les valeurs propres
de la matrice de dispersion Vp il en résulte que tout critere de ®,-efficacité
n’est autre qu'une norme vectorielle de pp (& une constante multiplicative
pres) puisqu'’il vient d’apres la paragraphe 10.2.2 :

1\ ¢
VO0<g<+4oo,P,(Cp)= (]—)> ||#D||q-

De méme pour les valeurs ¢ = 0 et ¢ = 400 la proposition 10.12 entraine le
résultat suivant :

@0 (Cp) = (lppllg)? et Poo (Cp) = [[1D ]| -

Il est intéressant maintenant de faire le lien entre les notions de @4-efficacité
et d’optimalité uniforme. On a pour cela le résultat suivant :

Proposition 10.13. [<t] Tout critére de $q-efficacité (avec 0 < g < +00) est
une fonction croissante pour l’ordre de Leewner sur les matrices de disper-

ston, donc :
Vb1 < Vpa = &, (Vp1) < D, (Vpa).

Il est donc équivalent d’énoncer que tout critere de Pg-efficacité est une
fonction décroissante relativement a l'ordre de Loewner sur les matrices
d’information puisque des lors que Cp = Vl;l on a (puisque A > B« A™1 <
B71):

CDl > CDz = ¢q (CDI) < éq (CDZ) .
Le résultat énoncé a la proposition 10.13 est intéressant car si le plan

d’expérience D; est uniformément plus efficace que le plan Dy (i.e. Cp, > Cp,
d’apres la proposition 10.7) alors ceci implique forcément que le plan D,
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est aussi P4-plus efficace que le plan Dy et ceci pour toute valeur g
(0 < ¢ < +00). L’optimalité uniforme entraine donc la @4-optimalité pour
toutes les valeur possibles du parametre q.

La propriété suivante est un résultat d’invariance valable pour tout critere
de @, -efficacité. On désigne ici par O (RP) le groupe orthogonal de R? c’est-
a-dire ensemble des matrices orthogonales de dimension p (cet ensemble muni
du produit matriciel a bien une structure de groupe).

Proposition 10.14. [<] Tout critére de @q-efficacité (avec 0 < g < +00) est
orthogonalement invariant, donc :

VPeOR?) , &, (Cp)=d,(PCp'P).

Concrétement, dans le cas ou Cp = 'XpXp, la @ -efficacité de tout plan
d’expérience est donc identique pour 'estimation du parametre 8 ou bien du
parametre P avec P matrice orthogonale. En effet, la matrice des covariances
de l'estimateur des moindres carrés PB est alors donnée par :

Vo (PB) — PVp (,6’) tP=o?P (‘XpXp) ''P.

Il en résulte donc que la @4-efficacité (avec 0 < g < +00) relative a 'estimation
de Pf (notée ;) est :

1
«_ (1 t 15\ ¢
ot = (p Trace (P (*XpXp) ' 'P) )

-1
La matrice P est orthogonale donc (P (*XpXp) " tP) = P('XpXp)tP
et :

&) = (}) Trace (PtXDXDtP)q) " =@, (P'XpXp'P).
D’apres la proposition 10.14 on a &, (P*XpXp'P) = &, (*XpXp) et on en
déduit donc que la P4-efficacité relative a 'estimation de P{ est bien égale a
la @ 4-efficacité (classique) relative a ’estimation de (. Ce raisonnement peut
étre généralisé sans difficulté aux cas ¢ = 0 et ¢ = +00. Remarquons que cette
propriété entraine, de maniere tout a fait logique, que si P est une matrice de
permutation alors la @, -efficacité est la méme pour I'estimation de 3 et pour
I’estimation de Pg.

Enongons enfin une derniére propriété liée a la convexité de tout critere
de @, -efficacité. Considérons ici le critere de @4-efficacité comme fonction des
valeurs propres de la matrice d’information C'p. Donc pour 0 < g < +00 :

1

@, (Cp) = @, (A3, \F) = G) zp: (Ag;])q) '

i=1
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et pour les cas limites :

=1
@, (/\[1;]7'_'7)\[5]) _ ( f:M%}) Y ot B (A[DH,__,,A%J) - A%g

Proposition 10.15. Considérons le critere de Pg4-efficacité comme fonc-
tion des valeurs propres de la matrice d’information Cp. Cette fonction de
10, +oc[f dans RT est convexe pour tout 0 < q < +o0.

La démonstration de ce résultat, tres calculatoire, n’est pas donnée ici. Tl
suffit techniquement de déterminer la forme des dérivées partielles secondes
de la fonction @, puis de démontrer que la matrice hessienne associée a cette
fonction est définie positive (voir, par exemple, Collombier [19]).

10.4.7 Caractérisation des plans d’expérience ®,-optimaux

La définition ainsi que les principales propriétés relatives a la notion de
@, -efficacité viennent d’étre détaillées. Etant donnée une classe @ de plans
d’expérience la recherche d'un plan ®,-optimal n’a généralement rien d’évi-
dent. C’est pourquoi on propose ici un critere relativement simple, du a Kiefer
[67], permettant de caractériser de telles configurations.

Proposition 10.16. [<] Soit une classe de plans d’expérience © et Cp la
matrice d’information associ€ée au vecteur des parameétres estimés. Notons
/\%] > 2> /\[Dp] la suite pleine décroissante des valeurs propres de la ma-
trice Cp et wp. 1, ..., wp p les éléments diagonaux de cette méme matrice. Soit
un critére d’efficacité de la forme suivante :

@ (Cp) —_ijf(x%])

avec [ fonction convexe sur |0,+oo[. Supposons enfin qu’il existe un plan
d’expérience D* € O tel que :

P P
1) Cp+ = al, avec a #0, 2) Zf (wp= i) = min Zf (wp,i) -
i=1

Deo 3
Le plan D* est alors ®-optimal dans la classe ©.

Justifions au préalable que cette proposition peut étre appliquée a la plupart
des criteres de @,-efficacité.

1) Pour la ®,-optimalité (avec 0 < ¢ < +00). Le plan d’expérience D; est
alors @,-plus efficace que le plan Dy si et seulement si :
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Il est possible d’utiliser le critere alternatif tel que :

#(Co) =Y £ (M) ot £ () = .
=1

Cette fonction f est convexe sur |0, 4+o0[ (car f” (z) = q(¢+1)z972 > 0),
la proposition 10.16 englobe donc bien tout critere de @,-efficacité pour 0 <
q < 4o00. En particulier le critere de A-efficacité correspond a 'utilisation de
la fonction f telle que f (x) = 1/x.

2) Pour la D-optimalité (¢ = 0). Le plan d’expérience D; est D-plus efficace
que le plan Ds si et seulement si :

_% p _%
P (Cp,) < Gy (Cp,) & HABSL) é(HA%L)

On peut donc ici comparer deux plans d’expérience a ’aide du critere alter-
natif :

®(Cp) = ff(ﬂg) ol f (x) = ~In(z).

La fonction f ainsi définie est convexe sur |0, +oo| (car f” (z) = 1/2* > 0),
la proposition 10.16 englobe donc bien le critere de D-efficacité.

3) Pour la E-optimalité (¢ = +00). On a alors :

@ (Cp) = ()

Il n’est pas possible de déterminer une fonction f convexe permettant d’écrire
ce critere sous la forme proposée a la proposition 10.16. Cette proposition ne
permet donc pas d’obtenir directement des résultats relatifs a la E-optimalité
d’un plan d’expérience (on peut néanmoins en obtenir éventuellement sous
forme de prolongement par continuité comme dans I'exemple ci-dessous).
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| Exemple

Considérons un phénomene aléatoire dépendant de m = 2 facteurs
quantitatifs et cherchons une configuration en n = 4 expériences per-
mettant d’ajuster un modele d’ordre un. Considérons la classe tres
générale O (incluant celle des plans usuels) des plans d’expérience a
support dans le domaine expérimental sphérique de rayon /m tels
que :

Vi, j=1,..,mavec i# j, nli]=s1,nl[ij] =sn1 etn[iQ] = s9.

D’apres le chapitre 3 il est classique dans ce cas de proposer 1'utilisation
d’un plan factoriel complet D*. Prouvons que ce choix est le meilleur
possible en terme de @y -efficacité. Pour un tel plan d’expérience la
premiere condition de la proposition 10.16 est bien vérifiée puisqu’on
a(avecp=m+1=3)

Cp- = "Xp-Xp- = 41,,.

Si f est la fonction telle que f () = 1/27 (0 < g < +00) alors :

S F (wpe ) = if (4)=3 @

=1 i=1

Soit maintenant un plan D €@. Par construction la diagonale de la
matrice d’information ! XpXp est le vecteur (4, s2, s2), donc :

if (W) = [ (4) +2f (52) = (i) 2 (l)

La seconde condition de la proposition 10.16 est alors vérifiée si et
seulement si :

P
VDeo, Zf wpi) = _f(wp-4)
i=1 =1

<= VDEeO, sy <4.

Or, par hypothése, tout point est inclu dans la boule B (y/m) donc :

m
Vu=1,...,n, Zz?”§2
i=1

Il en découle que (puisque sp = > 22) :

u Tur

n

msg = Zm: ozl = Zn: <zm: zg) < 2n.

=1 u=1 u=

—
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Comme ici n = 4 et m = 2 on obtient bien sy < 4 et donc le plan
factoriel complet est ®,-optimal pour toute valeur 0 < q¢ < 4o00.
Les D et E-efficacités étant obtenues a ’aide d’un prolongement par
continuité de la fonction @, en 0 et 400 on en déduit (puisque le
plan factoriel complet est @,-optimal pour tout ¢ de R* ) que ce plan
d’expérience est donc aussi D et E-optimal.

10.4.8 Plans @4-optimaux obtenus numériquement

On qualifie ici de plan d’expérience @4-optimal "numérique” toute configura-
tion @,-optimale construite de facon algorithmique. De tels plans d’expérience
sont proposés par la plupart des logiciels spécialisés. Ils ont un intérét pratique
lorsque les configuration classiques sont jugées de trop grande taille.

Concretement la recherche de ce type de configuration commence par
le choix d’'un plan d’expérience de départ, le plus souvent classique, qui va
contenir I’ensemble des n points expérimentaux candidats (il s’agit donc en
général du plan d’expérience qui est jugé de trop grande taille). L’utilisateur
fixe ensuite le nombre maximal n' < n d’expériences qu’il souhaite con-
server et l'algorithme utilisé a pour objectif d’extraire des n points initiaux
le ”meilleur” sous-ensemble en n’ points selon le critere de @y-efficacité. Re-
marquons que le recours a des techniques algorithmiques est ici nécessaire
car, méme sur des exemples de petite taille, il est généralement impossible
d’avoir une approche exhaustive du probleme. L’exemple suivant traite le cas
(tres simple) de la recherche d’un sous-ensemble de 8 points parmi les 16
que constituent les points expérimentaux d’un plan factoriel complet de type
FD (2%,0) . Les sous-ensembles possibles sont au nombre de C¥; = 12870 ce
qui est déja conséquent.

L’algorithme le plus couramment utilisé pour ce type de recherche est
une nouvelle fois I'algorithme d’échange déja présenté au paragraphe 8.7.5
du chapitre 8. Il est mis en oeuvre le plus souvent afin de rechercher des
configurations D-optimales. Diverses versions de cet algorithme existent (voir
Pouvrage de Benoist et al. [3]) mais elles sont toutes basées sur un principe
commun. Dans un premier temps un choix aléatoire de n’ expériences est
réalisé au sein du plan d’expérience de départ. L’algorithme procede ensuite
a divers type d’échanges des expériences (par exemple en remplagant une
expérience & chaque itération) dans le but de converger itérativement vers
une valeur maximale du déterminant de la matrice d’information Cp. Le choix
aléatoire des expériences initiales pouvant avoir une influence sur le résultat
final il est courant de réaliser plusieurs tirages initialisant l’algorithme afin de
sélectionner au final la meilleure de toutes les solutions.
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| Exemple

Considérons ici un phénomene aléatoire dépendant de m = 4 fac-
teurs quantitatifs et un modele polynomial de degré un. Partons de
la configuration classique qu’est le plan d’expérience factoriel complet
constitué par n = 2% = 16 expériences. Supposons que la réalisation de
la totalité de ces 16 expériences est trop cotiteuse et que ’on souhaite
en effectuer seulement la moitié. D’apres 'algorithme d’échange le
meilleur plan constitué par n’ = 8 expériences extraites du plan fac-
toriel complet est alors le plan D; défini par la matrice D, suivante
(source : logiciel Nemrod) :

(-1 —-1-1-1]

-1 1-1-1

1-1 1-1

1 1 1-1

Di=1 111 4
1 1-1 1

-1-1 1 1

-1 1 1 1]

Le recours a des techniques algorithmiques était inutile ici puisque le
plan d’expérience proposé ci-dessus n’est autre que la fraction réguliere
de résolution III définie par la relation —Ig=134. Une telle configura-
tion est bien D-optimale (parmi tous les plans en n = 8 expériences ex-
traites du plan factoriel complet) d’apres la proposition 10.16. Remar-
quons que diverses solutions peuvent étre proposées par l'algorithme
d’échange puisqu’il n’y a pas unicité au niveau de la construction de
la fraction réguliere (il peut aussi converger vers la fraction réguliere
telle que Ig=134, Ig=1234, eic...). Réduisons maintenant au maxi-
mum la taille du plan d’expérience a utiliser. On peut s’orienter cette
fois vers une configuration saturée en n”” = 5 expériences. L’algorithme
d’échange propose alors le plan d’expérience Dy défini par la matrice
D5 suivante (source : logiciel Nemrod) :

1-1-1-1
-1 1-1-1
Dy = 1 1 1-1
1 1-1 1
-1-1 1 1
11 vient (avec la matrice du modele donnée par Xp, = [I5 | D2 ]) :

®y(Cp,) = Do(' Xp,Xp,) = |tXD2XD2|71/p = (2304) /% ~ 0.213.

Si l'algorithme d’échange a bien convergé vers une solution qui est
un minimum global du déterminant de la matrice d’information alors
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la configuration sélectionnée ci-dessus est optimale dans la classe des
plans en n’ = 5 expériences (issues du plan factoriel complet initial).
L’extraction de tout autre ensemble de 5 expériences parmi les 16 du
plan initial doit donc conduire & des configurations moins efficaces.
Les deux exemples suivants (plans D3 et Dy de matrices D3 et Dy)
illustrent le fait qu’un tel choix effectué ”au hasard” peut s’avérer tres

mauvais :
1-1 1 1 1 1 1 1
1-1-1-1 -1-1-1-1
D3 = 1-1 1-1| ,Dy=1]-1 1-1-1
-1-1 1 1 -1-1 1-1
1-1-1 1 -1-1-1 1

Le plan Dj est inutilisable pour ’estimation de tous les parametres du
modele (puisque la deuxiéme colonne de Dj est colinéaire au vecteur
I5). Concernant maintenant Dy il vient :

1 _
Bo(Cp,) = Bo('Xp, Xp,) = |'Xp, Xp,| /" = (256) /% ~ 0.330,

Ce plan d’expérience est donc moins efficace que Dy en terme de D-
efficacité. Ce type de recherche informatique d’une configuration D-
optimale peut aussi étre menée avec le logiciel SAS a l'aide de la
procédure ”Optex” (voir Azais et Bardet [1] pour plus de détails).
Cette procédure ne fait cependant pas partie de la version de base de
ce logiciel.

10.5 Optimalité universelle

10.5.1 Définition

L’exemple du paragraphe 10.4.7 a conduit a la construction de plans @,-
optimaux pour toute les valeurs positives de g. Il est évident qu’en pratique
on a tout intérét, si cela est possible, a travailler avec de telles configura-
tions ”uniformément” P,-optimales. Ceci est I'objectif principal du critere
d’optimalité universelle étudié ici. Ce type de critere a été historiquement
introduit par Kiefer [57] puis modifié ou enrichi par bon nombre d’auteurs
par la suite. La définition de I'optimalité universelle utilisée dans cette sec-
tion a été proposée par Bondar [4] et présente l'avantage d’étre directe-
ment liée aux valeurs propres de la matrice d’information (et donc d’étre
facilement interprétable par rapport aux criteres d’optimalité précédents). De
tels criteres d’optimalité nécessitent 1'utilisation de fonctions nécessairement
Schur-convexes. Définissons au préalable cette notion.
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Définition 10.17. Soit ¢ une application de RP dans R. Une telle application
est qualifiée de Schur-convexe si et seulement si (en désignant encore Uordre
de Schur sur les vecteurs par <) :

VuveRP u=xv=0(u) <P(v).

Voici la définition de 'optimalité universelle retenue ici. Il a déja été
montré que tout critere de @y-efficacité est orthognalement invariant (propo-
sition 10.14). Une telle propriété va donc obligatoirement étre requise pour
l'optimalité universelle dans le but & la fois d’englober toute @,-efficacité et
aussi d’obtenir un critere dépendant uniquement des valeurs propres de la
matrice d’information utilisée.

Définition 10.18. Soit une classe @ de plans d’expérience et, pour tout
D € O, Ap € RP le vecteur contenant la suite pleine décroissante des valeurs
propres de la matrice d’information Cp. Un plan d’expérience D* € O est dit
universellement optimal dans la classe @ si et seulement si il est optimal
pour tout critére @ a valeurs dans R vérifiant les propriétés suivantes :

1) P est invariant par toute transformation orthogonale,

2) @ est décroissant par rapport ¢ chacune des composantes )\[g,

3) @ est une fonction Schur-convexe en Ap € RP.

La classe de criteres proposés a la définition 10.18 englobe bien la classe
des criteres de @,-efficacité. Ceci découle du fait que :

1) Tout critere de Py-efficacité (0 < ¢ < +o00) est bien orthogonalement
invariant d’apres la proposition 10.14.

2) Tout critere de P -efficacité (0 < ¢ < +00) est bien décroisant par rap-

port a chacune des composantes )\%] (ceci découle simplement de la définition
générale).

3) Tout critere de Py-efficacité (0 < ¢ < +00) est bien une fonction Schur-
convexe de Ap € RP. Cette propriété est moins évidente a cerner que les deux
précédentes. Il est cependant possible d’utiliser un lemme classique (voir par
exemple Druilhet [35], lemme 13) disant que pour tout critere ¢ = & (C) avec
C matrice carrée on a (en désignant par A¢ le vecteur contenant la suite pleine
décroissante des valeurs propres de C) :

@ est orthogonalement invariant et @ est convexe
= @ est une fonction Schur-convexe en A\¢.
Ceci permet alors de conclure facilement puisque tout critere de @4-efficacité

est orthogonalement invariant et il est de méme convexe d’apres la proposition
10.15.
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10.5.2 Propriétés

Voici tout d’abord une caractérisation de l'optimalité universelle en terme
d’ordre faible de Schur. Ce résultat est classique (voir par exemple Collombier

[19]).

Proposition 10.19. [<] Soit une classe © de plans d’expérience et, pour tout
D € O, Ap € RP le vecteur contenant la suite pleine décroissante des valeurs
propres de la matrice d’information Cp. Un plan d’expérience D* € O est
universellement optimal au sein de la classe © si et seulement si :

VD eEB, Ap- < \p.

Remarquons que ce résultat est proche de celui de la proposition 10.6 rela-
tive a l'optimalité uniforme puisqu’on compare dans les deux cas les vecteurs
des valeurs propres des matrices d’information (seul l'ordre utilisé change).
Il découle aussi de ce résultat que I'optimalité uniforme entraine I’optimalité
universelle. En effet, d’apres la proposition 10.6, si un plan d’expérience D*
est uniformément optimal dans la classe @ alors ceci entraine que :

VD€@7)\D* L A\D

avec de maniere générale A\p € RP vecteur contenant la suite pleine décroi-
ssante des valeurs propres de la matrice d’information Cp. La définition de
Pordre de Loewner sur les vecteurs (voir le paragraphe 10.2.2) entraine cepen-
dant la relation suivante pour l'ordre faible de Schur sur les vecteurs :

u=<pv=—v=3“u

Il découle donc de cette relation que si D* est uniformément optimal dans
O alors Ap+ =¥ Ap (pour tout D € @) donc D* est universellement optimal
dans 6.

Afin de pouvoir manier plus facilement la notion d’optimalité universelle
la condition suffisante d’optimalité présentée ci-dessous est souvent utilisée.

Proposition 10.20. [<] Soit une classe © de plans d’expérience et Cp la
matrice d’information de D. Soit D* € © un plan d’expérience tel que :

1) Cp- est multiple de l'identité,
2) Trace (C'p+) = max Trace (Cp) .
DeoO
Le plan d’expérience D* est alors universellement optimal dans la classe

o.

Cette proposition donne donc deux conditions relativement simples & vérifier
en pratique permettant dans de nombreux cas de caractériser des config-
urations universellement optimales (voir la section 10.6 pour des exemple
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d’applications). La proposition 10.20 n’est cependant applicable que dans
des situations ou il est possible que la matrice d’information soit multiple
de l'identité, c’est-a-dire dans des cas ou elle est forcément de plein rang.
On a cependant déja vu qu’il existe des situations ou il est structurellement
impossible de vérifier une telle propriété. Voici alors une généralisation de la
proposition 10.20 adaptée au cas ol la matrice d’information est telle que les
sommes par lignes ou par colonne sont nulles (c’est par exemple le cas pour
des plans d’expérience en blocs a facteurs qualitatifs).

Proposition 10.21. [<] Soit une classe © de plans d’expérience et Cp la
matrice d’information de D telle que la somme de ses lignes ou de ses colonnes
est égale au vecteur nul. Soit D* € @ un plan d’expérience tel que :

1) Cp- est complétement symétrique,
2) Trace (Cp~) = max Trace (Cp) .
DeoO
Le plan d’expérience D* est alors universellement optimal dans la classe

e.

10.6 Exemples d’applications

Appliquons maintenant les résultats d’optimalité présentés ici a des configu-
rations étudiées dans les divers chapitres de cet ouvrage. Ceci va permettre
de retrouver ce qui avait été énoncé en introduction c’est-a-dire que l'intérét
principal des plans d’expérience classiques construits algébriquement réside
dans le fait qu’ils sont bien souvent les "meilleurs” plans possibles selon de
multiples criteres.

Prenons garde au fait que par la suite la recherche de plans d’expérience
optimaux sera effectuée uniquement en comparant des configurations ayant :

1) le méme nombre d’expériences,

2) un domaine expérimental identique.

Si la premiere hypothese n’est pas vérifiée alors la comparaison n’a concrete-
ment pas de sens en terme de cout expérimental et va bien souvent amener a
la conclusion que le meilleur des deux plans d’expérience est tout simplement
celui qui a le plus d’expériences. De méme si la seconde hypothése n’est pas
vérifiée alors on aboutira souvent a la conclusion que le meilleur des deux plans
d’expérience est celui qui a le domaine expérimental le plus étendu. Les deux
hypotheses formulées ici vont donc permettre de réaliser des comparaisons
licites.
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10.6.1 Plans optimaux pour modéeles d’ordre un

Ce type de configurations ont été étudiées en détails dans le troisieme chapitre
de cet ouvrage. La classe des plans usuels (voir la définition 3.3) a été con-
sidérée alors. Il s’agit des plans d’expériences tels que les seuls moments non-
nuls jusqu’a 'ordre deux sont donnés par :

Vi=1,...m,n [12] = Zz?” = S3.

u=1

Il a été prouvé que les configurations de ce type sont d’analyse aisée. Un autre
argument en leur faveur est la propriété d’optimalité donnée ci-dessous (en
désignant & partir de maintenant par B («) la boule centrée de rayon «) :

Proposition 10.22. [<] Soit un phénomeéne aléatoire dépendant de m fac-
teurs ajusté a l’aide d’un modéle linéaire d’ordre un et O la classe des plans en
n expériences distribuées dans le domaine expérimental B (\/m). Tout plan
d’expérience usuel en n expériences tel que :

S22 =N
est universellement optimal dans la classe ©.

Ce résultat d’optimalité universelle peut étre appliqué a la plupart des con-
figurations du chapitre 3 (voir respectivement les propositions 3.6, 3.16, 3.18
et 3.20) :

1) Tout plan d’expérience factoriel complet de type F'D (2™,0) est uni-
versellement optimal dans la classe des configurations en 2™ expériences dis-
tribuées dans le domaine expérimental B (v/m) .

2) Toute fraction réguliére de plan complet de type FD (2{f; %,0) est
universellement optimale dans la classe des configurations en 2"~ expériences
distribuées dans le domaine expérimental B (y/m).

3) Tout plan simplexe de type SD (m,0) est universellement optimal
dans la classe des configurations saturées en (m + 1) expériences distribuées
dans le domaine expérimental B (y/m).

4) Tout plan de Plackett et Burman est universellement optimal dans
la classe des configurations saturées en (m + 1) expériences distribuées dans
le domaine expérimental B (y/m) .

Les trois résultats énoncés précedemment ne sont valables que pour des con-
figurations n’ayant pas d’expérience au centre du domaine. Rajouter au moins
une expérience centrale a I’'un de ces plans optimaux va poser probléme car leur
matrice d’information relative au vecteur 8 (contenant ’effet moyen général
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ainsi que les effets linéaires) ne sera plus multiple de I'identité, ce qui rend
donc impossible 'application directe de la proposition 10.20.

Si ng points centraux sont ajoutés a un plan d’expérience usuel vérifiant
la proposition 10.22 une alternative pour contourner cette difficulté consiste a
ne s’intéresser qu’a ’estimation des effets linéaires. La matrice d’information
relative a l'estimation de ces effets peut facilement étre déterminée d’apres
les résultats du paragraphe 10.2.3 (troisiéme point). On vérifie alors aisément
que tout plan d’expérience usuel en n expériences, tel que sy = n, auquel on a
rajouté ng expériences centrales est encore universellement optimal dans
la classe des plans d’expériences en n expériences distribuées dans B (y/m)
avec ng expériences centrales.

10.6.2 Plans optimaux pour modeles avec interactions

Considérons ici les modeles incluant des effets d’interactions d’ordre deux,
étudiés en détails dans le quatrieme chapitre de cet ouvrage. Il a été alors
présenté, de maniere tres générale, la classe des plans dits usuels (voir la
définition 4.1). Il s’agit donc des plans d’expérience tels que tous les moments
impairs jusqu’a 'ordre quatre sont nuls et (V i, = 1,...,m tels que ¢ # j) :

n n

n[i’] = szu = sy et n[i%)%] = ZZ?HZ?U = S22.

u=1 u=1

L’analyse statistique de telles configurations est tres aisée. Un autre argument
en faveur de leur utilisation est la propriété d’optimalité donnée ci-dessous :

Proposition 10.23. [<] Soit un phénoméne aléatoire dépendant de m fac-
teurs ajusté a l'aide d’un modéle linéaire a effets d’interactions d’ordre
deux et O la classe des plans en n expériences distribuées dans le domaine
expérimental B (v/m). Tout plan d’ezpérience usuel en n expériences tel que

S9g = S92 =M

est universellement optimal dans la classe ©.

Ce résultat d’optimalité universelle peut maintenant étre appliqué a la plupart
des configurations pour interactions d’ordre deux étudiées dans le chapitre 4.
I1 vient alors (voir respectivement les propositions 4.4 et 4.5) :

1) Tout plan d’expérience factoriel complet de type F'D (2™,0) est uni-
versellement optimal dans la classe des configurations en 2™ expériences dis-
tribuées dans le domaine expérimental B (y/m) .

2) Toute fraction réguliere de plan complet de type FD (27 7,0) est
universellement optimale dans la classe des configurations en 27 expériences
distribuées dans le domaine expérimental B (y/m).



10.6 Exemples d’applications 451

Tout comme dans le paragraphe précédent remarquons que les deux résultats
énoncés ici ne sont plus valables lorsqu’au moins une expérience centrale a
été rajoutée (car alors la matrice d’information relative au vecteur 5 n’est
plus multiple de I'identité de donc la proposition 10.20 n’est plus applicable).
Une nouvelle fois il est cependant possible de garder des configurations uni-
versellement optimales en se restreignant a ’estimation des effets linéaires
et d’interaction (i.e. en supprimant ’estimation de l’effet moyen général).

10.6.3 Plans optimaux pour surfaces de réponse

Considérons ici les plans d’expérience pour surface de réponse, c’est-a-dire
pour modeles d’ordre deux complets. De telles configurations ont été étudiées
en détails dans le cinquiéme chapitre de cet ouvrage. Il a été prouvé que
I'introduction d’effets quadratiques rend impossible ’obtention d’une matrice
d’information diagonale. La situation est donc plus complexe maintenant
car la proposition 10.20 n’est pas applicable. C’est pourquoi on s’oriente
vers des techniques permettant de déterminer des configurations A, D ou
bien E-optimales. Considérons une nouvelle fois la classe générale des plans
d’expérience usuels pour surfaces de réponse (voir la définition 5.1). Il s’agit
donc des plans tels que tous les moments impairs jusqu’a 'ordre quatre sont
nuls et (V4,7 =1,...,m tels que i # j) :

n n n

n [22} = szu =52, N [i2j2} = Zzzlzzj = S22, M [iﬂ = Zz;‘;l = 54.

u=1 u=1 u=1

On vérifie que les A, D et E-efficacités de tout plan d’expérience usuel peuvent
facilement étre déterminées explicitement a ’aide des relations suivantes :

Proposition 10.24. [<] Soit un phénoméne aléatoire dépendant de m facteurs
ajusté a laide d’un modele linéaire d’ordre deuz. Pour tout plan d’expé-
rience usuel on a les résultats suivants pour l’estimation de tous les parame-
tres du modéle :

1) La A-efficacité du plan d’expérience est donnée par :

9, (Cp) = -

1 {M+m+m(m1)+n+54+(m—1)522}
p

S4— S22 82 2592 Ay

en notant Ay = n (sq4+ (m — 1) s92) — ms3.

2) La D-efficacité du plan d’expérience est donnée par :

m— m(m— —1/p
430 (O'D) = ((54 — 522) ! 872n822( 1)/2A1)

3) La E-efficacité du plan d’expérience est donnée par :
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@m(Op)—min<; LI 2)

s T I
S4— S22 S2 S22 Ao

en notant Ay =nsg + (m — 1) S92 — \/(n —s3—(m—1) 522)2 + 4ms3.

Les résulats de la proposition 10.24 permettent de comparer tres facilement
des plans d’expérience usuels entre eux sans avoir recours aux moyens informa-
tiques nécessaires a la recherche numérique des valeurs propres des différentes
matrices d’information. Ces résultats sont particulierement intéressants pour
le probléme de choix du parametre « (distance des points axiaux au centre
du domaine) des plans d’expérience composites centrés. Il a été montré au
paragraphe 5.3.2 que la valeur du parametre a peut étre choisie dans le but
d’obtenir certaines propriétés (isovariance par transformations orthogonales,
presque-orthognalité, etc...). Ce choix peut aussi naturellement étre effectué
dans le but d’obtenir une configuration la plus efficace possible. Pour tout
plan composite centré sous forme générale (voir la définition 5.7) il est possi-
ble d’appliquer la proposition 10.24 avec les valeurs suivantes :

S =2M79 4202 | 54 =29 4 202 et 599 = 271

Utilisons ceci afin de déterminer des valeurs optimales pour le parameétre
a. Voici tout d’abord quelques exemples graphiques. Chacun de ces ex-
emples donne une représentation du critére d’efficacité choisi lorsque le
parametre « varie (classiquement) dans l'intervalle [ 0,/m |. Afin de se
ramener systématiquement a un objectif de maximisation on représente ici
des efficacités relatives (voir le paragraphe 10.4.1) qui sont donc égales au
rapport @ (Cp+) /P (Cp) ot D* est le plan d’expérience optimal trouvé (i.e.
associé ici a la valeur a* optimale).

La figure 10.1 représente la A-efficacité pour des plans d’expérience com-
posites centrés a 3 facteurs.

14 11
0.81 0.8
0.61 0.6 ]
EFF EFF
0.41 0.4
021 0.2 ]
0 02 04 06 08 1 12 14 16 0 02 04 06 08 1 12 14 16
Fig. 10.1.

A-efficacité relative du CCD (2%, a,ng) pour ng =0 et ng = 1.
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La figure de gauche correspond au cas sans expérience au centre du do-
maine, la figure de droite en contient ng = 1. Les valeurs optimales pour le
parametre « sont alors respectivement égales a 1.12 et 1.255. La figure 10.2
représente cette fois le critere de D-efficacité pour des plans composites centré
a 4 facteurs.

La figure de gauche correspond au cas ou il n’y a pas d’expérience au centre
du domaine, la figure de droite en contient ng = 2. Les valeurs optimales
pour le parameétre « sont alors respectivement égales & 1.767 et 2 (i.e. la
situation optimale est obtenue dans le second cas lorsque les points axiaux
sont positionnés & la limite du domaine expérimental).

1 11
0.8 4 0.8 ]
0.6 1 0.6 1
EFF EFF
0.4 4 0.4 ]
0.2 4 0.2 1
0 02040608 1 12141618 2 0 02040608 1 12141618 2
Fig. 10.2.

D-efficacité relative du CCD (24, Q, no) pour ng =0 et ng = 2.

Enfin, la figure 10.3 représente le critere de E-efficacité pour des plans
composites centré a 5 facteurs (en utilisant ici pour la partie factorielle une
fraction réguliere de résolution V). La figure de gauche correspond au cas ou
il n’y a pas d’expérience au centre du domaine, la figure de droite en contient
no = 3. Les valeurs optimales pour le parametre o sont alors respectivement
égales a 1.183 et 1.294.

11 A 11

0.8 1 0.8

0.6 1 0.6
EFF EFF

0.4 1 0.4

0.2 1 0.2

0 02040608 1 12141618 2 22 0 02040608 1 12141618 2 22

Fig. 10.3.

E-efficacité relative du CCD (25_1, a, no) pour ng = 0 et ng = 3.
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De maniere plus générale les diverses valeurs optimales pour le parametre
a sont résumées dans les deux tables suivantes (pour un nombre de facteurs
allant de 2 a 10 et I'utilisation pour la partie factorielle des fractions régulieres
de résolution V de plus petite taille possible).

Table 10.1. Valeurs de « optimales (pas d’expérience centrale).

A-optimalité | D-optimalité | E-optimalité
CCD (22,a,0) 0.869 1.075 0.817
CCD (2%,0,0) 1.120 1.466 0.971
CCD (2%, 0,0) 1.327 1.767 1.094
CCD (27", a,0) 1.496 2.036 1.183
CCD (257", ,0) 1.661 2.260 1.271
CCD (277!, a,0) 1.810 2.464 1.356
CCD (2}72,0,0) 1.941 2.661 1.407
CCD (272, a,0) 2.070 2.838 1.467
CCD (2777%,0,0) 2.186 3.010 1.518

On constate pour les trois représentations graphiques précédentes que
Iefficacité relative est chaque fois nulle lorsque les points axiaux sont po-
sitionnés a la limite du domaine expérimental (i.e. « = y/m) et qu’aucune
expérience au centre n’est réalisée. Ce phénomene est trés général, il est du
au fait que dans une telle situation toutes les expériences du plan composite
centré sont situées a la méme distance de 'origine et donc le plan d’expérience
est & matrice d’information non-inversible d’apres la proposition 5.2 (i.e. ad-
met au moins une valeur propre nulle) donc tout critere de @,-efficacité a une
valeur infinie (ou de maniere équivalente 'efficacité relative est nulle). Voila
donc pourquoi il est structurellement impossible, en I'absence d’expériences
au centre du domaine expérimental, d’obtenir une configuration efficace en
rejetant les points axiaux aux limites du domaine expérimental (sphérique
de rayon /m). La table 10.1 résume ces différentes situations avec pour
chaque plan d’expérience de type CCD (27‘7—117 «Q, no) les valeurs optimales du
parametre o permettant d’atteindre les objectifs de A, D ou bien E-efficacité.

Considérons maintenant la situation ot au moins une expérience a été
menée au centre du domaine expérimental. Dans ce cas 1a le plan d’expérience
composite centré est bien régulier pour toute valeur du parametre o dans
l'intervalle ] 0,4/m ]. La table 10.2 donne les différentes valeurs de ce
parametre permettant d’atteindre 'objectif de A, D ou E-optimalité. Pour
chaque situation trois valeurs ont été déterminées, elles correspondent (de
haut en bas) aux nombres d’expériences centrales égales a 1, 2 et 3 (valeurs
trés courantes en pratique).



10.6 Exemples d’applications 455

Table 10.2.
Valeurs de a optimales (au moins une expérience centrale).

A-optimalité | D-optimalité | E-optimalité
1.031 1.414 0.887
CCD (2%, a,mn0) 1.414 1.414 0.947
1.414 1.414 1.000
1.255 1.732 1.027
CCD (23,a,np) 1.732 1.732 1.077
1.732 1.732 1.122
1.443 2.000 1.140
CCD (2*,a,np) 1.598 2.000 1.183
2.000 2.000 1.222
1.605 2.236 1.222
CCD (237", o, no) 1.743 2.236 1.259
2.236 2.236 1.294
1.757 2.499 1.306
CCD (257", o, no) 1.866 2.499 1.339
2.014 2.499 1.370
1.897 2.646 1.377
CCD (27, a,no) 1.992 2.646 1.407
2.102 2.646 1.436
2.023 2.828 1.436
CCD (2572, o, o) 2.112 2.828 1.463
2.213 2.828 1.489
2.147 3.000 1.493
CCD (2772, o, o) 2.228 3.000 1.518
2.317 3.000 1.542
2.259 3.162 1.542
CCD (2777%,a,np) 2.336 3.162 1.565
2.419 3.162 1.588

Les résultats relatifs a la D-optimalité sont particuliers car a chaque fois
le parametre o optimal prend la plus grande valeur possible. Ceci traduit
en fait un comportement classique car généralement un plan d’expérience
est d’autant plus D-efficace que ses points sont rejetés aux limites du do-
maine expérimental (si, bien entendu, cela n’engendre pas une singularité).
Ces valeurs permettant d’obtenir la D-optimalité du plan composite centré
sont, de plus encore les mémes quel que soit le nombre d’expériences centrales
réalisées. Ce type de configuration est intéressante car elle coincide donc avec
la notion de plan d’expérience équiradial (exception faite des expériences cen-
trales) et parfois aussi avec celle de plan d’expérience isovariant. Remarquons
enfin que la valeur de a associée a la A-optimalité atteint aussi toujours la
valeur extréme o = y/m des lors que le nombre d’expériences centrales est
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suffisamment grand (par exemple pour m = 10 facteurs on vérifie que ce
résultat est obtenu des lors que ng > 6).

10.6.4 Plans optimaux pour modéeles a effets de blocs

Considérons ici les plans d’expérience incluant des effets de blocs. De telles
configurations ont été étudiées en détails dans le sixieme chapitre de cet ou-
vrage. Plagons-nous dans la classe trés générale des plans d’expériences usuels
(voir la définition 6.1). Il s’agit donc de considérer des plans usuels pour le
modele d’ordre deux tels que tous leurs moments par blocs impairs sont nuls
jusqu’a lordre deux et tous les moments pairs d’ordre deux sont égaux a
une méme valeur (notée y;) pour le bloc ! (I = 1,...,b). Réaliser une analyse
comparable & celle du paragraphe précédent devient beaucoup plus complexe
ici. En effet, la recherche directe des différentes efficacités découle de la con-
naissance des valeurs propres de la matrice d’information qui est maintenant
(& un coefficient pres) la matrice des moments généralisée (plus difficile
&4 manier que la matrice des moments du cas sans bloc). Dans une optique
de recherche de ®,-efficacité le critere obtenu va encore dépendre des car-
actéristiques sz, s4 et sg92 associées a la géométrie du plan d’expérience mais
aussi de la fagon dont le blocage a été réalisé.

Il est cependant possible d’obtenir certains résultats dans le cas particulier de
la D-efficacité. La proposition suivante permet de réaliser un choix optimal
pour les blocs du plan d’expérience considéré avec comme objectif I’'obtention
de la meilleure D—efficacité pour I’ensemble de tous les parametres inconnus
du modele (effets de blocs, linéaires, quadratiques et d’interactions).

Proposition 10.25. [<] Soit un phénomene aléatoire en m facteurs, un plan
d’expérience D et O (ky,...,ky) la classe des plans usuels en b blocs, de tailles
respectives ki, ..., ky, obtenus a partir du plan D. S’il existe dans cette classe
un plan bloqué orthogonalement alors il est D-optimal dans la classe
O (k1,.... k).

Ce résultat montre donc qu’il est préférable (si cela est possible) d’utiliser des
configurations bloquées orthogonalement. Ceci avait déja été conseillé dans le
chapitre six afin de pouvoir simplifier 'analyse du modele a effets de blocs.
De maniere plus générale on a aussi le résultat suivant si aucune contrainte
n’est imposée relativement a la taille de chacun des blocs :

Proposition 10.26. [<] Soit un phénomene aléatoire en m facteurs, un plan
d’expérience D et @ la classe des plans usuels en b blocs obtenus a partir du
plan D. Sil existe dans cette classe un plan bloqué orthogonalement en
blocs de méme taille alors il est D-optimal dans la classe ©.
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Relativement a la D-efficacité la meilleure structure en blocs possible est donc
celle d’'un plan d’expérience a la fois bloqué orthogonalement et en blocs con-
stitués par le méme nombre d’expériences. Le résultat suivant fait maintenant
le lien entre la recherche d’un plan en blocs D-optimal et la méme recherche
sans bloc :

Proposition 10.27. [<] Soit un phénomene aléatoire en m facteurs ajusté
a Vaide d’un modéle linéaire d’ordre deuz en blocs, © une classe de plans
d’expérience usuels et O (ki,...,kp) la classe de ces mémes plans décomposés
en plans usuels en blocs de tailles respectives ki,...,ky. Si D est un plan
d’expérience D-optimal dans © pour le cas sans bloc et si D peut étre bloqué
orthogonalement alors le plan d’expérience D est encore D-optimal dans
la classe O (ki, ..., ky) pour le modéle a effets de blocs.

Illustrons ceci a ’aide d'un exemple de plans d’expérience classiques.

| Exemple |

Considérons ici la classe © (8 +n1,6+ ng) des plans d’expérience
composites centrés pour m = 3 facteurs de type CCD (2%, a, ng) (avec
O<a< \/§) décomposés selon les deux blocs suivants :

Bloc 1 : partie factorielle et ny points centraux,
Bloc 2 : partie axiale et ng points centraux.

On sait que lorsque le nombre d’expériences centrales ng = ni + ns
est strictement supérieur a zéro la D-optimalité est obtenue, pour le
cas sans bloc, lorsque o = /3. Le blocage orthogonal est vérifié pour
cette valeur de « si et seulement si :

8 _ 6
8+ nq _6+TL2

H1 = p2 = < 3ny = 4ns.

On en déduit que, par exemple, le plan d’expérience composite centré
de type CCD (237 V3, 7) avec n1 = 3 expériences centrales dans le bloc
1 et ny = 4 dans le bloc 2 est D-optimal dans la classe © (11, 10).

10.6.5 Plans optimaux pour modeéles a facteurs qualitatifs

Considérons pour terminer la situation des plans d’expérience pour facteurs
qualitatifs et plus particulierement le cas des configurations décomposées en
blocs. Ce sujet a été étudié en détails dans le chapitre 9. Il a été montré
qu’afin de pouvoir analyser facilement le modele a 'aide d’un petit nom-
bre d’expériences il est recommandé d’utiliser des plans en blocs incomplets
équilibrés (BIBD). Rappelons que lorsque h traitements sont répartis en b
blocs une configuration est un BIBD si et seulement si :
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1) chaque bloc est constitué par k expériences (avec k < h),
2) chaque traitement apparait dans r blocs,

3) chaque paire de traitements apparait dans A blocs.

Tout BIBD vérifie aussi la propriété suivante d’optimalité :

Proposition 10.28 [<] Soit un phénoméne aléatoire faisant intervenir un
facteur qualitatif a h modalités analysé a l'aide d’un plan d’expérience en b
blocs. Soit @ la classe des plans d’expérience binaires en blocs de méme taille
k pour lestimation des effets des traitements. Tout plan d’expérience en blocs
incomplets équilibrés (BIBD) est alors universellement optimal dans

la classe ©.

Illustrons ce résultat a I’aide d’un exemple d’application.

Exemple
|

Considérons un plan d’expérience pour un facteur qualitatif &a h = 7
traitements en b = 7 blocs constitués chacun par k = 3 expériences.
Voici deux configurations possibles :

Plan d’expérience 1 Plan d’expérience 2

0 1 3 Bloc 1 01 2 Bloc 1
1 2 4 Bloc 2 1 2 3 Bloc 2

2 3 5 Bloc 3 2 3 4 Bloc 3

3 4 6 Bloc 4 3 4 5 Bloc 4

0 4 5 Bloc 5 4 5 6 Bloc 5
1 5 6 Bloc 6 0 5 6 Bloc 6

0 2 6 Bloc 7 0 1 6 Bloc 7

Le plan 1 est un BIBD de type BIBD(7,7,3,3,1). Ce BIBD, qui n’est
autre qu’un plan cyclique obtenu & laide du générateur ¢ = {0, 1,3},
a déja été utilisé pour 'exemple d’application du chapitre 9 (voir la
section 9.7), il est construit & I’aide de la méthode des différences. Le
plan d’expérience 2 est un plan cyclique obtenu a 'aide du générateur
& = {0,1,2} et n’est pas un BIBD (car chaque paire de traitements
n’apparait pas dans un méme nombre de blocs).

Vérifions que (par exemple) le plan d’expérience 1 est bien plus ef-
ficace que le plan d’expérience 2 pour les criteres usuels de A, D et
E-efficacité. Le plan 1 étant un BIBD la matrice d’information pour
Pestimation des effets des traitements est donnée par (voir le para-
graphe 9.4) :

A A
Z“!‘—)Ih_EJh:

I e S
Cr' =rl, kNN (r r T

1
5 (Tl = )
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puisque 7 = 3 (nombre d’occurence de chacun des traitements) et A\ =
1 (nombre d’apparitions de chaque paire de traitements au sein des
blocs). On en déduit que la matrice d’information du plan d’expérience
1 admet alors pour unique valeur propre non-nulle :

g ~ 2.333 d’ordre de multiplicité égal a 6.

Considérons maintenant le plan d’expérience numéro 2. Comme il est a
la fois équirépliqué et en blocs de méme taille sa matrice d’information
pour 'estimation des effets des traitements est encore donnée par :

1 1
<ﬁbwh—EMN:3h—§MN
D’apres la structure du plan la matrice de concordance est ici :

(321001 2]
2321001
1232100
NIN=[0123210
0012321
1001232
12100123

On en déduit que :

2-2/3-1/3 0 0-1/3-2/3]
—2/3  2-2/3-1/3 0 0-1/3
~1/3-2/3 2-2/3-1/3 0 0
cl = 0-1/3-2/3 2-2/3-1/3 0

0 0-1/3-2/3 2-2/3-1/3
~1/3 0 0-1/3-2/3 2-2/3
| -2/3-1/3 0 0-1/3-2/3 2]

Les valeurs propres non-nulles de cette matrice d’information sont
alors (utiliser un logiciel) :

1.317 d’ordre de multiplicité égal a 2,
2.786 d’ordre de multiplicité égal a 2,
2.897 d’ordre de multiplicité égal a 2.

En se limitant aux seules valeurs propres non-nulles (donc avec p = 6)
on obtient donc les efficacités suivantes pour les deux plans :

Pour la A-efficacité :

@1 () = 0420 < @y () = 0.488.

459
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Pour la D-efficacité :
@0 (CF) = 0420 < @y (CF) = 0.455.
Pour la E-efficacité :
o () = 0.429 < 0 () = 0.750.

Ceci montre bien que le plan d’expérience 1 est meilleur que le plan
d’expérience 2 concernant a la fois les criteres de A, D et E efficacité.
Ce résultat est logique puisque d’apres la proposition 10.28 le plan
d’expérience 1 est universellement optimal et cette optimalité entraine
l’optimalité relativement & tout critere de @,-efficacité pour 0 < p <
+00. Remarquons aussi que pour le plan 1 les A, D et E efficacités
sont identiques. Ceci est toujours le cas pour un plan d’expérience a
matrice d’information complétement symétrique.

10.7 Résumé

Divers types d’optimalités pour les plans d’expérience ont été présentées du-
rant ce chapitre. Il s’agit de :

1) 'optimalité uniforme, basée sur ’ordre de Loewner sur les matrices de dis-
persion ou d’information (relation tres forte mais parfois impossible & obtenir),

2) les A, D et E optimalités, basées respectivement sur la comparaison des
traces, déterminants et plus grande valeur propre de la matrice de dispersion,

3) la ®@4-optimalité, qui a pour but de généraliser les trois types d’optimalités
précédentes,

4) Poptimalité universelle, qui a pour but d’englober I’ensemble des critéres
de ®4-optimalité.

D’apres tous les résultats de ce chapitre les liens entre ces diverses optimalités
sont résumés dans la figure ci-dessous (par @,-optimalité ”uniforme” on en-
tend ici une @,-optimalité vérifiée pour tout 0 < g < +00).
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Optimalité uniforme |

4

Optimalité universelle |

4

@,-Optimalité ”uniforme” |

4 ¢ 4

A-optimalité || D-optimalité || E-optimalité |
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COMPLEMENTS
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10.8 (Compléments) Démonstrations

Commencgons par énoncer le lemme suivant, tres utile par la suite afin de
déterminer I’ensemble des valeurs propres des matrices d’information de la
forme *XpXp lorsqu’un modele polynomial du second degré est utilisé.

Lemme 10.A. Soit la matrice M carrée d’ordre (m+ 1) telle que (avec
a,b,ceR) :

Mol a'l,,
aly, (b—c¢) Iy, + cp,
Cette matrice admet alors un mazimum de trois valeurs propres distinctes

données explicitement par :

b—c

%<n+b+(m—1)c+\/(n—b—(m—l)c)2+4ma2>

1
3 <n+b+(m1)c \/(n—b— (m— 1)0)2+4ma2>
Leurs ordres de multiplicité sont de plus respectivement (m —1), 1 et 1.

Démonstration. Remarquons au préalable que la sous-matrice (b — ¢) Iy, +
cJp, est completement symétrique et admet donc tout contraste de R™ comme
vecteur propre. Ceci incite a chercher des vecteurs propres de la matrice M
sous la forme :

v = <% > € R™*! avec w contraste de R™ (i.e. 'I,,w = 0).
Il est alors clair que pour tout vecteur v de cette forme il vient :
Mvo=[b-c)Im+cIn]w=(b——c)w.

On en déduit (puisque 'espace vectoriel des contrastes de R™ a pour dimen-
sion m — 1) que la matrice M admet (b — ¢) pour valeur propre d’ordre au
moins égal & (m — 1). Déterminons maintenant les deux dernieres valeurs pro-
pres (notées A et u). La somme de toutes les valeurs propres de la matrice
M est égale a Trace (M) et leur produit vaut det(M) = |M|. En utilisant la
notion de complément de Schur (voir le lemme 5.B) il vient :

1
M| =n|(b—c) I+ cJm — —aQ]Imt]Im‘ =n
n

(b—c) I+ (c—%) Jm‘.

Le calcul du déterminant de la matrice M se ramene donc a celui d’une matrice
completement symétrique et donc (lemme 5.4) :

(M| =(b—c)" " [n(b—c)+m(nc—a?)].
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Les deux derniéres valeurs propres sont donc solutions du systéme suivant :

{(m—l)(b—c)—&-A—&-uzn—&-mb
b—0o)" " A =b—0)" " [nb—c)+m(nc—ad)]

Il s’agit donc ici, en d’autres termes, de déterminer deux réels A et p sachant
que leur somme S et leur produit P valent :

S=n+b+(m—1)c et P=n[b+(m—1)c —ma

On obtient bien alors les résultats énoncés dans la proposition pour A et p H

Proposition 10.6. Soit une classe © de plans d’expérience telle que pour tout
D € O la matrice du modéle Xp est de plein rang. Soit )\[Dl] > > )\[g] la suite
pleine décroissante des valeurs propres de la matrice *XpXp et Ap € RP le
vecteur contenant ces différentes valeurs dans le méme ordre. L’optimalité
uniforme d’un plan d’expérience D*€ @ se traduit par :

VDeO , Ap« = A\p.

Démonstration. Le plan D* est, par définition, uniformément optimal dans
la classe O si et seulement si (proposition 10.5) :

VDeoO, tXD*XD* > tXDXD.

D’apres la définition de 'ordre de Loewner ceci équivaut donc a dire que la
matrice (! Xp« Xp« — ' XpXp) est semi-définie positive, i.e. :

VDeO etV zcRP s ty (tXD*XD*) T > ty (tXDXD) x.
Utilisons maintenant le théoreme de représentation extrémale :

max 'z (tXDXD) T = )\%] et min ‘'z (tXDXD) T = )\[g].
trx=1 trr=1

Ceci montre donc bien que si D* est uniformément optimal dans @ alors
/\%]* > )\[Dl] et /\[Dp]* > )\%]. Ce type de raisonnement peut étre généralisé sans
difficulté & toutes les valeurs propres de la matrice ! Xp Xp via le théoreme de
représentation extrémale généralisé (voir I'ouvrage de Marshall et Olkin [63],
chapitre 20) et on montre alors que si D* est uniformément optimal dans ©
alors :

Vi=1,...p, AL >\ cest-a-dire Ap. =1 Ap B

Proposition 10.12. Un prolongement par continuité de la fonction @4 en 0
ainsi qu’en +oo permet d’obtenir les deux critéres suivants :
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a9\ " r 1
P (Cp) = (Hf:1)\[1>]> et oo (Cp) = o
D

Démonstration. Intéressons-nous, pour commencer, au prolongement de @,
en 0. On sait que pour ¢ > 0 il vient par définition :

q

(8, (Co)) = Il (a) v p(0) = 15 ()

La quantité ¢ (q) converge vers 1 lorsque ¢ tend vers 0. Il en résulte que :

w(q)—1=lzp: {(Ag)q—l}

p i=1

converge vers 0 lorsque ¢ tend vers 0. Comme un équivalent de In (1 4 ¢) au
voisinage de 0 est ¢ on peut donc en conclure a ce stade que :

» A
> di(q) avec 5 (q) = M

(2, (Co)) 3 ;

SRR

Considérons chacune des quantités é; (¢) . On a (avec f; (q) = ()Jg) _q) :

= S =IO gone v 5i(a) = £(0) ot £i(0) = (~mrE) (A)

q q—0

Il vient alors :

1

: Lm0 RN
lim [ln@q(cw)]—?;lnxp—ln( LoAR) T

Ceci permet bien de conclure. Considérons maintenant le prolongement de &,
en +o00. Partons de I’expression suivante :

» 1
1 A\ 4 ¢
oo = (15 08) )
i=1
Pour tout « > 0 il vient maintenant z = (xq)l/q

relation a ¢ = )\[Dp] :

et, en appliquant cette

1

oo~ ((8)) (O£

ou § € N* désigne l'ordre de multiplicité de la valeur propre /\[g]. Remarquons
]

maintenant que /\[Dp est la plus petite des valeurs propres de la matrice Cp,
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il en découle donc que pour i = 1,...,p— 6 on a /\[Dp}/)\%] < 1 ce qui implique
que :

OV AN . 5\ @
qEI—Poo ; )\[Di] = 0 donc qEI—Poo Ay @y (Cp) = qEI-Poo (;> =1.

En notant &, (Cp) =1/ )\%’] on vient donc de montrer que :

. P(Cp) _

Proposition 10.13. Tout critére de Py-efficacité (avec 0 < g < +00) est une
fonction croissante pour l'ordre de Leewner sur les matrices de dispersion,
donc :

Vp1 < Vpa = & (Vp1) < &4 (Vp2).

Démonstration. Considérons deux plans d’expérience Dy et Do associés aux
matrices de dispersion Vp; et Vpo telles que Vpy < Vpo. On sait que, de
maniere équivalente, il vient pour les matrices d’information Cp; > Cps.
Cette relation se traduit sur les valeurs propres de ces deux matrices par (voir
louvrage de Marshall et Olkin [63], chapitre 20) :

Vi=1,.,p, A1 >\l >0
N 1\~
Il en découle que > b, ()\[gl> <3P ()\%]2) et donc (V 0 < ¢ < +00):

Vp1 < Vpa = &4 (Cp1) < Py (Cpa) .

Cette relation est encore vérifiée, sans difficulté, lorsque g =0 et ¢ = 400 B

Proposition 10.14. Tout critére de $4-efficacité (avec 0 < g < +00) est
orthogonalement invariant, donc :

VPe O(Rp) R qu (CD) :qu (PCDtP).
Démonstration. Considérons une matrice P € M (p, p) qui soit orthogonale.

On a (pour 0 < ¢ < +00) :

1

$,(Cp) = (1_17 Trace CDq> " et donc @,(PCp'P) = (]1) Trace(PC’DtP)_q> ’

Or puisque P est une matrice orthogonale il vient *P = P~!. Il en résulte donc
que PCptP = PCpP~! et cette derniere expression n’est autre que 1’écriture
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de la matrice C'p dans une nouvelle base définie par la matrice de passage P.
La trace étant invariante par changement de base on en déduit alors que :

o, (PCp'P) = <l Trace (PC’DPl)q) ’
p

- <1-1) Trace (Op)q> "=, (Cp).

D’ou le résultat cherché. Concernant les cas associés a la D-efficacité (¢ = 0)
ainsi que la E-efficacité (¢ = +00) il est possible de tenir un raisonnement
identique car, de maniere plus générale, les valeurs propres sont invariantes
par changement de base B

Proposition 10.16. Soit une classe de plans d’expérience © et Cp la
matrice d’information associée au vecteur des paramétres estimés. Notons

/\%] > 2> /\[g] la suite pleine décroissante des wvaleurs propres de la ma-
trice Cp et wp 1, ..., wpp les éléments diagonaux de cette méme matrice. Soit
un critére d’efficacité de la forme suivante :

(Co) =Y 1 ()
=1

avec f fonction conveze sur ]0,+oo[. Supposons enfin qu’il existe un plan
d’expérience D* € O tel que :

P P
1) Cp+ = al, avec a #0, 2) Zf (wp~,;) = min Zf (wp,i) -
i=1 Ded i1

Le plan D* est alors ®-optimal dans la classe ©.

Démonstration. La matrice d’information Cp étant toujours symétrique
elle admet donc une base orthonormale de vecteurs propres. Désignons par P
la matrice de terme général p;; contenant ces vecteurs propres en colonne et
notons e;; = p?j. La base de vecteurs propres étant orthogonale on a ‘PP = I,
c’est-a-dire que :

P
Vi=1,..p,) ej=1
=1

De plus il vient par changement de base :

p
Cp = Pdiag ()\[,f],i =1, ...,p) tP donc wp,; = Z)\[geij.

j=1

Par hypothese f est une fonction convexe donc (Vi=1,...,p) :
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p P

flwp;)=f Z)‘[J €ij Z eij f (A%]) :

j=1 j=1

Remarquons que si toutes les valeurs propres )\%], e /\[g] sont égales alors il
y a une égalité dans la relation ci-dessus (cette condition est méme I'unique

possibilité d’égalité lorsque f est strictement convexe). Il vient alors :

zp:f (wp,i) < iieijf (A%]) = zp:f (A%]) ieij

En d’autres termes d’apres la forme du critere d’efficacité utilisé ici il vient :

vV Deo, zp:f(wp,i) <o (D)

i=1

avec égalité dans cette relation lorsque toutes les valeurs propres )\[Dl], e )\%’]
sont égales. Considérons maintenant un plan d’expérience D* € @ vérifiant
les hypotheses 1 et 2 de la proposition 10.16. L’hypothese 1 entraine que les

valeurs propres /\%], e /\[Dp] sont égales a la quantité a et donc :
P
> fwp-i) = (D).
i=1

D’apres 'hypothese 2 le plan D* minimise la quantité Y f (wp,;), donc :

P

p
V'DEQ7¢(CD*):Z]C wp*» Z le <¢(CD)
i=1 i=1

Ceci démontre bien que le plan d’expérience D* est ®-optimal dans la classe
on

Proposition 10.19. Soit une classe @ de plans d’expérience et, pour tout
D € O, Ap € RP le vecteur contenant la suite pleine décroissante des valeurs
propres de la matrice d’information Cp. Un plan d’expérience D* € © est
universellement optimal au sein de la classe © si et seulement si :

VD EB, Ap- < \p.

Démonstration. Considérons un plan d’expérience D* vérifiant la condition
de cette proposition. Il est prouvé dans 'ouvrage de Marshall et Olkin [63]
que :

Apx <Y Ap = 43(/\1)*) <o ()\D)
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si et seulement si @ est une application a la fois Schur-convexe et décroissante
par rapport a chacune de ses composantes. Or les critere considérés ici vérifient
bien ces deux contraintes (voir les hypotheses 2 et 3 de la définition 10.18)
donc le plan D* est bien universellement optimal. Réciproquement considérons
un plan d’expérience D* universellement optimal. Il vient pour tout critere @
vérifiant les hypotheses de la définition 10.18 :

VDE@,@(}\D*)Sé()\D)

Il est possible d’utiliser la famille de critere ®* (pour k = 1,...,n) tels que :

p

oM (Ap) = =3 AL,

i=k

P P

On obtient alors VD € ® Vk=1,...,n, Z)\[g* > Z)\[l;]. Ceci équivaut a
i=k i=k

dire que Ap+ =“ Ap, la proposition réciproque est démontrée Ml

Proposition 10.20. Soit une classe @ de plans d’expérience et Cp la matrice
d’information de D. Soit D* € © un plan d’expérience tel que :
1) Cp- est multiple de l'identité,
2) Trace (Cp-) = max Trace (Cp) .
DeoO
Le plan d’expérience D* est alors universellement optimal dans la classe

o.

Démonstration. Soit D* € © un plan d’expérience vérifiant cette propo-
sition. Montrons qu’il est universellement optimal dans © c’est-a-dire qu’il
vérifie la relation suivante d’apres la proposition 10.19 (avec A\p € RP le
vecteur contenant la suite pleine décroissante des valeurs propres de la ma-
trice d’information Cp) :

VDeO, Ap- =¥ Ap

P
@VDE@N/{zl,...,p,Z)\g*zz (1)
i=k i=k

Remarquons que lorsque k& = 1 les deux sommes intervenant ci-dessus ne sont
autre que les traces des matrices d’information C'p« et C'p. L’inégalité est donc
bien vérifiée dans ce cas la d’apres I’hypothese 2 de la proposition. Montrons
maintenant que le rajout de I'hypothese 1 permet de vérifier cette inégalité
pour toute valeur de k£ comprise entre 1 et p. Cette hypothese se traduit par :

JaeR* [/ Cp- =al,.
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La matrice d’information C'p« admet donc pour unique valeur propre a d’ou :
1)eVDeO® Vk=1,.,p, ZA (p+1—k)a.
L’hypothese 2 permet maintenant d’affirmer que :

P
VD €O, Trace (Cp) < Trace (Cp+) < Z)\Z] & Ap<a (2
i=1

avec donc Ap la moyenne des p valeurs propres de la matrice d’information
du plan D. Prouvons que (pour tout plan d’expérience D € @ et pour tout
k=1,..p):

p p P
SAD<p+1-k)Xp & pd A <(p+1-k) > )
=1

. @pi(_Ak[D’“]Jr...Jr/\%’]) <@+1-R(F +..+28)

&y <

avec X[Dk"”’p] moyenne des valeurs propres d’indices k,k + 1,....,p. Cette
derniere inégalité est toujours vraie puisque, par hypothese, Ap est constitué
par la suite pleine décroissante des valeurs propres de la matrice d’information
(donc )\%’] <..< /\%]). En utilisant maintenant la relation (2) il vient :

r
Vk=1,. ,p,Z)\ (p+1-k)Ap < (p+1—k)a=> Aj..

i=k

La relation (1) est donc toujours vérifiée, ceci démontre la proposition B

Proposition 10.21. Soit une classe @ de plans d’expérience et Cp la matrice
d’information de D telle que la somme de ses lignes ou de ses colonnes est
égale au vecteur nul. Soit D* € © un plan d’expérience tel que :
1) Cp- est complétement symétrique,
2) Trace (Cp+) = max Trace (Cp) .

Deo
Le plan d’expérience D* est alors universellement optimal dans la classe

e.

Démonstration. Soit D* € © un plan d’expérience vérifiant cette proposi-
tion. Tout comme pour la proposition 10.20 montrons qu’il est universellement
optimal dans © c’est-a-dire qu’il vérifie la relation suivante d’apres la propo-
sition 10.19 (avec Ap € RP le vecteur contenant la suite pleine décroissante
des valeurs propres de la matrice d’information Cp) :
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P P
VDEO Ap = Ap & VDEO Vh=1,....p, Y Ap. > Ap
i=k i=k
Lorsque k£ = 1 les deux sommes intervenant ci-dessus sont les traces des

matrices d’information Cp~ et Cp. L’inégalité est bien vérifiée dans ce cas
d’apres I’hypothese 2 de la proposition. Montrons que le rajout de ’hypothese
1 permet de vérifier cette inégalité pour toute valeur de k comprise entre 1 et
p. D’apres cette hypothese :

Ja,beR [ Cp- = al, + b,

La somme des colonnes de Cp« est de plus égale au vecteur nul. En d’autres
termes le vecteur I, est vecteur propre de C'p- associé a la valeur propre

Ap. =0, d’o :
Cpl,=0% (al, +bJ,), = (a+bp)[, =0 b= ——
On en déduit que la matrice d’information Cp« est donc telle que :
. 1
JaeR" [/ Cp- =aQ) avec Qp = I, — —J),.
p
La matrice d’information C'p« admet donc uniquement deux valeurs propres

distinctes qui sont :

a d’ordre de multiplicité (p — 1) (associée & tout contraste de RP),
0 d’ordre de multiplicité 1 (associée au vecteur propre L,).

Toute matrice d’information admettant ici une valeur propre nulle on a :

p—1
(1) eVDeO Yk=1.p-1, > N <@p-ka
i=k

L’hypothese 2 permet maintenant d’affirmer que :

P
VD e 6O, Trace (Cp) < Trace (Cp~) Z )a

p—1]

& Z/\[Z] <( )a & /\D <a (2)

avec donc X%’m’pil] la moyenne des (p — 1) valeurs propres non-nulles de la
matrice d’information du plan d’expérience D. Prouvons que (pour tout plan
d’expérience D € O et pour tout k=1,....p—1) :
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p—1 p—1 p—1
i ~[1,0p—1] 2 ;
SN <p-0x"" e - A <p-kY A
i=k i=k i=1
-1+ A < -k (M 4+ 4287
T VD Vs

Cette derniere égalité est toujours vraie puisque, par hypothese, A\p est
constitué par la suite pleine décroissante des valeurs propres de la matrice
d’information (donc )\[g] <. < )\[Dl]). En utilisant maintenant la relation (2)
il vient alors :

p—1 p—1
Vh=Top—1, 3 M <o-bXp"" < p-ka=3 AL
i=k i=k

La relation (1) est donc toujours vérifiée, ceci démontre la proposition B

Proposition 10.22. Soit un phénomeéne aléatoire dépendant de m facteurs
ajusté a laide d’un modéle linéaire d’ordre un et © la classe des plans en
n expériences distribuées dans le domaine expérimental B (y/m). Tout plan
d’expérience usuel en n expériences tel que :

So =N
est universellement optimal dans la classe ©.

Démonstration. Utilisons la proposition 10.20 afin de prouver qu'un tel plan
d’expérience (désigné dans la suite par D*) est bien universellement optimal au
sein de la classe ©. Il faut donc montrer dans un premier temps que la matrice
d’information Cp+ = ' Xp« Xp- est multiple de I'identité. Par définition des
plans d’expérience usuels pour modeles d’ordre un (définition 3.3) on a :

Cp+ = 'Xp-Xp- = diag (n, so, ..., $2) .

Imposer la contrainte s; = n entraine bien que la matrice d’information est
multiple de 'identité. Vérifions ensuite que :

Trace (Cp~) = max Trace (Cp) .
DeoO

Remarquons au préalable que si D* est un plan usuel avec so = n il vient
donc :

Trace (Cp+) = Trace (nl,) =np=n(m+1).
Soit maintenant un plan d’expérience D en n expériences inclues dans la
boule B (y/m). La matrice du modele associée & ce plan d’expérience est
Xp = [I, | D] donc sa matrice d’information est donnée par :
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t
CD_tXDXD_[ n H"D}

‘DL, *DD

Il en résulte que :
Trace (Cp) = n + Trace ("DD) .

On doit prouver ici que pour tout plan D en n expériences dans B (y/m) :
Trace (Cp) < Trace (Cp+) < Trace ("DD) < nm.

Or les éléments diagonaux de la matrice DD ne sont autres que les normes
7 . ) N . 2 2

au carré des colonnes de la matrice du plan D, c’est-a-dire Y, 251, ..., Y., Zom

(avec toujours z,; désignant la i-eme coordonnée du u-eéme point expérimental).

Donc : o
Trace (Cp) < Trace (Cp+) < ZZZ?“ < nm
i=lu=1

Remarquons alors que :

m n n m n
2
DS (z) =S el
=1lu=1 u=1 =1 u=1

On a supposé ici que les expériences du plan D sont dans la boule B (y/m)
donc :

m n
Vu=1,.,n, [z <m= ZZZ?“ < nm.

i=lu=1

La relation cherchée est donc bien prouvée B

Proposition 10.23. Soit un phénomeéne aléatoire dépendant de m facteurs
ajusté a Uaide d’un modéle linéaire a effets d’interactions d’ordre deuz et ©
la classe des plans en n expériences distribuées dans le domaine expérimental
B (y/m) . Tout plan d’expérience usuel en n expériences tel que :

S9g = S92 =M
est universellement optimal dans la classe ©.

Démonstration. Utilisons la proposition 10.20 afin de prouver qu'un tel
plan d’expérience (désigné dans la suite par D*) est bien universellement
optimal au sein de la classe ©. Vérifions dans un premier temps que la matrice
d’information Cp+ = *Xp«Xp- est multiple de I'identité. Par définition des
plans usuels pour modeles & effets d’interaction (définition 4.1) la matrice
d’information est :

t .
CD* = XD*XD* = dlag (n, 892, ...y 82,822, ..., 822) .
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Imposer la contrainte ss = S92 = n entraine bien que la matrice d’information
est multiple de l'identité. Vérifions ensuite que :

Trace (Cp~) = max Trace (Cp) .
Deo

Remarquons que si D* est un plan usuel avec sy = s95 = n il vient donc :
Trace (Cp~) = Trace (nl,) = np avec ici p = 1 + m + CZ,.

Soit maintenant un plan D en n expériences inclues dans la boule B (y/m).
La matrice du modele associée & ce plan est Xp = [I,, | D | D] donc :

n  ,D 'I,D;
Cp='XpXp=|1t'Dl, *DD 'DD;
tDI, tD;D tD;D;

Il en résulte que :
Trace (Cp) = n + Trace (tDD) + Trace (tDIDI) .

On doit prouver que pour tout plan D en n expériences inclues dans B (y/m)
il vient :

Trace (Cp) < Trace (Cp+) < Trace ("DD) + Trace ("D;D;) <n(p—1).

¢ 2
Les éléments diagonaux de la matrice DD sont encore Y 221, ...,>, 22,

(voir la démonstration de la proposition 10.22) et de méme les éléments di-
agonaux de la matrice 'D;Dj sont les normes au carré des colonnes de la
matrice Dy c’est-a-dire les Y =z ; pour tout ¢ < j. Il en résulte que :

u uzu

Trace (Cp) < Trace (Cp+) <

Zsz + ZZZZ?”ZZJ <n(p—1)=nm+nC2.

i=lu=1 i<j wu=l1l

Il a déja été prouvé a la proposition 10.22 que I'on a toujours :

>3 e < )

Montrons maintenant que pour tout plan d’expérience dans B (y/m) on a :

ZZ ( zo; u]) <nC2. (2)
u=1

1<j

Considérons au préalable le probleme d’optimisation sous contraintes suivant
(pour u =1,...,n fixé) :
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m
2
(P) : Maximiser E E 2070, avee E Zo < m.
i=1

i<J

Il est clair ici, vu la forme de la fonction a optimiser, que le maximum sera at-
teint lorsque les diverses coordonnées z,; des points z, seront les plus grandes
possibles (en valeur absolue), c’est-a-dire lorsque les points z,, seront situés a
la surface de la boule B (y/m). Il est donc possible de remplacer la contrainte
S22, < m par la contrainte Y 22, = m. En utilisant la technique des mul-
tiplicateurs de Lagrange on vérifie sans peine que toutes les coordonnées z,;
(i = 1,...,m) doivent donc étre égales en valeur absolue pour atteindre cet
objectif. La contrainte imposée est de plus de rester a la surface de la boule
B (y/m) donc on considére maintenant des points z, tels que :

Vi=1,...m, 2y = *1.

On montre sans difficulté que tout point critique de cette forme maximise bien
la fonction étudiée a la surface de la boule B (y/m) et la valeur du maximum
est égale & C?, (c’est-d-dire au nombre de termes intervenant dans la dou-
ble somme). On en déduit que pour tout plan d’expérience dans le domaine

B (y/m) il vient :

> (Z Zus w> Z SN2k < ZR:O; — (2,

i<j u=1 1<J u=1

La relation (2) est donc prouvée. En combinant maintenant les relations (1)
et (2) on en déduit que pour tout plan D en n expériences inclues dans la
boule B (y/m) on a bien :

Trace (Cp) < Trace (Cp~)

La proposition est démontrée B

Proposition 10.24. Soit un phénoméne aléatoire dépendant de m facteurs
ajusté a laide d’un modele linéaire d’ordre deuzx. Pour tout plan d’expé
rience usuel on a les résultats suivants pour ’estimation de tous les parame-
tres du modéle :

1) La A-efficacité du plan d’expérience est donnée par :

1fm=1) m m@m-1) ntsit+(m—1)s
431(01)):— g-}-—_&_ ( )+ 4 ( )22
P LS4 — S22 So 2822 Al

en notant Ay = n (s4 + (m — 1) so2) — ms3.

2) La D-efficacité du plan d’expérience est donnée par :
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—1/p
—1 —1)/2
430 (O'D) = ((54 — 522)771 572715727;(771 )/ Al)

3) La E-efficacité du plan d’expérience est donnée par :

@mﬂh)—mm<—J—— L1 2)

s T I
S4— S22 S2 S22 Ao

en notant Ay =nsy + (m — 1) s92 — \/(n —s4—(m—1) 322)2 + 4dms3.

Démonstration. Considérons un plan usuel D. En écrivant le vecteur des
parametres inconnus ainsi que la matrice du modele sous la forme '8 =
(Bo | 'Bg | 'BL | '1B1) et X = [I, | Do | Dy, | Dy] la matrice d’information rel-
ative a l’estimation de ( est donnée par :

n 591, 0 0

Cr — sol,, (84 — 822) I, + s22dy 0O 0

P71 0 0 solm 0
0 0 0 soalmim-1)/2

La structure diagonale par blocs de cette matrice permet d’affirmer qu’elle
admet pour valeurs propres :

1) so d’ordre de multiplicité m,
2) s99 d’ordre de multiplicité m (m — 1) /2.

Les autres valeurs propres sont maintenant celles du premier bloc et sont
données d’apres le lemme 10.A par :

3) (s4 — s22) d’ordre de multiplicité (m — 1),
4) (A + \/E) /2 d’ordre de multiplicité 1,

5) (A - \/E) /2 d’ordre de multiplicité 1 avec :

A=n+s4+ (m—1)sy et B=(n—s4— (m —1)s)>+4ms3.

Les valeurs de @1 (Cp), @y (Cp) et P (Cp) données dans la proposition
sont obtenues a partir des expressions des criteres d’efficacité en fonction des
valeurs propres de la matrice d’information (voir les paragraphes 10.4.2,10.4.3
et 10.4.4) B

Proposition 10.25. Soit un phénoméne aléatoire en m facteurs, un plan
d’expérience D et O (ky,...,ky) la classe des plans usuels en b blocs, de tailles
respectives ki, ..., ky, obtenus a partir du plan D. S’il existe dans cette classe
un plan bloqué orthogonalement alors il est D-optimal dans la classe
O (k1,.... k).
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Démonstration. Considérons un plan d’expérience usuel obtenu a partir de
la décomposition du plan initial D en b blocs constitués par respectivement
k1, ..., ky expériences. Il a déja été prouvé au chapitre 6 que le déterminant de
la matrice des moments généralisée est donné par :

Det (*X X))

m(m—1) _
<Hkl> $0800 2 (84— 822)™" ey + (m—1) 899 — mZ?:l kyp?

Cherchons des conditions sur les blocs permettant d’obtenir la D-optimalité,
c’est a-dire maximisant la valeur de Det (*X X)) . Remarquons que :

m(m—1)

C=C(D) =555 "

(84— 822)™

ne dépend que de la géométrie du plan d’expérience initial D. Cette quantité
ne dépend donc pas de la fagcon dont les blocs sont construits. L’objectif est
alors de maximiser :

Det (‘X (Hh)

Déterminons des conditions sur les divers moments par blocs pq, ..., tp per-
mettant d’atteindre cet objectif. Prenons garde au fait que, par définition,
la quantitié p; dépend de la taille k; du bloc considéré. Afin d’utiliser des
variables indépendantes des k; notons :

b
Sa+ (m—1)s2 —mzkwf
=1

Vi=1,..b,0=km= > 2.

bloc 1

La quantité a maximiser devient :

b o2
Det ( (Hkl) sS4+ —1) 892 — mz (]i—ll
1=1

Au sein de la classe O (kq, ..., ky) la valeur de (][] k;) est constante et on a
toujours C' > 0 (voir le paragraphe 6.2.3). On en déduit que l'objectif se
réduit a :

b b
Minimiser f (41, ..., 0 E —l sous la contrainte E 0 =8
ki
=1 =1

(la contrainte découle des relations entre moments et moments par blocs d’un
plan d’expérience). La méthode des multiplicateurs de Lagrange conduit & la
conclusion que le minimum de cette fonction est obtenu si et seulement si :
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h_%_ %
e

Par définition de la quantité §; la plus grande valeur possible de Det (* X X)
est donc obtenue au sein de la classe © (k1, ..., kp) si et seulement si :

M1 = U2 = ... = Up

c’est a dire si et seulement si le plan d’expérience est bloqué orthogonalement
|

Proposition 10.26. Soit un phénoméne aléatoire en m facteurs, un plan
d’expérience D et @ la classe des plans usuels en b blocs obtenus a partir du
plan D. S’il existe dans cette classe un plan bloqué orthogonalement en
blocs de méme taille alors il est D-optimal dans la classe ©.

Démonstration. Considérons cette fois tous les blocages possibles en b blocs
(de tailles quelconques) obtenus & partir du plan d’expérience initial D. On
vient de voir précédemment que lorsque les tailles ki, ..., k, des blocs sont
fixées il faut imposer a la configuration d’étre bloquée orthogonalement afin de
maximiser Det (*X X)) par rapport aux moments par blocs et il vient (puisque

p1 = ... = = s2/n)

b 2
Det (tXX) =C (Hk:l> {54 + (m—1)s2 — m%} )
1=1

La quantité obtenue est alors maximale si et seulement si le probleme
d’optimisation suivant est résolu :

b b
Maximiser g (k1, ..., kp) = Hkl sous la contrainte Z ki =n.
=1 =1

La méthode des multiplicateurs de Langrange conduit au résultat classique
disant que le maximum est atteint si et seulement si :

kl :kQZZkb:(n/b)

Ceci démontre bien la proposition H

Proposition 10.27. Soit un phénomeéne aléatoire en m facteurs ajusté a
laide d’un modele linéaire d’ordre deux en blocs, © une classe de plans
d’expérience usuels et O (k1,...,kp) la classe de ces mémes plans décomposés
en plans usuels en blocs de tailles respectives ki,...,ky,. Si D est un plan
d’expérience D-optimal dans © pour le cas sans bloc et si D peut étre bloqué
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orthogonalement alors le plan d’expérience D est encore D-optimal dans
la classe O (k1, ..., ky) pour le modéle a effets de blocs.

Démonstration. Considérons un plan d’expérience usuel D qui est D-optimal
dans la classe des plans (sans bloc) @. On peut donc dire que D maximise au
sein de la classe @ la quantité :

Det (X X)

2 m(m—1)
mm_1) —1
=nC {34 4+ (m—1)s22 — =22 | avec C = s8"s5y (84— 522)"

Soit maintenant D’ un plan d’expérience de @ décomposé en b blocs de tailles
k1, ..., ky. D’apres les résultats obtenus dans la démonstration de la proposition
10.25 on sait que si D’ est bloqué orthogonalement il vient (en désignant par
X* la matrice du modele ainsi obtenue) :

Det ( <Hkl> |:84 + 1) S99 — mTS%

Il a été prouvé dans la démonstration de la proposition 10.25 qu’une telle
valeur est maximale, uniquement atteinte par les configurations bloquées or-
thogonalement. On en déduit alors que pour toute configuration quelconque
de la classe © (kq, ..., kp) on aura :

b ms3
t vk vk _ _ 2
Det ( X*X ) <C <Hkl> {34 + (m—1) 822 -

=1

En faisant le lien entre Defficacité pour le modele classique et Defficacité pour
le modele a effets de blocs on obtient immédiatement :

b

Det (*X*X*) < % <H kl> Det (!X X)

=1

avec égalité si et seulement si le plan d’expérience est bloqué orthogonalement.
L’utilisation d’un plan d’expérience bloqué orthogonalement obtenu a partir
d’un plan initial D D-optimal (i.e. maximisant Det (*X X)) permet donc bien
de maximiser la valeur de Det (*X*X*) au sein de la classe © (k1, ..., k) B

Proposition 10.28. Soit un phénomeéne aléatoire faisant intervenir un fac-
teur qualitatif a h modalités analysé a 'aide d’un plan d’expérience en b blocs.
Soit O la classe des plans d’expérience binaires en blocs de méme taille k pour
l’estimation des effets des traitements. Tout plan d’expérience en blocs in-
complets équilibrés (BIBD) est alors universellement optimal dans la
classe 6.
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Démonstration. Pour 'estimation des divers effets des traitements il a été
montré au chapitre 9 que la matrice d’information de tout plan d’expérience
D €6 est :

CT = tXTP(Im B)J.XT

avec X7 matrice des indicatrices des traitements et Py, ). matrice du pro-

jecteur orthogonal sur (Im B)J'. Une telle matrice d’information ne peut ja-
mais étre diagonale (car la somme de ses colonnes est toujours égale au vecteur
nul). Utilisons alors la proposition 10.21 afin de prouver qu'un BIBD est bien
universellement optimal au sein de la classe ©. Il faut donc montrer dans
un premier temps que la matrice d’information du BIBD est complétement
symétrique. Il a été prouvé au chapitre 9 que pour tout plan d’expérience
de type BIBD (h,b,k,r,\) la matrice d’information Cr est complétement
symétrique avec de maniere explicite :

rooA A
CT—<T—E+E)I}I—EJ;1.

Vérifions ensuite que la trace de Cr est maximale dans @ pour tout BIBD.
Considérons ici un plan d’expérience binaire quelconque en b blocs de taille
k pour h traitements. La matrice d’information pour l’estimation des traite-
ments est donnée pour tout plan d’expérience de la classe © par :

1
Cr = 'Xp Py )2 X1 = 'XgXp — o ('XrB) ('BXr).

On sait que la matrice X7 B n’est autre que la matrice d’incidence (notée
classiquement N) donc :

1
Cr="'XrXr — ENtN.
Or (voir le paragraphe 9.2.2) les termes diagonaux de la matrice ‘ X7 X1 ainsi
que de la matrice de concordance N*N sont pour tout plan binaire 71, ..., 7,
avec r; nombre d’occurences du traitement ¢ dans le plan d’expérience. Il vient
donc pour tout plan de la classe © :

h

Trace (Cr) :Zrl k;rl_n<%>'

i=1

Cette trace est constante sur la classe ©, la trace de la matrice d’information
de tout BIBD est bien maximale dans la classe © B
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A

Plans factoriels et représentation linéaire des
groupes

Cette annexe est consacrée a 'interprétation algébrique des fractions régulieres
de plans d’expérience factoriels. Ceci permet une bonne compréhension des
principaux résultats énoncés dans les chapitres 3, 4, 5 et 6 relatifs aux plans
d’expérience pour facteurs quantitatifs ainsi qu’au chapitre 8 pour des facteur
qualitatifs. L’objectif est de présenter ici les bases de cette théorie ainsi que les
principaux résultats. Pour une vision plus compléete on pourra se référer aux
ouvrages de Serre [90] ou Rauch [79] concernant la théorie de représentation
linéaire des groupes finis ainsi qu’a louvrage de Collombier [19] pour une
application plus détaillée de cette théorie aux fractions de plans factoriels.

A.1 Représentation linéaire des groupes finis

Considérons un espace vectoriel V', de dimension n, sur le corps des nombres
complexes C et un groupe fini G muni d’une loi de composition interne notée
multiplicativement. On note dans la suite |G| le cardinal du groupe G (i.e.
le nombre de ses éléments). Rappelons que GL (V') désigne le groupe linéaire
sur V, c’est-a-dire le groupe constitué par les isomorphismes de V dans V
(la loi interne étant la composition des applications notée o). Une base de V/
étant fixée, chaque élément de GL (V) peut étre représenté par une matrice.
La représentation linéaire des groupes consiste a identifier un groupe fini & un
groupe de matrices selon la définition suivante :

Définition A.1. On appelle représentation linéaire d’un groupe fini G
tout morphisme p du groupe G dans le groupe GL (V). En d’autres termes :

p:G—GL(V) etVg,heG,p(gh)=p(g)op(h).

L’espace vectoriel V' est appelé espace de la représentation, sa dimension
est le degré de la représentation.

On note dans la suite p, au lieu de p(g) afin de ne pas alourdir les notations.
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Définition A.2. Soient p et p' deux représentations linéaires du groupe G
dans les espaces vectoriels V et V'. On dit qu’elles sont isomorphes s’il
existe un isomorphisme linéaire T de V dans V' vérifiant :

VgeG , pg=7top or.

Matriciellement, cette définition dit que si deux représentations sont isomor-
phes alors il existe une matrice de passage permettant de ramener une des deux
représentations a l'autre par simple changement de base. Deux représentations
isomorphes sont donc identifiables de maniére naturelle (et ont méme degré).
Etant donné une représentation la question se pose alors de savoir si elle ad-
met des sous-représentations (i.e. des représentations obtenues & partir d’un
sous-espace vectoriel de V). Ceci conduit a la notion suivante :

Définition A.3. Soit p : G — GL (V) une représentation linéaire du groupe
fini G. On dit qu’elle est irréductible si aucun sous-espace vectoriel propre
de V n’est stable par G.

On montre ensuite qu’il n’est pas nécessaire de connaitre tous les p, afin de
caractériser une représentation. En effet, la connaissance de la trace de ces
isomorphismes est suffisante. Ceci amene la définition des caracteres d’une
représentation :

Définition A.4. Soit p : G — GL (V) une représentation linéaire du groupe
fini G. On appelle caractere de cette représentation tout vecteur de CICI,
noté x, (ou simplement x), tel que ses composantes sont données par :

VgeG, (xp)(g) = Trace(pg) .

Remarquons que quelle que soit la représentation p la composante associée a
I’élément neutre 1 du groupe G vérifie (puisque p est un morphisme) :

(Xp) (1) =T7 (p1) =Tr (Idy) =

. 7z . . / A .
Considérons maintenant deux caracteres x et x d’un méme groupe fini. Leur
produit scalaire est alors défini de la manieére naturelle suivante :

= /

Les relations ci-dessous, dites d’orthogonalité des caracteres, sont toujours
vérifiées (voir Pouvrage de Serres [90] pour une démonstration) :
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Proposition A.5. Pour tout groupe G fini on peut dire que :

1) si x est le caractére d’une représentation irréductible alors :

xlx) =1

2) les caractéres x et x' de deux représentations irréductibles non-
isomorphes sont orthogonauz:

(xIx)=0.

On manipule souvent dans la suite des groupes obtenus comme produit
cartésien de deux ou plusieurs autres groupes. Rappelons que si G; et G2 sont
deux groupes finis, de cardinaux respectifs |G| et |G2|, munis d’une méme loi
de composition interne (notée multiplicativement) alors le groupe produit
(direct) de G et G2 est 'ensemble :

01X02:{<gl> /gleGl etQQEGQ}
2

muni du produit d’Hadamard comme loi de composition interne :

g1 hy gi1h1
Vgi,h1 € Gy etV go,ho € Gy, = .
g1, 1€ g2, 2 2 <g2>®(h2> (92h2>

Remarquons que (G x G2,®) est un groupe fini d’ordre |G1].|Gz]|. Il sera
souvent utile de déterminer de maniere simple les caracteres de tels groupes.
Ceci est possible en utilisant 'opérateur de produit tensoriel :

Définition A.6. Soient deux vecteurs u € R™ et v € R™. On appelle produit
tensoriel de u et v le vecteur de R™ noté u ® v défini par :

VU U

Remarque. Attention au fait que la définition proposée ici ne correspond
pas a l'ordre usuel des éléments du produit tensoriel de deux vecteurs. En
effet on désigne classiquement par u ® v le vecteur dont les éléments sont
ULV, U2, ..., U,v. En d’autres termes, ce que nous écrivons ici u® v correspond
a v ® u dans d’autres ouvrages. On utilisera cependant cette convention car
elle permet d’avoir des résultats tres faciles a écrire dans la suite.

Considérons maintenant deux groupes finis G; et G2 associés a deux
représentations linéaires p! et p? dont les caracteres sont connus. Le probleme
se pose d’en déduire les caracteres du groupe produit G; x G3. On montre
que :
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Proposition A.7. Si x1 et x2 sont deux caractéres des groupes Gi et Gg
alors x1 ® x2 est un caractere du groupe produit G, x Ga.

Terminons enfin par les propriétés spécifiques des groupes commutatifs
(voir aussi le paragraphe 13 de 'ouvrage de Hall [47]) :

Proposition A.8. Soit un groupe abélien fini G d’ordre h. Ce groupe admet h
représentations irréductibles (non-isomorphes) de degré un et ’ensemble
des caractéres constitue un groupe abélien fini (pour le produit d’Hadamard),
noté G*, isomorphe a G. Le groupe G* est appelé dual de G.

A.2 Application aux plans a deux niveaux

A.2.1 Cas des plans factoriels complets

Considérons un plan d’expérience factoriel complet a m facteurs (sans aucune
réplications centrales) et deux niveaux par facteur. Comme cela a été montré
au chapitre 3 il est donc constitué par les expériences situées aux sommets
du cube [—1,1]™, c’est-a-dire I'ensemble des points {—1,1}". Il est possi-
ble de munir cet ensemble de la loi de composition interne qu’est le produit
d’Hadamard de R™. Cette loi est associative et commutative, elle admet un
élément neutre (I) et tout élément de {—1,1}"™ est son propre symétrique.
D’ou :

Proposition A.9. Tout plan factoriel complet a m facteurs peut étre identifié
au groupe abélien ({-1,1}"",©).

Déterminons maintenant les caracteres du groupe ({—1,1}",®). Comme il
s’agit d’un groupe produit il suffit donc de connaitre uniquement les caracteéres
du groupe ({—1, 1}, x) obtenu lorsque m = 1. Ce groupe étant abélien d’ordre
2 admet deux représentations irréductibles et donc deux caracteres distincts.
Comme on a toujours y (1) = 1 la table des caractéres de ce groupe est obtenue
immédiatement par :

élémt. du groupe | caractere yo | caractere xi
-1 1 -1
1 1 1

Ecrivons maintenant les produits tensoriels de xo avec x1. On obtient alors
la matrice suivante qui n’est autre que la matrice du plan factoriel complet a
deux facteurs écrite selon 'ordre de Yates :

11
1-1
[a®@xoxo®@xa]=1| | |

1 1
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De méme, écrivons maintenant tous les produits tensoriels & trois vecteurs ne
faisant intervenir qu’une fois x;. Ceci donne la matrice ci-dessous qui est cette
fois la matrice du plan factoriel complet & trois facteurs :

[—1 -1 -1

1-1-1

1 1-1

1 1-1

(X1 @X0@X0o X0 ®X1® X0 X0 @Xo@X1] = | | |
1-1 1

101 1

111

Ce raisonnement est généralisable sans difficulté pour m facteurs et on obtient
le résultat suivant avec 6;; le symbole de Kronecker (i.e. d;; = 1sii = j et
d;; = 0 sinon) :

Proposition A.10. Soit un plan d’expérience factoriel complet a m facteurs
et D la matrice de ce plan écrite selon l’ordre de Yates. La colonne de D
associée a leffet linéaire f3; est aussi le caracteére du groupe ({—1,1}",®)

donné par :
m
®X51'k
k=1

On vient donc de voir qu’il est possible d’identifier les m colonnes de la
matrice d’un plan factoriel complet & m caractéres du groupe ({—1,1}",®).
Montrons maintenant qu’il en est de méme pour les colonnes des effets
d’interactions. Ces colonnes sont obtenues en réalisant le produit d’Hadamard
des colonnes des effets linéaires intervenant dans 'interaction considérée. Util-
isons le résultat suivant (évident & démontrer) liant les opérateurs produit
d’Hadamard et produit tensoriel :

Lemme A.11. Soient a,b,c et d quatre vecteurs de R™. Alors :
(a®b)®(c®d) =(adc)®(bOd).

Reprenons maintenant l’exemple du plan factoriel complet a 3 facteurs
et déterminons la colonne de la matrice X du modele associée a effet
d’interaction (2. Elle est obtenue en réalisant le produit d’Hadamard des
colonnes associées a 31 et B2 ce qui donne d’apres le lemme A.11 :

(X1 ® X0 ® X0) © (Xo ® x1 ®Xx0) = (X1 @ X0) ® (X0 ® x1) ® (X0 ® Xo) -

On a les regles de calculs suivantes (d’apres la définition de xo et x1) :

Xo©Xo=Xo,X1O©X1=Xoet xXo®x1=x1
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donc :
(X1 ®x0® X0) © (X0 ® X1 ®X0) = X1 ® X1 ® Xo-

On vérifie de méme que :

la colonne associée a (313 est x1 ® X0 ® X1,
la colonne associée & (323 est xo ® x1 ® X1,
la colonne associée a (3123 est x1 ® x1 @ X1-

En d’autres termes si A est 'ensemble des indices utilisés pour I'interaction
étudiée (par exemple A = {1,2} pour (12), la colonne correspondante dans
la matrice du modele est obtenue par produit tensoriel des x; ou i = 1 si ¢
est dans A et ¢ = 0 sinon. Ce résultat est généralisable sans difficulté et on
obtient alors la proposition suivante étendant la proposition A.10 aux effets
d’interactions :

Proposition A.12. Considérons un plan d’expérience factoriel complet a m
facteurs de matrice D écrite selon l'ordre de Yates. Soit une interaction a k
facteurs et A ’ensemble des k indices intervenant dans cette interaction. La
colonne associée a cette interaction dans la matrice X du modéle est aussi le
caractére du groupe ({—1,1}",®) donné par :

m

®XHA(k)

k=1

Tout ceci permet alors d’énoncer le résultat principal suivant :

Proposition A.13. Considérons un plan d’expérience factoriel complet a
m facteurs et soit X la matrice du modéle contenant toutes les interactions
possibles. On peut alors affirmer que :

1) le carré de la norme de toute colonne est égale a 2™,

2) deux colonnes distinctes de X sont toujours orthogonales.

Démonstration. Les résultats énoncés ici sont la conséquence directe des
relations d’orthogonalité des caracteres énoncées a la proposition A.5. En
effet, il suffit de remarquer que si X est la matrice du modele contenant
toutes les interactions possibles (d’ordre 2, 3 ... m) alors elle est constituée
par les colonnes suivantes :

m
1) ®XO = Ilom associée a l'effet moyen général [y,

k=1
m

2) ®x5ik associées aux m effets linéaires 3;,

k=1
m

3) ®X]IA(k) associées & toutes les interactions possibles f3;;, Bk, ete...
k=1
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On obtient donc ainsi 2™ vecteurs distincts et chacun d’eux est un caractere du
groupe ({—1,1}"™,®). Ce groupe ayant pour cardinal 2™ il s’agit donc de tous
les caracteres de ce groupe et la proposition A.13 découle alors directement
des relations d’orthogonalité des caracteres (proposition A.5) W

| Application 1 |

Autre démonstration de la proposition 3.7 :

” Tout plan factoriel complet est un plan d’expérience usuel pour un modéle
d’ordre un, vérifiant de plus so = 2.

On peut dire que :

1) la colonne associée a Veffet linéaire §; (i = 1,...,m) est orthogonale & la
colonne associée a By donc [i] = 0,

2) les colonnes associées aux effets linéaires §; et 3; (4,5 = 1,...,m avec i # j)
sont orthogonales donc [ij] = 0,

3) la colonne associée a leffet linéaire §; (i = 1,...,m) a une norme carrée
égale a 2™ donc n [12] =2™.

Tout plan factoriel complet est donc bien un plan d’expérience usuel pour un
modele d’ordre un (rajouter d’éventuelles réplications centrales ne change en
rien les résultats précédents).

Application 2 |

Autre démonstration de la proposition 3.10 :

” Les colonnes de D, matrice d’un plan factoriel complet, sont des con-
trastes non-unitaires de {—1, 1}2 et le produit d’Hadamard de k colonnes

om»

distinctes de D est aussi un contraste non-unitaire de {—1,1}" .
On peut dire que :

1) la colonne associée a Veffet linéaire §; (i = 1,...,m) est orthogonale a la
colonne associée & By donc [i] = 0. En d’autres termes, la colonne associée a

B; est bien un contraste non-unitaire de {—1, 1}2m .

2) considérons la colonne de X obtenue en réalisant le produit d’Hadamard de
k colonnes distinctes de D. Cette colonne est donc associée a une interaction
d’ordre k et la proposition A.13 assure qu’elle est en particulier orthogonale
a la colonne associée a [y, il s’agit donc bien d’un contraste non-unitaire de
{(-1,1}*".
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| Application 3 |

Autre démonstration de la proposition 4.4 :

” Tout plan factoriel complet est un plan d’expérience usuel pour un modéle
a effets d’interactions d’ordre deuzx, vérifiant de plus sg = 2™ et S99 = 2™7.

On peut dire que :

1) concernant les moments impairs, on a 'orthogonalité entre les couples de
colonnes associés aux effets suivants (i,7,k,l =1,...,maveci < j <k <I):

Bi et By donc [i] =0, Bi; et B donc [ijk] =0,
Bij et Bo donc [ij] =0, B et By donc ink] =0,
Bij et B; donc [izj] =0, Bi; et B donc [ijkl] = 0.

Ceci montre bien que tous les moments impairs sont nuls jusqu’a 'ordre 4.

2) la colonne associée a leffet linéaire 3; (i = 1,...,m) ainsi que la colonne
associée a leffet d’interaction §;; (i,7 = 1,...,m avec ¢ < j) ont une norme
carrée égale a 2™ donc :

n [i®] = 2™ et n [i%5%] = 2.

Tout plan factoriel complet est donc bien un plan d’expérience usuel pour un
modele & effets d’interactions d’ordre deux (rajouter d’éventuelles réplications
centrales ne change en rien les résultats précédents).

A.2.2 Cas des fractions réguliéres

Le paragraphe précédent a montré tout I'intérét de la théorie de représentation
linéaire des groupes finis afin de formaliser la construction ainsi que les princi-
pales propriétés des plans factoriels complets. Etendons maintenant ceci aux
fractions régulieres de plans factoriels. Commencons tout d’abord par donner
la définition algébrique des fractions régulieres.

Définition A.14. Soit un plan factoriel complet a m facteurs identifié au
groupe abélien G = {—1,1}" muni du produit d’Hadamard. On appelle frac-
tion réguliere (principale) tout plan d’expérience associé a un sous-groupe
S de G.

Illustrons ceci par un exemple pour m = 3 facteurs. Le tableau ci-dessous
est la table des caractéres du groupe G = {—1, 1}3 c’est-a-dire la matrice du
modele contenant toutes les interactions (on note, pour des raisons de place,
Xijk au lieu de x; ® x; ® xx). Chaque élément du groupe G est identifié aux
trois valeurs (en gras dans le tableau) prises par X100, Xo10 €t Xoo01 (i.e. & ses
coordonnées dans le plan d’expérience d’apres la proposition A.10).
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Elément | xoo0 | X100 | Xo10 | Xoor | X110 | X101 | Xo11 | X111
(-1,-1,-1) 1 -1 -1 -1 1 1 1 -1
(1,-1,-1) 1 1| -1| -1| —-1| -1 1 1
(-1,1,-1) 1| —1 1| -1 -1 1) —1 1
(1 1, 1) 1 1 1 -1 1 -1 -1 -
(-1,-1,1) 1| -1 -1 1 1 -1] -1 1
(1 11) 1 1 -1 1 -1 1 -1 -1
(1 1) 1 -1 1 1 -1 -1 1 -1
(1,1,1) 1 1 1 1 1 1 1 1

Considérons alors non plus le groupe G mais le sous-groupe S constitué des
éléments suivants :

sS={@1,1,1),(1,-1,-1),(-1,1,-1),(-1,-1,1)}.

La fraction réguliere du plan factoriel complet associée a S est alors obtenue
en ne conservant que les expériences (i.e. les lignes du tableau) associées aux
éléments de S. Les expériences retenues figurent dans la table en caracteres de
grande taille. En désignant par G* le dual du groupe G (voir la proposition
A.8) on définit maintenant 'orthogonal du groupe S dans G* par (voir Lang
[62]) :

Définition A.15. Soit un sous-groupe S de G = {—1,1}". On appelle or-
thogonal de S (dans G*) ’ensemble, noté S+, des caractéres x de G* tels
que x (9) = 1 pour tout g € S. Donc :

t={xeG /geS= x(9) =1}.

Les éléments de S+ sont appelés contrastes de définition de la fraction
réguliere utilisée.

On a les propriétés suivantes (voir Lang [62]) :

Proposition A.16. Soit S un sous-groupe de G = {—1,1}" et S+ l’ortho-
gonal de S dans G*. Alors, S+ est un sous-groupe de G* et le nombre
d’éléments de S+ vérifie :

card (G)
card (S1) = ———==.
(57) card (5)
Remarque. La notion de contraste de définition présentée en A.15 est bien
identique & celle introduite au chapitre 3 (définition 3.12). En effet, le groupe
S+ ou le groupe des contrastes de définition G sont identiques (seules les
notations different). Pour I'exemple présenté ici on a :

S* = {xo00, x111} et G ={I,123}.
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La colonne associée & Xxg00 = X0 ® Xo ® Xo correspond bien a l’effet moyen
général du modele et la colonne associée a x111 = x1 ® x1 ® X1 correspond a
I'interaction 123 entre les trois facteurs étudiés.

La proposition A.16 permet de démontrer le résultat suivant (relation 1 de la
proposition 3.15) :

Proposition A.17. Soit un plan d’expérience factoriel complet a m facteurs
et une fraction réguliére obtenue a l'aide de q générateurs. Une telle fraction
réguliére est constituée par 2™~ ¢ expériences.

Démonstration. Le plan factoriel complet peut étre identifié au groupe G =
{—1,1}"" ayant pour cardinal 2™. De méme, il a été prouvé (voir la proposition
3.13) que si une fraction réguliere est définie par ¢ générateurs alors le groupe
G des contrastes de définition (ou de maniere identique le groupe S*) est un
groupe fini de cardinal 29. Le résultat est alors immédiat d’apres la proposition
A.16 puisque :

card (G)
card (S1)

On a maintenant le résultat principal suivant permettant d’étendre la propo-
sition A.13 au cas des fractions régulieres :

card (S) = =2m1 [ ]

Proposition A.18. Considérons une fraction réguliére de plan d’expérience
factoriel a m facteurs et désignons par X la matrice du modéle contenant
toutes les interactions possibles. On peut alors affirmer que :

1) le carré de la norme de toute colonne est égale ¢ 2™~ 19,

2) deux colonnes distinctes de X sont soit orthogonales soit colinéaires.

Démonstration. La proposition énoncée en 1 découle immédiatement de
la proposition A.17 disant que la matrice X a 2™~ lignes. Concernant la
proposition énoncée en 2, considérons au préalable la matrice carrée, élément
de M (2™,2™), du modele contenant tous les effets d’interactions du plan
factoriel complet.

Il convient de distinguer, dans un premier temps, la sous-matrice X du
modele obtenue avec la fraction réguliere considérée. Cette matrice, élément
de M (279 2™) | est obtenue en supprimant 29 lignes de la matrice compléte.
Puisque la fraction réguliere est identifiable & un groupe abélien fini S, d’ordre
2™m~4, on peut aussi considérer ensuite la table X des 2™79 caracteres des
représentations irréductibles non-isomorphes de ce groupe. Cette matrice X,
élément de M (2™79,2™~17) | est obtenue en supprimant 29 colonnes de X.

On peut ainsi démontrer la relation 2 puisque pour deux colonnes distinctes
de X deux situations peuvent alors se présenter :
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1) soit les deux colonnes considérées correspondent & deux représentations
irréductibles non-isomorphes de S (i.e. les deux colonnes appartiennent & X)
et sont donc orthogonales (voir la proposition A.5),

2) soit les deux colonnes considérées correspondent & deux représentations
irréductibles isomorphes de S et sont colinéaires MW

Remarque 1. Puisque seuls les plans factoriels a deux niveaux sont con-
sidérés dans cette section on peut donc affiner la relation 2 en disant que
deux colonnes colinéaires sont alors obligatoirement égales ou opposées. Deux
colonnes colinéaires sont de plus obligatoirement égales si ’on utilise une frac-
tion principale.

Remarque 2. Rappelons que pour déterminer tous les couples de colonnes
de X colinéaires il suffit de construire la table des confusions d’effets
telle qu’elle a été présentée au paragraphe 3.4.3. Pour I'exemple précédent ou
G ={1,123} il y a donc colinéarité des couples de colonnes suivants :

{I,123} , {1,23} , {2,13} , {3,12}.

Application

Démontrons la fin de la proposition 3.15 dont ’énoncé est :

7si D est la matrice d’une fraction réguliere alors les colonnes de D sont
des contrastes de {—1, 1}2 " et le produit d’Hadamard de k colonnes dis-
tinctes de D (2 < k < m) est aussi un contraste de {—1, 1}27”7(1”.

On sait que :

1) la colonne associée a l'effet linéaire §; (i = 1,...,m) est soit orthogonale
soit colinéaire a la colonne associée a (3p. En d’autres termes, la colonne as-
sociée & (; est donc bien un contraste de 'ensemble {—1, 1}2m (non-unitaire
uniquement dans le cas olt 'on a orthogonalité),

2) considérons la colonne de X obtenue en réalisant le produit d’Hadamard
de k colonnes distinctes de D. Cette colonne est donc associée a une inter-
action d’ordre k et la proposition A.18 nous dit qu’elle est en particulier
soit orthogonale soit colinéaire a la colonne associée a fy. Il s’agit donc bien
d’un contraste de {—1, 1}2m (une nouvelle fois non-unitaire uniquement en
cas d’orthogonalité).

A.3 Généralisation

Généralisons ici les résultats de la section A.2 au cas ou plus de deux niveaux
interviennent pour chacun des facteurs. Ceci est donc en rapport avec le
chapitre 8 lorsque m facteurs qualitatifs & h modalités sont considérés (on
dit alors que le plan d’expérience est symétrique car le nombre le modalités
est identique pour tous les facteurs).
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A.3.1 Cas des plans factoriels complets

Il a été montré au paragraphe 8.2.1 du chapitre 8 qu’un plan d’expérience
pour facteurs qualitatifs peut facilement étre décrit a ’aide du codage na-
turel. Dans le cas ou chaque facteur est a h modalités il s’agit donc de coder
chacune des modalités par un élément de l'ensemble {0,1,....h —1}. Il en
résulte que, comme cela a déja été énoncé dans un cas plus général a la
définition 8.7, tout plan d’expérience factoriel complet & m facteurs est con-
stitué par I’'ensemble des points de I'ensemble {0,1,...,h — 1}"" . Remarquons
que {0,1, ..., h — 1} peut étre considéré comme l’ensemble des restes de la divi-
sion euclidienne par h. Muni classiquement de I’addition modulo Ak on obtient
alors le groupe (Z/hZ,+) . Lorsque m facteurs sont considérés on peut donc
réaliser I'identification suivante :

Proposition A.19. Tout plan factoriel complet pour m facteurs qualitatifs a
h modalités peut étre identifié au groupe abélien ((Z/hZ)™ ,+).

Remarque. Ceci est bien une généralisation de la définition A.9 relative
aux plans factoriels complets a 2 niveaux puisque (pour un seul facteur) les
groupes (Z/27Z,+) ou ({—1,1}, x) peuvent étre mis en bijection & I'aide de
I’isomorphisme élémentaire suivant :

¢: ({-1,1},%) = (Z/2Z,+) tel que ¢ (—1)=1et ¢ (1) =0.

Déterminons maintenant les caracteres du groupe ((Z/hZ)™ ,+). Comme il
s’agit d’un groupe produit il suffit donc de connaitre uniquement les caractéres
du groupe (Z/hZ,+) obtenu lorsque m = 1. Il s’agit d’'un groupe abélien
d’ordre h qui peut aussi étre vu de maniere équivalente comme le groupe
cyclique C} des racines complexes de 'unité ou encore, géométriquement,
comme le groupe des rotations d’angles multiples de (27/h) autour d’un axe
donné. On sait alors (voir Serre [90] ainsi que la section A.1) qu’il existe h
caracteres et ces caracteres sont obtenus a partir du vecteur contenant toutes
les racines h-iémes de l'unité. L’exemple suivant détaille les caractéres dans
le cas ol h = 3. En notant w = €*®>7/3) une des racines troisieme complexe de
I'unité les trois caracteres du groupe (Z/3Z,+) sont :

élémt. du groupe | caractere yo | caractere xi1 | caractere yo
0 w0 w? w?
1 wO wl w?
2 w0 w? wt

Remarquons que l’on a aussi plus simplement (avec les notations symboliques
des puissances par rapport au produit d’'Hadamard) :

xo=Is=x)et xa=x1Ox1 =xi.
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Ce résultat est généralisable a toute valeur de h : a partir du vecteur xi
on obtient tous les autres caracteres en élevant ce vecteur a toutes les puis-
sances comprises entre 0 et (h — 1). Utilisons maintenant ces caracteres afin
de retrouver la matrice du plan factoriel complet pour m = 2 facteurs a h = 3
modalités. Considérons la matrice D¢ dont les deux colonnes sont constituées

respectivement par les caracteres x1 ® xo et xo ® x1 du groupe ((Z/3Z)2 , +>.

Il vient alors (avec parallelement la matrice D ci-dessous du plan en codage
naturel) :

00
10
20
01

D=|11] et D¢ =
21
02
12

_22_

£ & E & EEEE
No= O N = O N = O

€
€

E & EEEEEE
NN R = =R O O O

On constate donc que les matrices D et D¢ sont identiques a 'isomorphisme
suivant pres (pour tout k de {0,1,....,h —1}) :

2w

w: (Cpyx) — (%,—i—) tel que ¢ (ei(kT)) = (W*) =k.

On qualifie dans la suite D¢ de matrice complexe du plan. On généralise
alors sans difficulté ce type de construction dans le cas ou m facteurs a h
modalités sont considérés et il vient (en désignant toujours par ¢;; le symbole
de Kronecker) :

Proposition A.20. Soit un plan d’expérience factoriel complet pour m
facteurs a h modalités. Désignons par Dc la matrice complexe de ce plan
écrite selon l'ordre de Yates et considérons les caractéres xo et x1 du groupe
(Z/hWZ,+) tels que xo =Tp et x1 =" (wo,wl, ...,wh_l) avee w = e'C™/M) g
colonne de D¢ associée aux modalités du facteur i est alors aussi le caractére
du groupe ((Z/hZ)™ ,+) donné par :

m
®X51'k
k=1

Prouvons maintenant qu'un tel plan d’expérience est toujours orthogonal.
On sait que 'orthogonalité dans le cas de facteurs qualitatifs se traduit facile-
ment par le biais des matrices d’incidences N;; = ‘X, X;. C’est pourquoi on
cherche dans un premier temps a établir le lien mathématique existant entre
la matrice complexe du plan et les diverses matrices X; des indicatrices des
modalités des facteurs. Considérons pour cela la matrice complexe du modele
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additif X¢ définie naturellement par X¢ = [I,, | D¢] ainsi que la matrice F
telle que (avec toujours w = e*™/))

1 1 1... 1
1 w w? ... whl
F=F, = 1 w? wt . w2

1 wh=1 Q2=  ,(h=1)?

Une telle matrice est classique, elle est souvent qualifiée de matrice de
Fourier d’ordre h. Les colonnes de F forment une base orthonormée de C"
pour le produit scalaire de la proposition A.5 (car elles sont constituées par
tous les caracteres du groupe (Z/hZ,+) et ces caractéres sont orthogonaux
d’apres les propositions A.5 et A.8). La matrice F' est donc orthogonale dans
le sens ou F*F = hl; avec F* matrice adjointe de F'. Introduisons maintenant
les matrices complexes G; définies par la relation :

V’L:L,T)’L,Gl:XZF

avec X; matrice des indicatrices des modalités du facteur . En illustrant ceci
a l’aide de ’exemple précédent pour m = 2 facteurs a h = 3 niveaux il vient :

[100] (1007
010 100
001 100
100 010 111
X,=1[010|, Xo=|010]| et F=|1 w w?
001 010 1w? w
100 001
010 001
1001 ] 1001 ]
Les matrices G et GGo sont donc données ici par :
1 w0 W07 1 w® W07
1wt w? 1 w® W0
1 w?w! 1 w® W0
1wl W0 1wt w?
Gl :XlF: 1w1 w2 et GQZXQF: lwl w2
1 w? wt 1wt w?
1 w@ W 1 w? w!
1wt w? 1 w? w!
1 w?w! _1w2w1_

On constate donc que (par exemple) la matrice G; permet de retrouver la
colonne (en caracteres gras) relative aux diverses modalités, sous forme com-
plexe, du facteur 1. Les deux autres colonnes de (G; sont engendrées par cette
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méme colonne puisque, en la désignant par 1, il s’agit de 1° =T et 12 = 1 ® 1.
Ce résultat concernant la forme des matrices G; est généralisable sans dif-
ficulté car il est du au fait que, par définition, la matrice de Fourier F' est
elle-méme engendrée par les puissances successives d’une méme colonne. On
obtient donc le résultat général suivant :

Proposition A.21. Soit un plan d’expérience pour m facteurs qualitatifs a h
modalités. Désignons par X; € M (n, h) la matrice des modalités du facteur i,
par F € M (h,h) la matrice de Fourier d’ordre h et indroduisons les matrices
G; € M (n,h) par la relation suivante :

Vz:l,,m,GZ:XlF

En désignant par i la colonne de la matrice complexe D¢ relative au facteur
i on a alors (avec i*> =10 1,1 =1i0i01, etc ...) :

Gi=[L,|i]|4i*]..] i"7'].
Remarquons que puisque la matrice de Fourier F' est orthogonale il en résulte

qu’elle est toujours inversible avec de plus F~! = (1/h) F*. On en déduit donc
que :

1
Le résultat suivant est alors immédiat :
Proposition A.22. Soit un plan d’expérience pour m facteurs qualitatifs a

h modalités. La matrice d’incidence associée auz facteurs i et j (i,j
1,...,m avec i # j) est donnée par :

1 *\ % * 1 * *
Nij = 'XiX; = 55 (GiF")" (G F") = 35 F (G{Gj) F*.

h2
Application

Autre démonstration, dans le cas particulier ou hy = ... = h,,, = h, du
résultat suivant du paragraphe 8.3.2 :

”tout plan factoriel complet pour m facteurs qualitatifs & hq,..., Ay
modalités est un plan d’expérience orthogonal tel que :

m
Vi,j=1,..,maveci#j, \ij = h;Lj olt nzkl:llhk”.

Pour deux facteurs i et j tels que i # j considérons la matrice d’incidence
N;;. D’apres la proposition A4.22 on a :
1

Nij = 15 B (GiGy) F™



500 A Plans factoriels et représentation linéaire des groupes

avec G; = [I, | i | i? || ir 1] et G = |1, | j | j2 || i"71]. Ces deux
matrices sont donc constituées par un total de 2h vecteurs colonne qui sont
tous des caracteres du groupe ((Z/hZ)™,+). Les propositions A.5 et A.8
permettent d’affirmer que ces différents caracteres sont orthogonaux entre
eux et il vient donc (avec le produit scalaire de la proposition A.5) :

V k1 =0,...,h—Lave (k1) #(0,0), (i*[j') =0.

Pour le cas particulier ou (k,1) = (0,0) le méme caractére est alors sélectionné
dans les deux matrices et donc :

(io | jo) = |I) =1.

Tous ces résultats d’orthogonalité se traduisent matriciellement par :

Il en résulte que la matrice d’incidence des facteurs i et j est donc (d’apres la
forme générale de F' donnée précédemment) :

* * . . . n
Nij= s F(GIG)F =5 | 1 1| =95

= -

Le résultat est ainsi bien démontré dans le cas ou tous les facteurs sont a h
modalités puisque :
n

n=h" donc \j; = — =

3 hm—2.

Remarquons que ce dernier résultat est indépendant du choix de i et 7, le plan
d’expérience obtenu dans ce cas est donc uniformément orthogonal.

A.3.2 Cas des fractions régulieres

Utilisons une nouvelle fois la théorie de représentation linéaire des groupes
finis afin d’étendre les propriétés vues précedemment aux fractions régulieres
de plans factoriels. L’interprétation algébrique des fractions régulieres est tout
d’abord donnée ci-dessous :

Définition A.23. Soit un plan factoriel complet o m facteurs qualitatifs a
h modalités identifié au groupe abélien G = ((Z/hZ)™ ,+). On appelle alors
fraction réguliere (principale) tout plan d’expérience associé d un sous-
groupe S de G.
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Mlustrons ceci par un exemple pour m = 2 facteurs qualitatifs & h = 3
modalités. Le tableau ci-dessous est la table des caracteres du groupe G =

((Z/BZ)2 , ~|—) en notant, pour des raisons de place, x;; au lieu de x; ® x;.

Pour simplifier la lecture on note de méme simplement ¢ au lieu de la forme
complexe w! ol w = !(27/3) (on utilise donc le codage naturel des modalités
des facteurs). Chaque élément du groupe G est identifié aux deux valeurs (en
gras dans le tableau) prises par x19 et xo1 (i.e. & ses coordonnées en codage
naturel dans le plan d’expérience d’apres la proposition A.20). Pour rendre
la lecture de ce tableau plus aisée il a été aussi rajouté en premiere ligne une
interprétation plus intuitive de chacun des résultats a partir des colonnes 1 et
2 associées respectivement aux premier et deuxieme facteur dans la matrice
du plan d’expérience factoriel complet puisque (voir le paragraphe A.3.1) :

xo=Is=x)et xa=x1Ox1 =xi.

Les caracteres du groupe ((Z/ 372)°, +) sont alors donnés par :

I 1 2 12| 12| 22 [122] 122 | 1222
Elément | xo0 | X10 | Xo1 | X11 | X20 | Xo02 | X12 | X21 X22

(0,0) 0] o of o of of o o o0
(1,0) 0 1 o 1 2 0 2 1 2
(2,0) 0 2 o 2 1 0 1 2 1
(0,1) 0 o] 1 1 0 2 1 2 2
(1,1) 0 1 1 2 2 2 0 (0] 1

2,1 0 2 1| o 1] 2] 2| 1 0
(0,2) 0 o 2 2 0 1 2 1 1

(1,2) 0] 1| 2| o 2| 1] 1| 2] o0

(2,2) 0 2 2 1 1 1 0 0 2

Considérons alors non plus le groupe G mais le sous-groupe S constitué des

éléments suivants :
S =1{(0,0),(2,1),(1,2)}.

La fraction réguliere du plan factoriel complet associée a S est alors obtenue
en ne conservant que les expériences (i.e. les lignes du tableau) associées aux
éléments de S. Les expériences retenues figurent dans la table en caracteres de
grande taille. On définit ensuite, tout comme au paragraphe A.2.2 ou seule-
ment deux niveaux intervenaient, I’orthogonal du groupe S dans G* par :

St={xeG" /geS=x(g)=0}.

Remarquons alors que les notions d’orthogonal du groupe S ou bien de groupe
des générateurs de la fraction réguliere (voir le paragraphe 8.4.3) sont encore
identiques (seules les notations different). Il vient pour I'exemple présenté
ici :



502 A Plans factoriels et représentation linéaire des groupes

S+ = {x00, X1, X22} €t G = {I,12,1%2%} .

Ceci permet alors de démontrer le résultat suivant (énoncé a la proposition
8.12 du chapitre 8) :

Proposition A.24. Soit m facteurs qualitatifs a h modalités avec h nombre
premier. Le nombre d’expériences de toute fraction réguliere obtenue a l’aide

de q générateurs est alors :
n=hm"9,

Démonstration. Pour tout groupe fini G il est encore possible d’utiliser le
résultat présenté a la proposition A.16 disant (voir Lang [62]) que l'orthogonal
S1 de tout sous-groupe S est lui-méme un sous-groupe dont le nombre
d’éléments est donné par :

card (G)
d(St) = ——2-.
card (57) card (S)

Or on sait que card (G) = h™ (nombre d’expériences du plan factoriel com-
plet) et S+ et G sont isomorphes donc (voir la proposition 8.10) card (SL) =
h?. On en déduit immédiatement que :

card (G)

=hpm1 |
card (S1)

card (S) =
Démontrons maintenant le résultat suivant, primordial afin de pouvoir faire
le lien entre fractions régulieres et notion d’orthogonalité :

Proposition A.25. Soit m facteurs qualitatifs a h modalités avec h nombre
premier. Soit T la table des caractéres du groupe G associé au plan facto-
riel complet et X la restriction de cette table correspondant a une fraction
réguliére. Deux colonnes distinctes de X sont alors toujours soit orthogo-
nales soit colinéaires.

Démonstration. La démonstration de cette proposition est similaire & celle
de la propostion A.18 énoncée dans le cas particulier on G = {—1,1}". On
sait en effet que la matrice T, élément de M (h™,h"™), est constituée de
colonnes orthogonales puisque G est un groupe abélien d’ordre A™. On a déja
vu que considérer une fraction réguliere définie par ¢ générateurs équivaut
donc & ne garder que la matrice X € M (h™~ %, h™) obtenue en supprimant
h4 lignes de T Enfin la fraction réguliere étant associée a un groupe abélien fini
S d’ordre h™~ % on peut aussi considérer la sous-matrice X € M (h™~ 9, h™ ™)
de X constituée par tous les caracteres des représentations irréductibles de ce
sous-groupe. La matrice X est donc obtenue en supprimant h? colonnes de X
et ses colonnes sont orthogonales. On peut ainsi démontrer la proposition A.25
puisque si 'on considere deux colonnes distinctes de X alors deux situations
peuvent se présenter :
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1) soit les deux colonnes considérées correspondent & deux représentations
irréductibles non-isomorphes de S (i.e. les deux colonnes appartiennent & X)
et sont donc orthogonales (voir la proposition A.5),

2) soit les deux colonnes considérées correspondent & deux représentations
irréductibles isomorphes de S et sont alors colinéaires M

Ceci permet maintenant de démontrer le résultat principal suivant (proposi-
tion 8.13 du chapitre 8) :

Proposition A.26. Soit m facteurs qualitatifs a h modalités avec h nombre
premier. Toute fraction réguliére de plan factoriel complet de résolution égale
a T (ou plus) est un plan d’expérience orthogonal.

Démonstration. Justifions tout d’abord que l'utilisation d’une fraction
réguliere de résolution inférieure a III est toujours incompatible avec la pro-
priété d’orthogonalité du plan d’expérience.

1) Considérons une fraction réguliere de résolution I. Il existe donc au moins
un mot de longueur égale a 1 dans le groupe G. On peut supposer, sans perte de
généralité, qu’il s’agit de 1*!. Le nombre de modalités h étant premier on est
alors assuré que les éléments 1, 12, ..., 1"~ 1 sont aussi dans le groupe G. Il vient
donc en particulier : I = 1. Cette relation est incompatible avec la propriété
d’orthogonalité puisqu’elle impose d’utiliser toujours la méme modalité pour
le facteur 1 tout au long des expériences (ce qui est en contradiction avec la
propriété 2 de la proposition 8.4).

2) Considérons maintenant une fraction réguliere de résolution II. Il existe
donc au moins un mot de longueur égale & 2 dans le groupe G. Supposons,
toujours sans perte de généralité, qu’il s’agit de 191242, On peut alors affirmer
que :

[=122% & 1h=o = 202,

Ceci montre donc qu’il existe forcément un lien entre les modalités des fac-
teurs 1 et 2 apparaissant dans le plan d’expérience. Ceci est une nouvelle fois
incompatible avec la propriété d’orthogonalité qui impose a chaque couple de
modalités d’apparaitre un méme nombre de fois Aj2 (on peut remarquer, par
exemple, que 0 < oy < h donc la modalité 0 du facteur 1 et la modalité 1 du
facteur 2 ne peuvent pas apparaitre simultanément).

Justifions maintenant que le plan d’expérience considéré est bien orthogonal
des lors que 'on utilise une fraction réguliere de résolution égale a III (ou
plus). Pour deux facteurs i et j distincts considérons leur matrice d’incidence
N;j;. D’apres la proposition A.22 il vient :

1

Nij = 15 B (GiGy) F™
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avec Gy = [I [ 1] 4% || i" ] et Gy = [Ln | 5| 3% || 3"7] ou i et j
désignent respectivement les colonnes relatives aux facteurs i et j de la matrice
complexe associée a la fraction réguliere. D’apres la proposition A.25 on sait
que lorsqu’une fraction réguliere est utilisée alors tout couple de colonnes
choisi parmi la totalité des 2h colonnes de G; et G; correspond soit & deux
colonnes orthogonales (selon le produit scalaire de la proposition A.5) soit
a deux colonnes colinéaires. Tout élément de la matrice G;G; est alors un
produit scalaire ayant une des formes présentées ci-dessous.

1) Produit scalaire de la forme (I,,,1,,). On a alors :
(In | L) = (1°]3°) =1.

2) Produits scalaires de la forme (i*|1I,) avec k = 1,..,h — 1. D’aprés
les résultats précédents ce produit scalaire est non-nul si et seulement si les
colonnes i* et I,, sont colinéaires, c’est-a-dire si et seulement si :

Ja; €{1,....,h — 1} multiple de k tel que I,, = i*.

Cette relation ne peut étre vérifiée ici puisque la fraction réguliere n’est pas
de résolution égale & I. On en déduit que les colonnes i* et I,, sont forcément
orthogonales et donc :

Vke{l,..,h—1}, (i*|L,) =o0.

3) Produits scalaires de la forme (ik | jl) avec k,l = 1,...,h — 1. D’apres
les résultats précédents ce produit scalaire est non-nul si et seulement si les
colonnes i* et j! sont colinéaires, c’est-a-dire si et seulement si :

Ja; € {1,...,h — 1} multiple de k tel que i** = j'.

Cette relation ne peut étre vérifiée ici puisque i** = j' équivaut a I, =
i"=1 5! mais la fraction réguliere utilisée n’est pas de résolution égale & II.
On en déduit alors que les colonnes i* et j! sont forcément orthogonales et
donc :

Vikile{l,..,h—1}, (i* | i) =0.

Tous ces résultats d’orthogonalité se traduisent donc matriciellement (tout
comme pour les plans factoriels complets) par :

Il en résulte que la matrice d’incidence des facteurs i et j est alors donnée par
(d’apres la forme générale de F' donnée au paragraphe A.3.1) :
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1 x P T . n
Ni‘Z—F(GiGJ‘)F:ﬁ ; T2

= -

Le plan d’expérience utilisé est donc bien orthogonal (et méme uniformément
orthogonal ici) W
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Plans d’expérience classiques

Cette annexe présente brievement les différents plans d’expérience les plus
courants introduits dans cet ouvrage. Pour chacun d’eux les points suivants
sont détaillés :

1) présentation succinte du plan (et lien vers la section du livre associée),
2) rappel du ou des modeles statistiques ajustables,

3) principales propriétés du plan d’expérience,

4) présentation d’un exemple simple.

B.1 Plans factoriels complets

Objectif. Utiliser une configuration simple en positionnant, pour m facteurs,
les expériences au niveau de tous les sommets de I’hypercube [—1,1]™ (le nom-
bre d’expériences est donc n = 2™). Voir la section 3.3 pour une présentation
détaillée.

Modéles ajustables. Le modele d’ordre un, le modele a effets d’interactions
classique (interactions d’ordre 2), le modele & effets d’interactions d’ordre
quelconque.

Propriétés. Plans a deux niveaux, plans usuels, plans isovariants (si le
modele d’ordre un est utilisé), plans saturés (si le modele & interactions d’ordre
m est utilisé), plans universellement optimaux.

Ezxzemple. Pour m = 2 facteurs il s’agit de réaliser les expériences suivantes
aux sommets du carré unité :

-1-1
1-1
D= -1 1

1 1
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B.2 Fractions régulieres de plans complets

Objectif. Réduire la taille des plans factoriels en ne conservant qu’une frac-
tion des sommets de I’hypercube [—1,1]™ (c’est & dire la moitié, le quart, le
huitieme, etc ...). Voir la section 3.4 pour une présentation détaillée.

Modéles ajustables. Le modele d’ordre un si la fraction réguliere est de
résolution au moins égale a III, le modele a effets d’interactions classique
(ordre 2) si la fraction réguliere est de résolution au moins égale & V (dans le
cas général le modele a effets d’interactions d’ordre A si la fraction réguliere
est de résolution au moins égale & 2\ + 1).

Propriétés. Plans a deux niveaux, plans usuels, plans isovariants (si le modele
d’ordre un est utilisé), plans parfois saturés (pour m = 3 oum = 7 facteurs par
exemple dans le cas du modele d’ordre un), plans universellement optimaux.

Exemple. Pour m = 3 facteurs la fraction réguliere, de résolution ITI, définie
par :
=123

est constituée des n = 4 expériences présentées ci-dessous (on ne conserve que
celles telles que x5 = +1) :

-1-1 1
-1 1-1
D= 1-1-1
1 1 1

B.3 Plans simplexes

Objectif. Obtenir des configurations saturées pour le modele d’ordre un (donc
en n = m + 1 expériences lorsque m facteurs interviennent). Voir la section
3.5 pour une présentation détaillée.

Modéle ajustable. Le modele d’ordre un.

Propriétés. Plans usuels, plans isovariants, plans toujours saturés, plans
universellement optimaux.

Exzemple. Pour m = 4 facteurs on peut, par exemple, utiliser le plan simplexe
cyclique de matrice présentée ci-dessous :

-1 -1 -1 -1
0.309 0.691 1.309 —1.309
D = 0.691 1.309 —1.309 0.309

1.309 —-1.309 0.309 0.691
—-1.309 0.309 0.691 1.309
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B.4 Plans de Plackett et Burman

Objectif. Obtenir des configurations saturées pour le modele d’ordre un (donc
en n = m + 1 expériences lorsque m facteurs interviennent) avec des niveaux
ne prenant que les valeurs codées +1. Ces configurations n’existent que pour
un nombre de facteurs tel que m = 3mod4. Voir la section 3.6 pour une
présentation détaillée.

Modéle ajustable. Le modele d’ordre un.

Propriétés. Plans a deux niveaux, plans usuels, plans isovariants, plans
toujours saturés, plans universellement optimaux.

Exemple. Pour m = 7 facteurs on peut, par exemple, utiliser le plan de
Plackett et Burman de matrice présentée ci-dessous :

[—1-1-1-1-1-1-1]
1 1 1-1 1-1-1
-1 1 1 1-1 1-1
-1-1 1 1 1-1 1
1-1-1 1 1 1-1
-1 1-1-1 1 1 1
1-1 1-1-1 1 1
1 1-1 1-1-1 1

B.5 Plans composites centrés

Objectif. Compléter les plans d’expérience factoriels (complets ou fraction-
aires de résolution V) de maniére & pouvoir ajuster un modele pour surface de
réponse. Ceci est possible de maniére économique par ajout (dans le cas de m
facteurs) de 2m points situés sur les axes du repere a une distance commune
« du centre du domaine. Voir la section 5.3 pour une présentation détaillée.

Modéles ajustables. Le modele d’ordre deux, le modele a effets de blocs

Propriétés. Plans usuels, plans isovariants (pour un choix adapté de «),
plans équiradiaux (pour un choix adapté de «), plans & trois niveaux (pour
un choix adapté de a), plans bloqués orthogonalement (pour un choix adapté
de «), plans A, D ou E-optimaux (pour un choix adapté de «).

Exemple. Pour m = 2 facteurs le plan composite centré (sans expérience au
centre du domaine) est défini par la matrice présentée ci-dessous :
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—1 —1]

-1 1

1 -1

1 1

D= a 0
—a 0

0 «

L 0 70[-

B.6 Plans de Box et Behnken

Objectif. Proposer des plans d’expérience pour surfaces de réponse n’utilisant
que 3 niveaux par facteur et découlant de la structure des BIBD. Voir la
section 5.4 pour une présentation détaillée.

Modéles ajustables. Le modele d’ordre deux, le modele a effets de blocs.

Propriétés. Plans a trois niveaux, plans équiradiaux, plans parfois usuels,
plans parfois isovariants, plans parfois bloqués orthogonalement.

Exemple. Pour m = 3 facteurs le plan de Box et Behnken (sans expérience
au centre du domaine) est défini par la matrice présentée ci-dessous :

[—1-1 0
1-1 0
-1 1 0
1 10
-1 0-1
1 0-1
D=1_1 0 1
1 0 1
0-1-1
0 1-1
0-1 1
0 1 1)

B.7 Plans simplexes augmentés

Objectif. Rajouter des points a un plan simplexe de maniére & pouvoir ajuster
un modele d’ordre deux. Les nouveaux points sont obtenus en réalisant la
somme de tous les couples de points du simplexe initial, & un coefficient mul-
tiplicatif a pres. Voir la section 5.5 pour une présentation détaillée.

Modéle ajustable. Le modele d’ordre deux.

Propriétés. Plans saturés, plans équiradiaux (pour un choix adapté de «).
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Ezxzemple. Pour m = 3 facteurs et un plan simplexe initial qui est aussi un
plan de Plackett et Burman on obtient (avec la valeur & = —1/2 préconisée
par Morris [66]) le plan simplexe augmenté défini par la matrice présentée
ci-dessous :

[—1 —1 —1]
1 1-1
-1 1 1
1-1 1
0 0 1
D= 1 0 0
01 0
0-1 0
-1 0 0
| 0 0-1)

B.8 Plans hybrides

Objectif. Obtenir des plans d’expérience de petite taille pour 'ajustement
d’un modele d’ordre deux. Dans le cas de m facteurs ces plans (proposés par
Roquemore [81]) sont construits & partir d’'un plan composite centré pour
(m — 1) facteurs (et complétés de maniere adéquate). Voir la section 5.6 pour
une présentation détaillée.

Modéles ajustables. Le modele d’ordre deux, le modele a effets de blocs.

Propriétés. Plans parfois usuels, plans parfois isovariants, plans parfois
saturés, plans bloqués orthogonalement.

Ezxemple. Pour m = 3 facteurs le plan Hybride de type 3114 est défini par
la matrice présentée ci-dessous :

[ -1 -1 1/v2]
1 -1 1/V2
-1 1 1/v2
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B.9 Réseaux de Scheffé

Objectif. Proposer des plans d’expérience pour des situations de mélanges.
Les réseaux de Scheffé sont de type {m, ¢} ot m est le nombre de composants
et ¢ lordre du réseau. Il contiennent toutes les expériences dont les coor-
données barycentriques sont des multiples de 1/q. Voir la section 7.4 pour
une présentation détaillée.

Modéles ajustables. Le réseau de Scheffé de type {m, ¢} permet d’ajuster
le modele pour mélanges d’ordre q.

Propriétés. Plans saturés pour le modele d’ordre ¢ pour mélanges.

Ezxemple. Pour m = 3 composants et ¢ = 3 le réseau de Scheffé de type
{3, 3} est défini par la matrice présentée ci-dessous :

1 0 0
0 1 0
0 0 1
1/32/3 0
2/31/3 0
1/3 02/3
2/3 01/3
01/32/3
02/31/3
11/31/31/3]

B.10 Réseaux de Scheffé centrés

Objectif. Proposer des plans d’expérience pour des situations de mélanges.
Les réseaux de Scheffé centrés sont de type {m,q}, olt m est le nombre de
composants et ¢ 'ordre du réseau. Il contiennent tous les corps purs, tous
les mélanges binaires équilibrés, etc... jusqu’a tous les mélanges équilibrés a ¢
composants. Voir la section 7.5 pour une présentation détaillée.

Modéles ajustables. Le réseau de Scheffé de type {m, ¢}, permet d’ajuster
le modele synergique pour mélanges d’ordre q.

Propriétés. Plans saturés pour le modele synergique d’ordre ¢ pour mélan-
ges, plans séquentiels ({m, 1}, C {m,2}, C ... C {m,m},).

Ezxzemple. Pour m = 3 composants et ¢ = 3 le réseau de Scheffé centré de
type {3,3} est défini par la matrice présentée ci-dessous :
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1 0 0]

0 1 0

0 0 1
D=|1/21/2 0
1/2 01/2
01/21/2
|1/31/31/3 ]

B.11 Plans factoriels complets pour facteurs qualitatifs

Objectif. Utiliser une configuration simple en réalisant, pour m facteurs a
hi, ..., hy modalités, toutes les expériences possibles (le nombre d’expériences
est donc n = hihg...hy,). Voir la section 8.3 pour une présentation détaillée.

Modéles ajustables. Le modele additif, le modele a effets d’interactions.
Propriété. Plans orthogonaux.

Ezxzemple. Pour m = 2 facteurs a hy = 2 et ho = 3 modalités ce plan est
défini par la matrice présentée ci-dessous (en repérant les modalités en codage
naturel) :

00

10

01

11

02

12

B.12 Fractions régulieres de plans complets pour
facteurs qualitatifs

Objectif. Réduire la taille des plans factoriels en ne conservant qu’une frac-
tion des expériences du plan factoriel complet. Voir la section 8.4 pour une
présentation détaillée.

Modéles ajustables. Le modele additif si la fraction réguliere est de
résolution au moins égale a III, le modele a effets d’interactions si la frac-
tion réguliere est de résolution au moins égale a V.

Propriétés. Plans orthogonaux, plans parfois saturés.

Exemple. Pour m = 3 facteurs ayant tous h = 3 modalités la fraction
réguliére, de résolution III, définie par :

I=1223
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est constituée des n = 9 expériences présentées ci-dessous (on ne conserve
donc que celles telles que z1 + 2x2 + x3 = 0[3]) :

[000]
011
022
102

D=|110
121
201
212

1220

B.13 Plans en carrés latins

Objectif. Etant donnés 3 facteurs qualitifs ayant tous h modalités les plans en
carré latin ont pour objectif de proposer une configuration efficace constituées
de h? expériences (les plans en carré gréco-latins généralisent ceci au cas de
4 facteurs et les hyper-gréco-latins au cas de 5 facteurs). Voir la section 8.6
pour une présentation détaillée.

Modéle ajustable. Le modele additif.
Propriété. Plans orthogonaux.

Exemple. Pour m = 3 facteurs ayant tous h = 4 modalités le carré latin
suivant peut étre utilisé :

0(1]2(3
112(3]0
21301
310(1]2

Le plan d’expérience qui en découle est de matrice présentée ci-dessous en
repérant les modalités en codage naturel (voir la section 8.6 pour la corre-
spondance entre le carré latin et la matrice D) :
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[000]
011
022
033
101
112
123
130
202
213
220
231
303
310
321

1332

B.14 Tables de Taguchi

Objectif. Proposer des plans d’expériences (construits par diverses méthodes)
pour la plupart des situations faisant intervenir des facteurs qualitatifs. Voir
la section 8.7.1 pour une présentation détaillée.

Modéles ajustables. Le modele additif, le modele a effets d’interactions.
Propriétés. Plans parfois orthogonaux, plans parfois saturés.

Exemple. La table de Taguchi L5233 permet d’étudier trois facteurs & 2
modalités ainsi qu'un facteur & 3 modalités (pour le modele additif) a laide
de 12 expériences. Le plan d’expérience proposé est orthogonal, il est défini
par la matrice présentée ci-dessous (avec les modalités en codage naturel) :

[0000]
0011
0100
0111
1000
1011
1101
1110
2001
2010
2101

12110
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B.15 Plans en blocs complets

Objectif. Utiliser une configuration simple dans le cas ou h traitements peu-
vent étre répartis en b blocs. Chaque bloc contient alors la totalité des traite-
ments possibles (pour donc n = bk expériences). Voir la section 9.3 pour une
présentation détaillée.

Modéle ajustable. Le modele a effets de blocs pour facteurs qualitatifs.

Propriétés. Plans en blocs de méme taille, plans équirépliqués, plans uni-
versellement optimaux.

Exzemple. Pour h = 3 traitements & analyser en b = 2 blocs on peut considérer
le plan d’expérience en blocs complets suivant (en repérant les traitements en
codage naturel) :

Bloc 1
Bloc 2

01 2
0 1 2

B.16 Plans en blocs incomplets équilibrés

Objectif. Proposer des plans d’expérience de plus petite taille que les plans
en blocs complets, ne contenant pas cette fois tous les traitements dans chaque
bloc. Voir la section 9.4 pour une présentation détaillée.

Modéle ajustable. Le modele a effets de blocs pour facteurs qualitatifs.

Propriétés. Plans en blocs de méme taille, plans équirépliqués, plans uni-
versellement optimaux.

Exemple. Pour h = 3 traitements a analyser en b = 3 blocs on peut con-
sidérer le plan d’expérience en blocs incomplets (BIBD) suivant (en repérant
les traitements en codage naturel) :

0 1 Bloc 1
1 2 Bloc 2
0 2 Bloc 3

B.17 Plans en blocs partiellement équilibrés

Objectif. Proposer une classe de plans d’expérience généralisant celle des
plans en blocs incomplets équilibrés. Voir la section 9.5 pour une présentation
détaillée.

Modéle ajustable. Le modele a effets de blocs pour facteurs qualitatifs.

Propriétés. Plans en blocs de méme taille, plans équirépliqués.
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Exzemple. Pour h = 4 traitements & analyser en b = 4 blocs on peut considérer
le plan d’expérience en blocs incomplets partiellement équilibré (GDD) suivant
(en repérant les traitements en codage naturel) :

0 2 Bloc 1
0 3 Bloc 2
1 2 Bloc 3
1 3 Bloc 4

Notons qu’il est impossible dans ce cas de construire un plan en blocs complets
équilibrés (BIBD).
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Notations utilisées

Voici un résumé des principales notations utilisées dans cet ouvrage. Dans
quelques rares cas une méme notation est utilisée pour désigner deux notions
différentes (rencontrées dans des chapitres différents afin d’éviter tout risque
de confusion). Les deux définitions sont alors regroupées sous une méme ac-
colade.

1,...,n - la notation ¢ = 1, ..., n est utilisé pour traduire que i € {1,2,...,n}.
I, - indicatrice d’ordre n (vecteur dont les n composantes valent 1).

b nombre de blocs (€ N*),
vecteur des parametres inconnus d’un modele pour mélanges (€ RP).

B - matrice (€ M (n,b)) des indicatrices des blocs.

1) - vecteur des parametres inconnus d’un modele polynomial (€ RP).
Bo - effet moyen général.

Br - vecteur des effets linéaires (€ R™) & composantes [3;.

Br - vecteurs des effets d’interactions (€ R™(™~1)/2) 4 composantes 3;;.
Baq - vecteur des effets quadratiques (€ R™) & composantes (;;.

Br - vecteur des effets des traitements (€ R").

,Bz[j ) - effet de la modalité j du i-eme facteur qualitatif.

Cp - matrice d’information du plan d’expérience D.

Ci - nombre de répétitions de la i-eme expérience.

D - plan d’expérience utilisé.

D - matrice (€ M (n,m)) du plan d’expérience.

D; - matrice (€ M (n,m (m —1)/2)) des effets d’interactions.

Do - matrice M (n,m) des effets quadratiques.
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T =20
1

ol

m
M(a,b) -
M

MSE -
MSLOF -
MSPE -
MSR -

R? -
T -
S92 -
522 -
Sy -
SSE -
SSLOF -
SSPE -
SSR -
SST -

vecteur des résidus (€ R").

vecteur des effetx des blocs (€ R?).

nombre de traitements.

nombre de modalités du i-eme facteur qualitatif.
matrice (€ M (n,n)) formée de 1 (donc J,, = I,,'I,).
matrice diagonale telle que K = diag (k1, ..., ks) .
taille (nombre d’expériences) du bloc { (1 <1 <b).
nombre d’occurences des modalités des facteurs i et j.
nombre de facteurs.

ensemble des matrices ayant a lignes et b colonnes.
matrice des moments (€ M (p,p)) du plan d’expérience.
moyenne des carrés due a l'erreur.

moyenne des carrés due au manque d’ajustement.
moyenne des carrés due a l'erreur pure.

moyenne des carrés due a la régression.

valeur de [i%], pour tout plan en blocs usuel.

nombre d’expériences.

nombre d’expériences distinctes (n* < n)

nombre d’expériences au centre du domaine.

matrice d’incidence des facteurs qualitatifs 7 et j.
nombre de parametres inconnus du modele utilisé.
nombre total de parametres du modele utilisé (p < p*).

nombre de générateurs d’une fraction réguliere,
ordre d’un réseau de Scheffé ou d’un réseau centré de Scheffé.

matrice diagonale telle que R = diag (71, ...,7h) -

coefficient de corrélation linéaire multiple.

nombre d’occurrences de chacunes des modalités du facteur .
valeur de n [i%] pour tout plan usuel.

valeur de n [i2 j2] pour tout plan usuel.

valeur de n [i*] pour tout plan usuel.

somme des carrés due a ’erreur.

somme des carrés due au manque d’ajustement.

somme des carrés due a ’erreur pure.

somme des carrés due a la régression.

somme totale des carrés centrés.
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- vecteur ' (‘8L | 8o | 'Br) -
- sphere centrée (en l'origine) de rayon r.
matrice [D|DQ|DI]
- matrice (€ M (n,p)) du modele.

Moes E

- matrice (€ M (n,¢;)) des indicatrices des modalités du facteur i.
- vecteur des observations (dont les n composant sont les Y;).

moyenne des observations.

<E =<

.

- moyenne des ¢; répétitions Yi(l)...Yi(”)_

il

moyenne des réponses avec la modalité j du facteur qualitatif 4.

.

<l

pi - moyenne des observations du bloc I (1 <1 <b).
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A-optimalité, 434
Algorithme d’échange, 342
Analyse spectrale, 41

Barycentre, 251

BIBD, 375

Bloc, 203, 364

Blocage orthogonal, 212

Codage

binaire, 304

naturel, 304
Coefficient de corrélation, 53
Confusion d’effets (alias), 91
Contraintes d’identification, 309, 367
Contraste, 88
Contraste de définition, 90
Coordonnées barycentriques, 252
Corps, 333
Corps pur, 250
Criblage, 77

D-optimalité, 435

Degres de liberté, 52
Diagramme de Pareto, 103
Domaine expérimental, 6

E-optimalité, 436
Ecart-type, 44
Effet de nuisance, 210
Efficacité, 427
Equations
interblocs, 369
intrablocs, 368

normales, 49
Equiradial (plan), 163
Erreur pure, 56
Espérance mathématique, 43
Estimateur, 45

Facteur, 5
qualitatif, 5
quantitatif, 5

Générateur d’une fraction réguliere, 90

GDD, 381

Graphe des variances extrémes, 158
Groupe, 43

Groupe orthogonal, 439

Homoscédasticité, 46

Indicatrice d’un bloc, 204
Isovariance, 81, 156

Mélange
binaire, 250
ternaire, 250
Méthode des différences, 378
Matrice
completement symétrique, 96, 193
d’incidence, 306, 365
d’information, 422
définie positive, 42
de concordance, 365
de dispersion, 422
des covariances, 44
du modele, 47
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du plan d’expérience, 79
orthogonale, 42
symétrique, 42
Modele
a effets d’interactions, 116, 343
a effets de blocs, 204, 364
additif, 308
d’ordre deux, 152
d’ordre un, 79
mixte, 21
non-linéaire, 21
pour mélange, 254
surparamétré, 367
synergique, 258
Modalité, 304
Moindres carrés, 49
Moment, 80
Moment par bloc, 206

Niveau d’un facteur, 5
Niveau d’un test, 60

Optimalité
uniforme, 428

Ordre
de Loewner, 418, 428
de Schur, 419
de Yates, 83, 314
faible de Schur, 420
lexicographique, 117

p-value, 63

PBIBD, 386

Plan d’expérience
a effets de voisinage, 22
axial, 271
binaire, 365
composite centré, 161
cyclique, 388
de Box et Behnken, 170
de Plackett et Burman, 97
en blocs complets, 371

en blocs incomplets équilibrés, 374
en bocs partiellement équilibré, 381

en carré gréco-latin, 332
en carré hyper-gréco-latin, 335
en carré latin, 330

en réseau de Scheffé, 263
en réseau de Scheffé centré, 267
equirépliqué, 365
factoriel complet, 82, 118, 314
factoriel fractionnaire, 86, 120
hybride, 176
numérique, 23
orthogonal, 80, 311
produit, 339
simplexe, 94
simplexe augmenté, 173
symétrique, 379
Plan d’expérience usuel
en blocs, 207
pour effets d’interactions, 117
pour modele d’orde un, 81
pour modele d’ordre deux, 153
Presque-orthogonalité, 164
Produit d’Hadamard, 87
Projection orthogonale, 41
Proportion, 250
Puissance d’un test, 60

Q-ordre, 419

Réponse, 4

Résidu, 46
Résolution, 91
Randomisation, 83
Rang, 40

Relation d’ordre, 418

Saturation, 93

Schur convexité, 446
Simplexe, 252
Statistique de test, 59

Table de Cayley, 330
Table de Taguchi, 336
Tableau orthogonal, 340
Taguchi (méthode de), 133
Tests d’hypothese, 58
Traitement, 364

Variable codée, 78
Variance, 43
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